Supplementary Information for

Leveraging autocatalytic reactions for chemical-domain image classification

Christopher E. Arcadia^{*a*}, Amanda Dombroski^{*b*}, Kady Oakley^{*b*}, Shui Ling Chen^{*b*}, Hokchhay Tann^{*a*}, Christopher Rose^{*a*}, Eunsuk Kim^{*b*}, Sherief Reda^{*a*}, Brenda M. Rubenstein^{*b*}, and Jacob K. Rosenstein^{**a*}

March 1, 2021

^aSchool of Engineering, Brown University, Providence, RI, USA

^bDepartment of Chemistry, Brown University, Providence, RI, USA

Contents

1	Code Repository	3
2	Image Database	3
3	Selected Classes	5
4	Classifier Training	10
5	Simulating Many 5-Class Networks	15
6	Simulating a 9-Class Network	20

1 Code Repository

All of the MATLAB methods and scripts used to train and simulate the autocatalysisbased winner-take-all networks can be found in the GitHub repository AutocatalyticWTA: https://github.com/Chris3Arcadia/AutocatalyticWTA.

2 Image Database

The images used in this study are from the CalTech 101 Silhouettes dataset¹, which itself is based on the CalTech 101 image annotations². The database contains 8,641 binary 256-pixel (16×16) images that are each labeled with one of 101 object classes. The data available for each class is summarized by their averages in Figure S1. Additionally, as a measure of class distinctness, the Euclidean distance between each of the class-averaged images is shown in Figure S2. From both Figures S1 and S2, it is clear that many of the images contain class-specific features, but there are also several classes with significant feature overlap. In particular, large, filled circular objects, such as the soccer ball, stop sign, and yin yang symbol, are nearly indistinguishable.

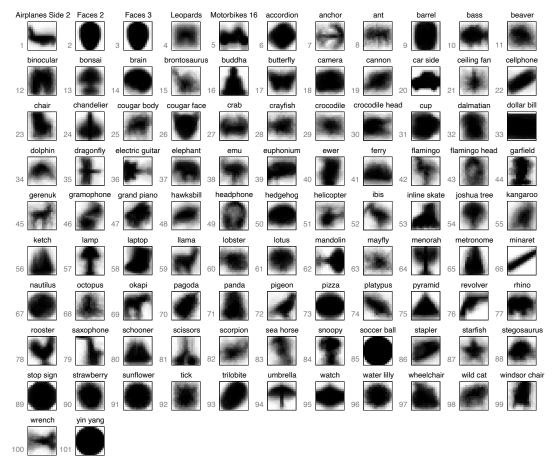


Figure S1 Averaged image data for each class in the CalTech 101 Silhouettes database¹. Class indices and names are shown to the left of and above each image, respectively.

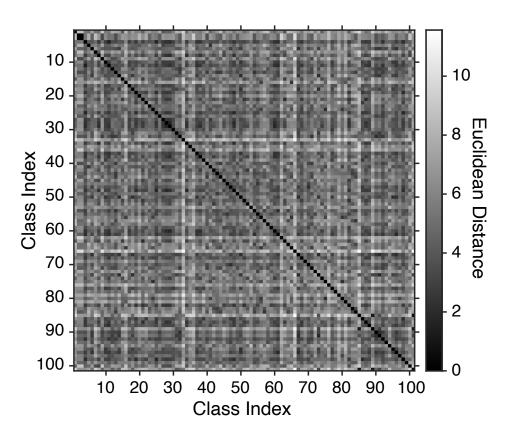


Figure S2 Euclidean distance between each class-averaged representation of the CalTech 101 Silhouettes¹ (those shown in Figure S1). Similar classes, such as Faces 2 and Faces 3 (indices 2 and 3, respectively), are nearer to each other and thus have intersections that appear darker in color. The distances (*d*) were computed as: $d(\vec{x}, \vec{y}) = \sqrt{\sum_{i=1}^{256} (y_i - x_i)^2}$, where \vec{x} and \vec{y} are vectors formed by reshaping the 16×16-pixel images being compared.

3 Selected Classes

The data used for training and testing our winner-take-all network is a subset of the images available in the CalTech 101 Silhouettes database¹. Specifically, the dragonfly, ibis, kangaroo, llama, and starfish classes are used in the main text. For completeness, all of the images from these classes are displayed in Figures S3 (dragonfly), S4 (ibis), S5 (kangaroo), S6 (llama), and S7 (starfish). These classes were selected for aesthetic qualities, and to eliminate the large solid objects which would represent a much more difficult classification task.

