Catalytic Asymmetric Synthesis of N-Substituted Tetrahydroquinoxalines via Regioselective Heyns Rearrangement and Stereoselective Transfer Hydrogenation in One Pot

Jin Huang ^[a,b], Guang-xun Li^{*[a]}, Gao-feng Yang^[a], Ding-qiang Fu^[a], Xiao-kang Nie^[a], Xin Cui^[a], Jin-zhong Zhao ^[c] and Zhuo Tang^{*[a]}

^a Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041(China)

^b University of Chinese Academy of Sciences

^c College of Art and Sciences, Shanxi Agricultural University, Taigu, Shanxi, 030800, China

Content

General experimental procedures	2
General procedure for the synthesis of <i>o</i> -PDAs	3
General procedure for the synthesis of primary α -hydroxy ketones	3
General procedure for the synthesis of the racemic α - hydroxy ketones	4
Optimizing the reaction conditions for the synthesis of THQ 3a	5
General procedure A for the synthesis of monosubstituted THQ 4	6
Optimizing the reaction conditions for synthesis of disubstituted THQ 5a	6
General procedure B for synthesis of disubstituted THQ 5	8
Investigation of the reaction mechanism by D ₂ O NMR experiment	8
X-ray results of the product	9
References	10
Characteristic data for selected compounds	11
HPLC spectrum	32
NMR spectrum	69

General experimental procedures

All reactions that required anhydrous or airless conditions were carried by standard procedures under nitrogen atmosphere. Commercially available reagents from Tansoole and Adamas-beta were used as received. The solvents were dried by distillation over the appropriate drying reagents.

¹H NMR spectra were recorded on commercial instruments (400 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃, δ = 7.26). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz), integration and, assignment. ¹³C NMR spectra were collected on commercial instruments (101 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCl₃, δ = 77.0). Mass spectra were recorded on ThermoQuest Finnigan LCQDECA system equipped with an ESI source. Enantiomeric excesses (*ee*) were determined by HPLC analysis using the corresponding commercial chiral column as stated in the experimental procedures at 30 °C with UV detector at 220 or 254 nm. General procedure for the synthesis of o-PDAs^[1]

Scheme S1 Method for preparation of the o-PDAs

To a solution of EtOH (5.0 ml) was added a suspension of o-nitrofluorobenzene **S1-1** (10.0 mmol) and primary amine **S1-2** (35 mmol) at 55 °C. After stirring for 3 h at 55 °C, remove the EtOH under the vacuum. The product was extracted with ethyl ether (50 mL x 3), and the combined organic extracts were washed with brine and dried over Na₂SO₄. After removal of the solvents under reduced pressure, crude **S1-3** was obtained without further purification. **S1-3** was dissolved in CH₃COOH (2 mL/mmol) with the addition of Fe (3.3 eq). The mixture was heated to 60 °C until the solution turns white. Quenched the reaction with sat. NaHCO₃ and extracted the product with EtOAc (50 mL x 3). The combined organic extracts were washed with brine and dried over Na₂SO₄. After removal of the solvents under the solution turns white. Quenched the reaction with sat. NaHCO₃ and extracted the product with EtOAc (50 mL x 3). The combined organic extracts were washed with brine and dried over Na₂SO₄. After removal of the solvents under reduced pressure, the residue was purified by flash column chromatography (hexane/EtOAc = 5/1 to 2/1) afforded substrate **1**.

General procedure for the synthesis of primary α-hydroxy ketones^[2]

Scheme S2 Method for preparation of the primary α-hydroxyl ketones

To a solution of KOH (112.5 mmol) in MeOH (150 mL) was added a suspension of ketone **S2-1** (25.0 mmol) in MeOH (50 mL) at 0 °C. Then PhI(OAc)₂ (37.5 mmol) was added portion wise. After stirring for 3 h at 0 °C, the reaction was quenched by the addition of water. Remove the MeOH under the vacuum. The product was extracted with EtOAc (50 mL x 3), and the combined organic extracts were washed with brine and dried over Na₂SO₄. After removal of the solvents under reduced pressure, crude **S2-2** was obtained as a white solid without further purification. **S2-2** was dissolved in THF: H₂O (37.5 mL: 12.5 mL) with the addition of p-TsOH (46.5 mmol). The mixture was heated

to reflux for 4.5 h. monitored the reaction with TLC. Quenched the reaction with sat. NaHCO₃ and extracted the product with EtOAc (50 mL x 3). The combined organic extracts were washed with brine and dried over Na₂SO4. After removal of the solvents under reduced pressure, the residue was purified by flash column chromatography (hexane/EtOAc = 5/1 to 3/1) afforded substrate **2** as a white solid.