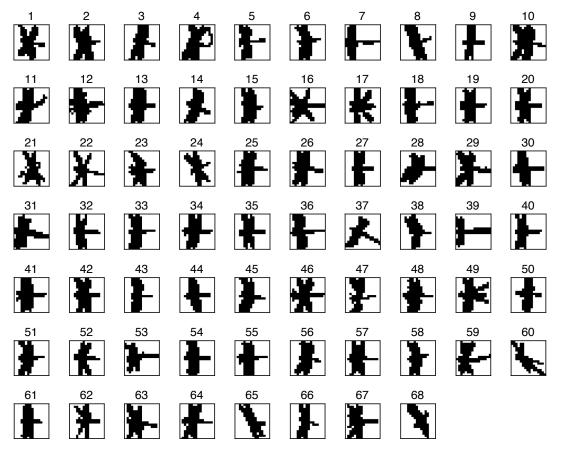


Figure S3 Dragonfly class images from the CalTech 101 Silhouettes database¹.

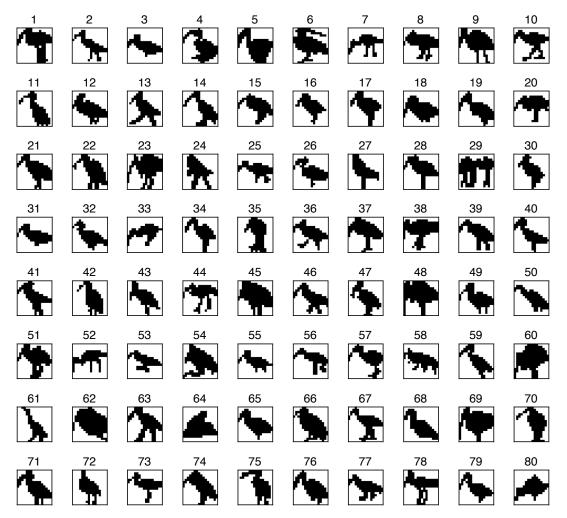


Figure S4 lbis class images from the CalTech 101 Silhouettes database¹.

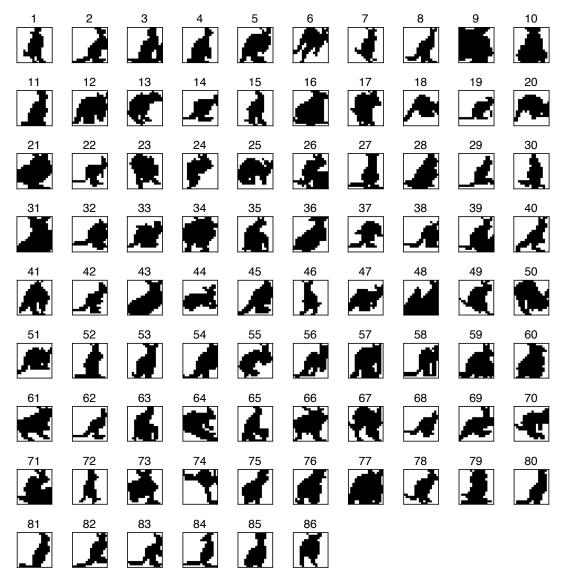


Figure S5 Kangaroo class images from the CalTech 101 Silhouettes database¹.

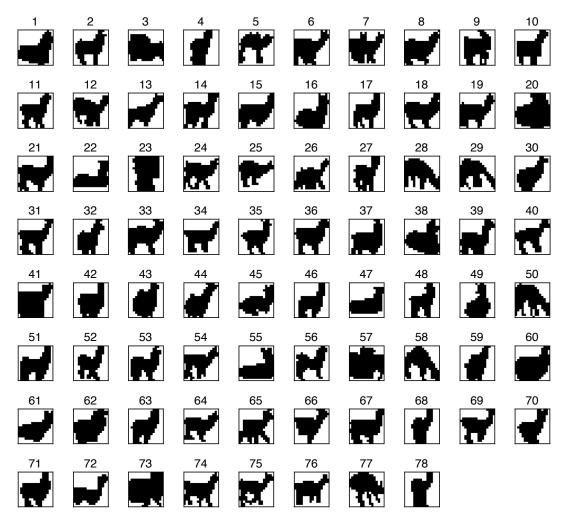


Figure S6 Llama class images from the CalTech 101 Silhouettes database¹.

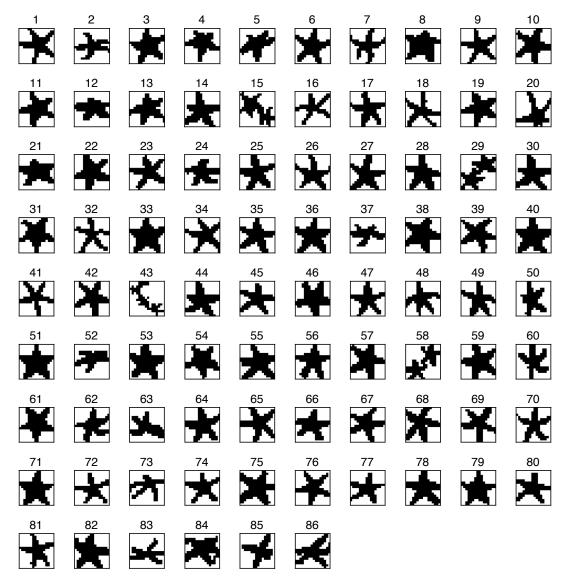


Figure S7 Starfish class images from the CalTech 101 Silhouettes database¹.

4 Classifier Training

The winner-take-all network in the main text was trained used gradient descent. Data from the 5 considered classes was split 70:30 into training (279 images) and test (119 images) sets. The objective function, F (defined in the main text), was minimized over 700 descent epochs using a learning rate of 5×10^{-4} . Since the partial derivatives of the objective, $\frac{\partial F}{\partial w_{kn}}$ (also defined in the main text), are dependent only on class-specific terms, the weight vectors for each class were updated separately during gradient descent. The exact MATLAB function used to tune the classifier weights is presented in Listing S1 (also see Section 1). After each epoch, the objective function was evaluated and its change between epochs was used to monitor training progress (see Figure S8a). The diminishing change in objective value towards the end of the training indicated a local minimum had been successfully reached (see Figure S8b). To assess classifier performance, all images from the considered classes were labeled by the trained network. A comparison between these predictions and the known true labels is shown in Figure S9. Ultimately, the network was found to have correctly classified 81.16% of all the data.

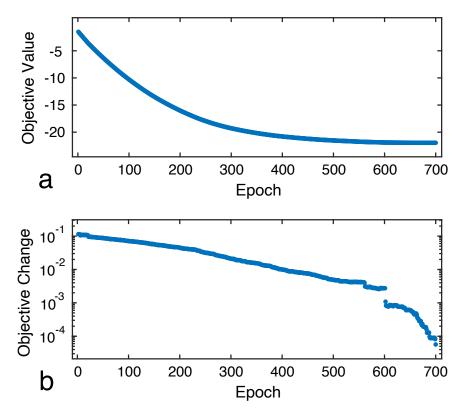


Figure S8 Training progress updates for the network shown in the main text. **a** Objective value (F_e) after each training epoch (e), as evaluated on the test set. **b** Absolute changes in objective value ($|F_e - F_{e-1}|$) over the course of training. The test set was composed of Q = 119 held out images (30% of the available data). Training was performed over the course of 700 epochs using a learning rate of 5×10^{-4} .

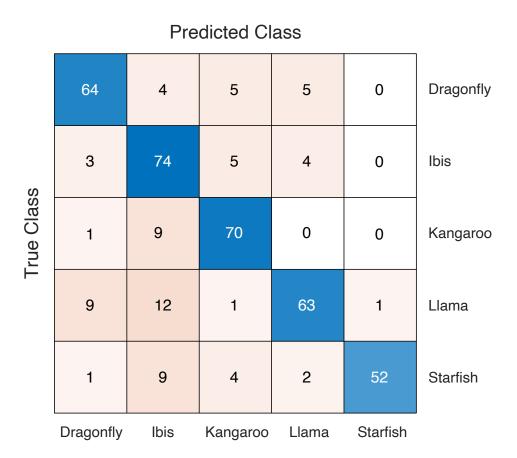


Figure S9 Simulated confusion matrix for the network shown in the main text. The values in the cells represent the number of images from each known class (row) that were labeled by each predicted class (column). The predicted class of each image was determined by the reaction well with the shortest simulated time to transition. Data from both the training and test sets was used to generate this matrix. Overall, classes were assigned with 81.16% accuracy.