General procedure for the synthesis of the racemic a- hydroxyl ketones^[3]

Scheme S3 Method for preparation of the racemic α-hydroxyl ketones

The chalcone **S2'-1**, 10% Pd/C (an amount equal to ¹/₄ the quantity of the chalcone) and 30 mL of ethyl acetate were placed into the reactor. The reaction was conducted in room temperature for overnight and monitored by TLC using ethyl acetate as the solvent system. When the reaction was finished, the Pd/C was filtered, and the solvent was removed. In most cases, the crude product was purified by column chromatography using ethyl acetate/petroleum ether as the solvent system. All the compounds **S2'-2** without the spectrum data were obtained as pure products monitored by TLC, and the crude products **S2'-2** were directly used in the next step. Aryl ketones **S2'-2** (100 mg, 0.75 mmol), molecular iodine (0.5 equiv. 0.37 mmol) and TBHP (3 equiv. 2.23 mmol) in DMSO (1 mL) were stirred at 80 °C (6-12 h) in a 5 ml round bottomed flask. After the completion of the reaction (monitored by TLC), added water (25 mL) and extracted with ethyl acetate (3 x 20 mL). The combined organic layer was washed with dilute sodium thiosulphate solution (10 mL, 5% aqueous solution) and water. The combined organic layer was dried over Na₂SO₄ and concentrated under reduced pressure. The crude product was purified on a silica gel column using hexane/ EtOAc to get the pure product **2'**.

	NH ₂ +	ОН	EtO ₂ C +	N H CO ₂ Et solv	t. T/°C vent add.		
1	а	2a	HE	ΞH		3	a 🎽
		CPA: 4a	F O O P O C O C O H O Ag	R 9-phenanthryl 9-anthryl 1-pyrenyl 1-naphthyl 4-biphenyl 2,4,6- <i>i</i> -Pr ₃ C ₆ H 10-phenylanth	∃2 hracen-9-yl	ID 4a 4b 4c 4d 4e 4f 4g	
Entry ^a	Sol.		T/ °C	Cat.	Yield ^b (%)	Ee ^c (%)
1	PhMe		70	4a	70		68
2	PhMe		70	4b	65		69
3	PhMe		70	4 c	55		44
4	PhMe		70	4d	68		10
5	PhMe		70	4 e	58		10
6	PhMe		70	4f	62		67
7	PhMe		70	4 g	56		58
8	m-xylene		70	4 a	72		54
9	Benzene		70	4 a	66		50
10	PhCl		70	4 a	75		60
11	PhMe		70	4 a	60		44
12	PhMe		60	4 a	50		63
13	PhMe		80	4 a	68		62
14 ^d	PhMe		65	4 a	92		80

Table S1: Optimizing the reaction conditions for synthesis of 3a

^a All the reactions were carried out using **1a** (0.05 mmol), **2a** (0.05 mmol) and HEH (1.5 eq.) under nitrogen atmosphere in solvent (1 mL) for 16 h. ^b The reaction yield was calculated based on purification via silica column. ^c The ee value was calculated via HPLC with chiral column. ^d The reaction adding sequence was changed as following: The mixture of **1a** and **2a** was run at 110 °C for 2 h, then the reaction temperature was decreased to 65 °C followed by the addition of HEH, and the reaction mixture was further reacted for 16 h.

In the initial stage, the reaction catalyst was screened (Entries 1-7, Table S1). According to the reaction results, CPA **4a** was chosen as the optimal catalyst considering the reaction yield and ee

(Entry 1). Then the reaction solvent and the reaction temperature were screened, which demonstrated that better results could be obtained for the reaction proceeded in toluene at 65 °C. Then the reaction adding sequence was changed according to the reaction mechanism investigation result: the chirality of the reaction was formed via enantioselective transfer hydrogenation rather that enantioselective protonation. After the modification of the reaction adding sequence, both the reaction yield and the ee value were increased (Entry 14).