Listing S1 Network training function, as implemented in MATLAB.

```
function [w, performance, training, testing] = trainer (x, y, w0, alpha, epoch, w0, alpha, epoch)
1
      fraction, seed, verbose)
  2
  % Train Winner-Take-All (WTA) Network
3
  %
4
  % Inputs:
5
      x - training data (matrix with columns of training vectors) [Nf,Ne]
  %
6
      y - class labels (matrix with columns of training vectors) [1,Ne] (use
  %
7
      integers 1,2,...)
  %
      w0 – the initial weight matrix [Nf,Nc]
8
  %
      alpha - the learning rate (for gradient descent)
9
      epoch - the number of epochs
10
  %
      seed – seed used for random shuffling of training data (leave as [] if you
  %
11
      do not wish to specify)
  %
      fraction - fraction of the total number of examples to use for training
12
  %
      verbose - boolean enabling detailed command line messages
13
  %
14
  % Outputs:
15
      w - the final weight vector
  %
16
      performance – test performance (objective value) after each epoch
  %
17
  %
      training - the indices of training data (numbered with respect to the
18
      output x and y)
  %
      testing - the indices of testing data (numbered with respect to the output
19
      x and y)
  %
20
  21
22
  % initialize weights
23
  w = w0;
24
  clear w0
25
26
  % get shape of inputs
27
  % * Nf = number of features
28
 % * Ne = number of examples (for training, test, or validation)
29
 % * Nc = number of classes
30
 [Nf, Ne] = size(x); \% [Nf, Ne]
31
 [\sim, \text{Ne2}] = \text{size}(y); \% [1, \text{Ne}]
32
  [Nf2, Nc] = size(w); \% [Nf, Nc]
33
  yUniq = unique(y);
34
  Nc2 = length(yUniq);
35
  if Ne~=Ne2 || Nf~=Nf2 || Nc~=Nc2
36
      error ('Input data sizes are invalid.')
37
38
  end
39
  clear Ne2 Nf2 Nc2
40
  % randomize training data
41
  if isempty(seed)
42
      shuff.seed = rng;
43
44
  else
      rng(seed);
45
```

```
shuff.seed = seed;
46
  end
47
   shuff.perm = randperm(Ne);
48
  x = x(:, shuff.perm);
49
  y = y(shuff.perm);
50
  % normalize the weights and training data
  for c = 1:Nc
       w(:,c) = w(:,c) . / (norm(w(:,c)));
54
  end
55
  xnorm = ones(size(x(1,:)));
56
   for e = 1:Ne
57
       xnorm(e) = norm(x(:,e));
58
       x(:,e) = x(:,e)./xnorm(e);
59
  end
60
61
  % split data into testing and training sets
62
  all = 1:Ne;
63
  training = randperm(round(Ne*fraction));
64
  testing = all;
65
  % if there are examples left for testing
66
   if length(training)~=length(all)
67
       testing(training) = [];
68
   else
69
       % otherwise reuse training examples for testing (not advised)
70
71
  end
72
  % perform optimization of weights
73
   sqrdL2diff = @(x,w) sum((w-x).^2); % squared L-2 norm of the difference
74
   performance = zeros ([epoch, length (testing)]); % track over all epochs
  perfMeanCurr = 0;
76
  % loop over each epoch
77
   for n = 1:epoch
78
           % loop over each train example
79
           for e = training
80
               % find optimal weights for each class
81
                for c=1:Nc
82
                    % perform gradient descent
83
                    if yUniq(c)==y(e)
84
                         gradient = -2*(w(:,c)-x(:,e));
85
                    else
86
                         gradient = (2/(Nc-1))*(w(:,c)-x(:,e));
87
                    end
88
                    w(:,c) = w(:,c) + alpha*gradient;
89
90
                    % normalize weights to max
91
                    w(:,c) = w(:,c) . / (max(abs(w(:,c))));
92
93
                    % clip off negative weights
94
                    w(w(:,c) < 0,c) = 0;
95
                end
96
           end
97
```

```
counter = 1;
98
            % loop over each test example
99
            for e = testing
100
                % loop over each class
                xTest = xnorm(e) * x(:, e);
                for c=1:Nc
                    % evaluate the portion of the objective function related to
104
                        the current class
                     if yUniq(c)==y(e)
105
                         factor = +1;
106
                     else % yUniq(cc)==y(e)
107
                         factor = -1/(Nc-1);
108
                     end
109
                     performance(n, counter) = performance(n, counter) + factor*
110
                         sqrdL2diff(xTest,w(:,c));
                end
111
                counter = counter + 1;
            end
113
            perfMeanLast = perfMeanCurr;
114
            perfMeanCurr = mean(performance(n,:));
115
        if verbose
116
            disp(['iteration: ' num2str(n) ', mean performance: ' sprintf('%0.4e',
117
                perfMeanCurr) ', change: ' sprintf('%0.4e', perfMeanCurr-
                perfMeanLast)]);
       end
118
   end
119
120
   % reference indices to the original data
121
   training = shuff.perm(training);
   testing = shuff.perm(testing);
123
124
   end
125
```

5 Simulating Many 5-Class Networks

The winner-take-all network presented in the main text used a manually chosen subset of image classes from the the CalTech 101 Silhouettes dataset¹. To see how similar networks would perform if the classes were randomly selected, we trained and simulated 100 such classifiers, each with their own unique set of 5 object classes. The results are summarized in Figure S10 and Table S1. Despite the known class degeneracies present in this dataset (see Section 3) and the simple network topology, the majority of classifiers perform significantly better than random guessing.

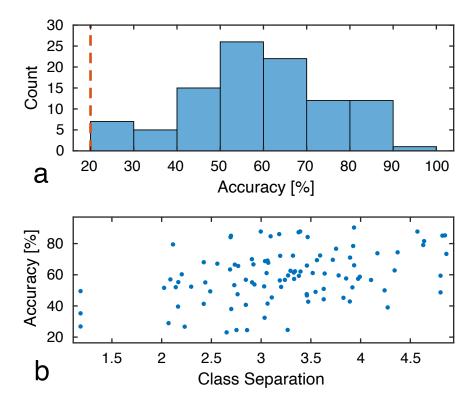


Figure S10 Overall classification accuracy across all 100 simulated 5-class networks. **a** A histogram of the classification accuracies observed across both the training and test sets (those shown in b). The dashed orange line represents the probability of randomly guessing the correct image class ($\frac{1}{5} = 20\%$). **b** Classification accuracies of the simulated networks plotted against their ensemble class separations, the minimal Euclidean distance between class averages (see Figure S2). There is a moderate positive correlation (Pearson coefficient of 0.39) between accuracy and class separation. Each network was randomly assigned a unique set of 5 image classes to learn (see Table S1) and was trained over 700 epochs with a learning rate of 5×10^{-4} .