General procedure A for the synthesis of monosubstituted THQ 3

0.05 mmol of 1, 0.05 mmol of 2, 5 mmol% 4a and 50 mg 4 Å MS were reacted in 1 mL of toluene at 110 °C for 2 h. Then the reaction temperature was decreased to 65 °C and HEH (1.5 eq.) was added, add the reaction mixture was further run at 65 °C for 16 h. After the finish of the reaction, 10 mL saturated sodium sulfite solution was added and the reaction product was extracted with CH₂Cl₂ (10 mL×2). Then the extractant was concentrated and purified with flash silica column eluted with CH₂Cl₂/petroleum ether (1:4-1:1).

Optimizing the reaction conditions for synthesis of disubstituted THQ 5a

10	PhCl:DCE(1:1)	85	4 a	5 Å MS	40	64
11	PhCl:DCE(1:1)	85	4 a	MgSO ₄	35	62
12 ^b	PhCl:DCE(1:1)	85	4 a	4 Å MS	36	62
13°	PhCl:DCE(1:1)	85	4 a	4 Å MS	45	78
14 ^d	PhCl:DCE(1:1)	85	4 a	4 Å MS	35	76
15°	PhCl:DCE(1:1)	85	4b	4 Å MS	40	80
16°	PhCl:DCE(1:1)	85	4 c	4 Å MS	36	42
17°	PhCl:DCE(1:1)	85	4g	4 Å MS	42	80
18 ^c	PhCl:DCE(1:1)	85	4f	4 Å MS	46	90
19°	PhCl:DCE(1:1)	95	4f	4 Å MS	40	88
20 ^c	PhCl:DCE(1:1)	105	4 f	4 Å MS	39	88

^a All the reactions were carried out using **1b** (0.05 mmol), **2'a** (0.05 mmol) and HEH (1.5eq.) under nitrogen atmosphere in solvent (1 mL) for 16 h. ^b reaction proceeded in 0.5 mL solvent. ^c reaction proceeded in 1.5 mL solvent. ^d reaction proceeded in 2 mL solvent.

Considering the broad usage of THQ in pharmaceuticals, we optimized the reaction conditions for obtaining the disubstituted THQ. At the beginning, equal amount of o-PDA **1b** and racemic α hydroxyl ketone 2'a, and 1.5 eq. of HEH were reacted in toluene at 85 °C. According to the result, the disubstituted THQ 5a was obtained in excellent diastereoselectivity (99:1) with 30% yield and 62% ee (Table S3, Entry 1). Then we screened the reaction solvent (Table S3, Entries 2-4). The results demonstrated that PhCl was the optimal solvent (Entry 2). Then PhCl was chosen to mix with other solvent (Entries 5-7). The results demonstrated that the mixture of PhCl and DCE (1:1) was the optimal reaction solvent for higher ee (Entry 7). Next, different dehydration reagents were investigated (Entries 8-11). The results demonstrated that 4 Å molecular sieves was the optimal water drying reagent for both good yield and ee. Then, the effects of the concentration were studied (Entries 12-14), which indicated that 1.5 ml solvent was optimal for higher ee (Entry 13). Next, the reaction catalysts were screened (Entries 15-18), which demonstrated that TRIP 4f was optimal for higher ee (Entry 18). Finally, the temperature was screened (Entries 19-20) which demonstrated that 85 °C was the optimal temperature. Based on the above results, the optimizing reaction conditions were summarized as following: equal amount of substrates and 1.5 eq. of HEH were reacted in 1.5 mL solvent (PhCl:DCE, 1:1) with 5 mol% of TRIP and 50 mg of 4 Å MS as additive at 85 °C under nitrogen atmosphere for 16 h. The disubstituted THQ 5a was obtained in high diastereoselectivity (99:1) with high yield (46%) and good ee (90%).

General procedure B for synthesis of disubstituted THQ 5

0.05 mmol of **1**, 0.05 mmol of **2'**, 5 mmol% TRIP and 50 mg 4 Å MS were reacted in 1.5 mL of PhCl and DCE (1:1) at 85 °C for 16 h. Then, 10 mL saturated sodium sulfite solution was added and the reaction product was extracted with CH_2Cl_2 (10 mL×2). Then the extractant was concentrated and purified with flash silica column eluted with CH_2Cl_2 /petroleum ether (1:4-1:1).