#	Overall	Train	Test	Sep.	Classes			
1	72.16%	73.96%	67.96%	3.19	Faces 3, windsor chair, euphonium, helicopter, brontosaurus			
2	66.07%	65.23%	68.04%	3.93	rooster, scorpion, Faces 2, ketch, tick			
3	67.71%	66.82%	69.79%	3.07	butterfly, beaver, barrel, nautilus, revolver			
4	52.21%	56.32%	42.68%	3.20	ant, butterfly, cannon, scissors, pyramid			
5	59.57%	54.55%	71.43%	3.27	elephant, gerenuk, strawberry, wild cat, dragonfly			
6	41.36%	42.73%	38.17%	2.42	watch, scorpion, Leopards, ceiling fan, pizza			
7	85.25%	88.24%	78.26%	4.85	ketch, car side, trilobite, mayfly, brain			
8	46.75%	50.62%	37.68%	3.46	windsor chair, metronome, accordion, cup, garfield			
9	84.11%	84.09%	84.15%	2.69	Airplanes Side 2, minaret, water lilly, kangaroo, brain			
10	65.63%	64.84%	67.49%	2.77	bonsai, Faces 2, stapler, metronome, panda			
11	79.07%	79.06%	79.10%	4.63	anchor, saxophone, Faces 2, butterfly, lamp			
12	87.71%	86.76%	89.93%	4.57	brontosaurus, water lilly, windsor chair, Motorbikes 16, cellphon			
13	39.60%	36.00%	48.00%	2.16	elephant, crocodile, cannon, cougar body, beaver			
14	24.53%	26.11%	20.83%	2.75	brain, Leopards, scorpion, garfield, dolphin			
15	24.51%	24.86%	23.68%	2.86	sunflower, platypus, yin yang, lobster, gerenuk			
16	62.08%	63.64%	58.45%	3.40	ewer, ibis, cougar face, Leopards, mayfly			
17	71.02%	72.73%	67.02%	3.89	minaret, ibis, barrel, brontosaurus, crayfish			
18	57.02%	59.06%	52.29%	2.09	ketch, ferry, gerenuk, hedgehog, brain			
19	26.69%	24.73%	31.25%	2.23	flamingo head, lobster, ferry, emu, soccer ball			
20	90.29%	89.27%	92.70%	3.93	trilobite, Motorbikes 16, buddha, mandolin, scissors			
21	79.47%	78.97%	80.63%	2.11	Leopards, wild cat, revolver, Airplanes Side 2, accordion			
22	52.55%	55.31%	46.05%	3.03	pagoda, buddha, beaver, platypus, dollar bill			
23	67.11%	67.94%	65.17%	2.56	chandelier, beaver, water lilly, wheelchair, rooster			
24	66.50%	67.71%	63.71%	2.74	ibis, umbrella, menorah, starfish, scorpion			
25	39.04%	37.25%	43.18%	4.27	soccer ball, panda, trilobite, crab, inline skate			
26	28.96%	27.83%	31.63%	2.07	umbrella, platypus, hawksbill, strawberry, sunflower			
27	53.79%	58.62%	42.53%	2.93	garfield, rhino, trilobite, cougar body, euphonium			
28	56.37%	59.09%	50.00%	3.19	brain, ferry, pyramid, pigeon, gramophone			

Table S1 A summary of classification performance across all 100 of the simulated networks. Thetraining, test, and overall classification accuracies are shown for each network, along with a list ofthe 5 associated classes and their ensemble class separation (Sep.).

Table continues on the next page.

#	Overall	Train	Test	Sep.	Classes			
29	60.29%	61.86%	56.63%	2.20	ceiling fan, schooner, pyramid, umbrella, octopus			
30	55.27%	54.83%	56.29%	2.17	hedgehog, watch, crocodile, pyramid, chandelier			
31	85.10%	87.67%	79.03%	4.82	inline skate, stapler, saxophone, rooster, brontosaurus			
32	41.49%	41.59%	41.24%	3.06	joshua tree, menorah, hedgehog, cup, stop sign			
33	65.91%	67.03%	63.29%	3.46	metronome, anchor, garfield, crayfish, kangaroo			
34	84.21%	84.56%	83.38%	3.47	beaver, Motorbikes 16, stapler, ketch, ibis			
35	78.46%	78.37%	78.68%	3.93	revolver, cougar face, watch, scissors, binocular			
36	56.80%	57.81%	54.46%	2.85	buddha, sunflower, crocodile head, euphonium, bass			
37	59.57%	59.79%	59.04%	3.78	ferry, emu, hedgehog, okapi, dragonfly			
38	40.68%	40.76%	40.51%	2.85	euphonium, snoopy, pizza, sea horse, bass			
39	59.31%	60.55%	56.41%	3.38	watch, euphonium, menorah, octopus, hawksbill			
40	50.00%	47.03%	56.98%	4.24	saxophone, dollar bill, brontosaurus, grand piano, ferry			
41	58.70%	58.80%	58.47%	3.99	metronome, soccer ball, Leopards, Faces 2, windsor chair			
42	24.62%	23.08%	28.21%	3.27	pizza, beaver, windsor chair, yin yang, flamingo head			
43	44.26%	44.93%	42.70%	3.63	stop sign, cup, snoopy, barrel, brain			
44	26.83%	26.87%	26.74%	1.18	pagoda, soccer ball, pizza, stop sign, wheelchair			
45	61.11%	58.94%	66.15%	3.52	saxophone, anchor, lobster, scissors, hedgehog			
46	49.35%	49.07%	50.00%	2.49	laptop, helicopter, metronome, ferry, ceiling fan			
47	60.81%	61.32%	59.62%	3.64	chandelier, dollar bill, binocular, menorah, laptop			
48	87.72%	87.71%	87.76%	3.00	octopus, saxophone, Airplanes Side 2, tick, inline skate			
49	61.09%	64.88%	52.27%	3.05	schooner, hedgehog, llama, wild cat, joshua tree			
50	48.70%	51.06%	43.21%	4.80	saxophone, scissors, schooner, yin yang, cougar face			
51	51.90%	49.22%	58.18%	3.92	soccer ball, starfish, laptop, elephant, minaret			
52	69.38%	68.10%	72.36%	3.56	platypus, ewer, Faces 2, flamingo, anchor			
53	68.05%	68.99%	65.85%	2.42	grand piano, mandolin, minaret, bonsai, joshua tree			
54	85.03%	85.88%	83.05%	2.70	stegosaurus, Motorbikes 16, metronome, bass, scissors			
55	56.73%	59.41%	50.49%	3.24	bonsai, dolphin, chair, rooster, panda			
56	57.42%	56.22%	60.22%	3.97	laptop, pigeon, chandelier, headphone, wrench			
57	52.35%	53.11%	50.56%	2.30	crocodile head, crab, dolphin, crocodile, cellphone			
58	69.59%	71.76%	64.55%	3.72	ketch, windsor chair, crocodile head, llama, lotus			
59	52.04%	53.37%	48.92%	2.14	lotus, rhino, llama, chair, Leopards			
60	47.59%	47.78%	47.13%	3.46	pyramid, wheelchair, ant, elephant, dragonfly			

Table continues on the next page.

#	Overall	Train	Test	Sep.	Classes			
61	23.05%	22.71%	23.86%	2.65	accordion, helicopter, stapler, soccer ball, cannon			
62	87.75%	86.78%	90.03%	3.39	cup, laptop, binocular, Airplanes Side 2, umbrella			
63	49.03%	51.67%	42.86%	3.55	mandolin, camera, stapler, tick, crab			
64	81.60%	80.26%	84.69%	4.64	cellphone, schooner, electric guitar, butterfly, wrench			
65	70.00%	70.41%	69.05%	2.91	scorpion, dolphin, laptop, Faces 2, panda			
66	50.93%	53.74%	44.33%	3.63	yin yang, cup, cellphone, emu, brain			
67	61.42%	61.80%	60.53%	3.33	headphone, camera, pyramid, tick, wheelchair			
68	76.69%	77.63%	74.49%	3.75	kangaroo, sea horse, dragonfly, ibis, strawberry			
69	72.36%	72.44%	72.16%	3.59	stegosaurus, saxophone, grand piano, revolver, ant			
70	57.63%	58.47%	55.70%	3.85	cougar face, wheelchair, saxophone, emu, brontosaurus			
71	32.41%	33.99%	28.74%	3.04	joshua tree, crab, cup, wrench, lamp			
72	55.08%	55.14%	54.95%	2.44	emu, joshua tree, crayfish, barrel, crab			
73	42.86%	43.98%	40.24%	3.89	laptop, strawberry, cougar body, chair, gramophone			
74	51.60%	54.31%	45.24%	2.02	crayfish, panda, buddha, lobster, ceiling fan			
75	73.39%	74.11%	71.71%	4.86	ibis, wrench, ferry, dragonfly, Faces 2			
76	42.72%	42.13%	44.09%	3.47	pizza, flamingo head, panda, menorah, starfish			
77	49.52%	49.54%	49.46%	1.18	soccer ball, dollar bill, chair, laptop, stop sign			
78	35.25%	36.71%	31.82%	1.18	ferry, stop sign, crayfish, soccer ball, wild cat			
79	74.39%	76.73%	68.97%	4.37	inline skate, headphone, umbrella, chandelier, platypus			
80	55.15%	57.58%	49.49%	2.91	nautilus, car side, tick, okapi, joshua tree			
81	72.26%	74.51%	67.05%	3.32	llama, metronome, kangaroo, saxophone, windsor chair			
82	45.22%	48.42%	37.80%	3.83	helicopter, cougar face, gerenuk, metronome, crocodile head			
83	53.33%	52.51%	55.26%	2.73	octopus, stapler, minaret, cellphone, saxophone			
84	56.67%	62.50%	43.06%	4.11	platypus, panda, nautilus, llama, snoopy			
85	45.45%	46.95%	41.96%	3.11	grand piano, car side, water lilly, crocodile head, stop sign			
86	69.10%	71.67%	63.11%	3.06	windsor chair, crocodile head, buddha, menorah, joshua tree			
87	57.33%	58.14%	55.43%	3.33	scorpion, cougar face, inline skate, wheelchair, dalmatian			
88	68.75%	69.86%	66.13%	3.04	binocular, windsor chair, inline skate, strawberry, cup			
89	73.79%	75.93%	68.82%	4.17	rhino, accordion, electric guitar, wheelchair, lamp			
90	62.23%	61.50%	63.92%	3.34	wheelchair, llama, lotus, cougar face, pizza			
91	38.03%	38.93%	35.94%	2.70	crocodile, ceiling fan, snoopy, wild cat, camera			
92	87.29%	89.02%	83.23%	3.38	Motorbikes 16, cup, panda, trilobite, laptop			