Investigation of the reaction mechanism by D₂O NMR experiment

For reactions with primary α -hydroxyl ketone, The following D₂O NMR experiments were done so as to ensure the reaction mechanism (Scheme S4). According to the results, the addition sequence of HEH was important for the reaction. When HEH was added at the beginning of the reaction, both of the hydrogens (C-2, C-3) were deuterated (Scheme S4a). However, when HEH was added after the formation of the dihydroquinoxaline ring, only the C2-H was deuterated (Scheme S4b). According to the above results, we modified the reaction conditions. The reductant HEH was added after mixing **1a** and **2a** at high temperature for 2 h. In this way, the ee value of **3a** could be improved because the chirality was formed by enantioselective transfer hydrogenation rather than protonation.

Scheme S4 D₂O NMR experiments for reactions with primary α -hydroxyl ketone as substrate

For reaction with racemic α -hydroxyl ketone, the reaction mechanism was investigated with the following D₂O NMR experiments (Scheme S5). According to the results, the C3-H was not deuterated for product **5a**, while both the C2-H and C5-H of product **5a** and **5a**' were deuterated (Scheme S5a). Therefore, we could concluded that the reaction proceeded by transfer hydrogenation of ketone imine rather than imnium ion. Meanwhile, ketone imine **5a**' was stable and could not isomerized into enamine under the reaction conditions according to the deuteration result (Scheme S5b).

Scheme S5 D₂O NMR experiments for reactions with racemic α-hydroxyl ketone as substrate

X-ray results of the product

CCDC: 2005816

Chemical formula	$C_{24} H_{26} N_2 O_2 S$
Formula weight	406.53
Space group	P 21 21 21
Hall group	P 2ac 2ab
Ζ	4
a/Å	8.1129(5)
b/Å	8.6639(5)
c/Å	31.0808(15)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	2184.6(2)
$\rho_{calc}g/cm^3$	1.236
Temperature/K	293 K
Flack parameter	-0.02(6)

Chemical formula	C ₂₄ H ₂₆ N ₂
Formula weight	342.47
Space group	P 21 21 21
Hall group	P 2ac 2ab
Ζ	4
a/Å	7.63264(7)
b/Å	13.82175(12)
c/Å	18.09078(15)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	1908.51(3)
$\rho_{calc}g/cm^3$	1.192
Temperature/K	180K
Flack parameter	-0.2(2)

References

(1) Mukhina, O. A.; Kuznetsov, D. M.; Cowger, T. M.; Kutateladze, A. G. Amino Azaxylylenes Photogenerated from o-Amido Imines: Photoassisted Access to Complex Spiro-Poly-Heterocycles. *Angew. Chem., Int. Ed.* **2015**, *54*, 11516-11520.

(2) Wang, H.-Y.; Yang, K.; Bennett, S. R.; Guo, S.-r.; Tang, W. Iridium-Catalyzed Dynamic Kinetic Isomerization: Expedient Synthesis of Carbohydrates from Achmatowicz Rearrangement Products. *Angew. Chem., Int. Ed.* **2015**, *54*, 8756-8759.

(3) Liang, Y.-F.; Wu, K.; Song, S.; Li, X.; Huang, X.; Jiao, N. I2- or NBS-Catalyzed Highly Efficient α-Hydroxylation of Ketones with Dimethyl Sulfoxide. *Org. Lett.* **2015**, *17*, 876-879.

Characteristic data for selected compounds

(S)-1-methyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3a): White oil (10.3 mg, yield 92%), with 80% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 9.888 \text{ min}; [\alpha]D^{25} = +22^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.46 – 7.31 (m, 5H), 6.84 – 6.51 (m, 4H), 4.64 (dd, *J* = 8.2, 3.1 Hz, 1H), 3.98 (s, 1H), 3.38 – 3.18 (m, 2H), 2.91 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.76, 135.48, 134.64, 128.65, 127.95, 127.02, 118.89, 118.32, 113.43, 111.76, 57.63, 54.70, 39.10.

HRMS (ESI): C₁₅H₁₆N₂ Neutral mass: 224.1313, Observed ([M+H]) +: 225.1384.

(S)-1-isopropyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3b): Yellow oil (11.8 mg, yield 95%), with 94% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 6.785 \text{ min}; [\alpha]D^{25} = +33^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.46 – 7.37 (m, 4H), 7.37 – 7.32 (m, 1H), 6.75 (dd, *J* = 3.3, 1.6 Hz, 2H), 6.61 (q, *J* = 4.3 Hz, 2H), 4.47 (dd, *J* = 8.3, 3.1 Hz, 1H), 4.12 (dt, *J* = 13.2, 6.6 Hz, 1H), 3.97 (s, 1H), 3.40 (dd, *J* = 11.3, 3.2 Hz, 1H), 3.05 (dd, *J* = 11.3, 8.3 Hz, 1H), 1.24 (d, *J* = 6.6 Hz, 3H), 1.10 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ142.26, 134.79, 134.23, 128.59, 127.86, 127.03, 118.94, 117.26, 113.98, 111.40, 55.00, 47.00, 46.75, 19.35, 17.94.

HRMS (ESI): C₁₇H₂₀N₂ Neutral mass: 252.1626, Observed ([M+H]) +:253.1678.

(S)-3-phenyl-1-propyl-1,2,3,4-tetrahydroquinoxaline (3c): Yellow oil (11.6 mg, yield 92%), with 90% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 6.372 \text{ min}; [\alpha]D^{25} = +72^\circ (c \ 0.02, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃)** δ 7.49 – 7.40 (m, 4H), 7.40 – 7.33 (m, 1H), 6.77 (dd, *J* = 9.9, 4.1 Hz, 1H), 6.70 – 6.59 (m, 3H), 4.52 (t, *J* = 5.7 Hz, 1H), 3.96 (s, 1H), 3.38 (d, *J* = 5.7 Hz, 3H), 3.25 – 3.09 (m, 1H), 1.77 – 1.57 (m, 2H), 0.98 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.78, 134.32, 128.66, 127.94, 127.11, 119.21, 117.16, 114.02, 111.32, 55.86, 54.19, 53.36, 19.37, 11.66.

HRMS (ESI): C₁₇H₂₀N₂ Neutral mass: 252.1626, Observed ([M+H]) ⁺: 253.1693.

(S)-1-hexyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3d): Yellow oil (13.8 mg, yield 94%), with 90% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 5.997 \text{ min}; [\alpha]D^{25} = +48^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 8.34 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.99 (d, *J* = 7.9 Hz, 1H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.54 – 7.48 (m, 3H), 7.42 – 7.34 (m, 2H), 4.42 – 4.27 (m, 2H), 1.83 (dt, *J* = 15.6, 7.7 Hz, 2H), 1.52 (dd, *J* = 14.6, 7.1 Hz, 2H), 1.48 – 1.33 (m, 5H), 0.93 (t, *J* = 6.9 Hz, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 141.82, 134.33, 128.65, 127.93, 127.11, 119.21, 117.15, 114.00, 111.30, 55.77, 54.23, 51.56, 31.78, 26.99, 26.01, 22.71, 14.12.

HRMS (ESI): C₂₀H₂₆N₂ Neutral mass: 294.2096, Observed ([M+H]) ⁺: 295.2140.

(S)-1-allyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3e): Yellow oil (11.9 mg, yield 95%), with 82% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 7.560 \text{ min}$; [α]D²⁵= +21° (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.52 – 7.32 (m, 5H), 6.82 – 6.57 (m, 4H), 5.91 (ddd, J = 22.5, 10.5, 5.4 Hz, 1H), 5.23 (ddd, J = 13.7, 11.7, 1.5 Hz, 2H), 4.54 (dd, J = 7.7, 4.0 Hz, 1H), 4.00 (dd, J = 16.5, 5.2 Hz, 2H), 3.83 (dd, J = 16.5, 5.5 Hz, 1H), 3.45 – 3.25 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ141.69, 134.49, 134.19, 133.52, 128.66, 127.96, 127.09, 119.09, 117.83, 116.86, 113.97, 112.01, 55.38, 54.36, 54.05

HRMS (ESI):C₁₇H₁₈N₂ Neutral mass: 250.1470, Observed ([M+H]) ⁺: 251.1491.