Table continues on the next page.

#	Overall	Train	Test	Sep.	Classes			
93	59.40%	60.37%	57.14%	4.80	hedgehog, schooner, scissors, saxophone, wrench			
94	63.40%	62.31%	65.94%	2.69	.69 wrench, cougar face, emu, lotus, watch			
95	86.07%	88.05%	81.48%	3.18	electric guitar, windsor chair, ketch, platypus, ibis			
96	47.50%	47.77%	46.88%	2.76	cougar face, rooster, butterfly, bass, rhino			
97	62.81%	64.46%	58.97%	4.34	electric guitar, watch, sea horse, menorah, dolphin			
98	62.54%	63.27%	60.82%	3.29	hedgehog, pyramid, gramophone, cougar body, ketch			
99	66.67%	67.31%	65.15%	2.92	electric guitar, bass, pigeon, Leopards, flamingo			
100	84.67%	86.05%	81.43%	3.10	Motorbikes 16, crab, crocodile head, garfield, dragonfly			

6 Simulating a 9-Class Network

To demonstrate that an autocatalytic winner-take-all network can be successfully applied to more difficult classification tasks, we trained one such network over 900 epochs on the following 9 classes from the Caltech 101 Silhouettes database¹: revolver, lamp, mandolin, headphone, umbrella, helicopter, pyramid, chair, saxophone. The learned weights are shown in Figure S11. These weights were used to classify all images associated with the 9 considered classes. The resulting confusion matrix is shown in Figure S12, and the overall classification accuracy was 80.00%.

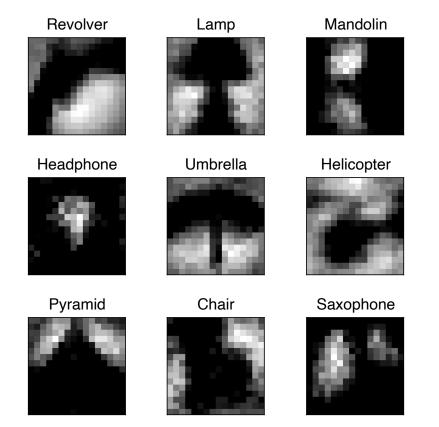


Figure S11 Classifier weights for the 9-class network. Weights were learned over the course of 900 gradient descent epochs with a learning rate of 5×10^{-4} .

	21	1	2	0	0	0	16	0	0	chair
	0	52	1	0	0	0	4	4	0	headphone
	0	0	57	0	0	0	0	0	0	helicopter
ass	1	3	3	16	1	0	17	1	0	lamp
True Class	1	4	17	0	46	2	16	2	0	mandolin
Tru	0	0	0	0	0	81	0	1	0	pyramid
	0	0	0	0	0	1	60	1	0	revolver
	0	10	1	0	0	0	0	64	0	saxophone
	0	0	0	0	0	0	0	0	43	umbrella
	chair headf	hone helic	opter	lamp mar	ndolin py	amid re	volver saxof	honeum	orella	

Predicted Class

Figure S12 Classification confusion matrix for the 9-class network. Images from both the training and test sets were included. Overall, classes were assigned with 80.00% accuracy.

Notes and references

- B. Marlin, K. Swersky, B. Chen and N. Freitas, Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, 2010, pp. 509–516.
- [2] L. Fei-Fei, R. Fergus and P. Perona, *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2006, **28**, 594–611.