(S)-1-cyclohexyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3f): Yellow oil (14.1 mg, yield 97%), with 98% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 9.418 \text{ min}; [\alpha]D^{25} = +78^\circ (c \ 0.01, CH_2Cl_2).$

¹**H NMR (400 MHz, CDCl₃)** δ 7.43 (dd, *J* = 8.2, 5.6 Hz, 4H), 7.40 – 7.33 (m, 1H), 6.76 (d, *J* = 6.6 Hz, 2H), 6.63 (s, 2H), 4.46 (d, *J* = 5.3 Hz, 1H), 3.97 (s, 1H), 3.64 (t, *J* = 9.6 Hz, 1H), 3.48 (d, *J* = 10.3 Hz, 1H), 3.19 – 3.07 (m, 1H), 1.89 (dd, *J* = 24.8, 11.8 Hz, 4H), 1.75 (d, *J* = 13.1 Hz, 1H), 1.60 – 1.26 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 142.26, 134.76, 134.23, 128.60, 127.86, 127.07, 119.00, 117.11, 114.12, 111.37, 56.17, 55.05, 48.62, 29.88, 28.86, 26.30, 26.16, 26.09.

HRMS (ESI): C₂₀H₂₄N₂ Neutral mass: 292.1939, Observed ([M+H]) ⁺: 293.2033.

(S)-1,3-diphenyl-1,2,3,4-tetrahydroquinoxaline (3g): Yellow oil (13.7 mg, yield 96%), with 92% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 11.742 \text{ min}; [\alpha]D^{25} = +53^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.53 – 7.32 (m, 7H), 7.25 (d, *J* = 7.6 Hz, 2H), 7.15 – 6.92 (m, 2H), 6.75 (dd, *J* = 32.9, 26.2 Hz, 3H), 4.56 (s, 1H), 4.20 (s, 1H), 3.88 (s, 1H), 3.60 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 147.98, 141.08, 135.78, 130.95, 129.29, 128.75, 128.07, 127.06, 122.91, 122.62, 120.80, 118.10, 117.47, 114.86, 55.99, 54.04.

HRMS (ESI): C₂₀H₁₈N₂ Neutral mass: 286.1470, Observed ([M+H]) ⁺: 287.1546.

(S)-6,7-difluoro-1-isopropyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3h): Yellow oil (13.4 mg, yield 93%), with 84% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 8.617$ min; $[\alpha]D^{25} = +48^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.52 – 7.32 (m, 5H), 6.50 (dd, *J* = 13.5, 7.6 Hz, 1H), 6.38 (dd, *J* = 11.4, 7.9 Hz, 1H), 4.41 (dd, *J* = 8.2, 2.9 Hz, 1H), 3.93 (dt, *J* = 19.5, 6.4 Hz, 2H), 3.35 (dd, *J* = 11.4, 3.0 Hz, 1H), 2.99 (dd, *J* = 11.3, 8.4 Hz, 1H), 1.22 (d, *J* = 6.6 Hz, 3H), 1.08 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.59, 140.77, 140.64, 130.65 (dd, J = 8.08 Hz, 2.02 Hz),
130.42 (dd, J = 8.08 Hz, 2.02 Hz), 128.69, 128.08, 126.94, 101.43(d, J = 179.78 Hz), 101.22
130.65 (d, J = 180.79 Hz), 54.96, 47.53, 46.62, 19.24, 17.68.

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -150.95 (d, J = 22.6), -133.36 (d, J = 22.6).

HRMS (ESI): C₁₇H₁₈F₂N₂ Neutral mass: 288.1438, Observed ([M+H]) ⁺: 289.1456.

(S)-6,7-dichloro-1-isopropyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3i): Yellow oil (15.2 mg, yield 95%), with 94% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 9.572$ min; $[\alpha]D^{25} = +61^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 – 7.32 (m, 5H), 6.71 (s, 1H), 6.61 (s, 1H), 4.42 (dd, *J* = 7.7, 2.6 Hz, 1H), 3.98 (dt, *J* = 13.0, 6.5 Hz, 2H), 3.36 (dd, *J* = 11.3, 2.8 Hz, 1H), 3.01 (dd, *J* = 11.3, 8.1 Hz, 1H), 1.22 (d, *J* = 6.6 Hz, 3H), 1.07 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ141.40, 134.49, 133.99, 128.72, 128.15, 126.88, 120.84, 119.00, 114.06, 112.09, 54.69, 47.17, 46.30, 19.11, 17.89.

HRMS (ESI):C₁₇H₁₈Cl₂N₂ Neutral mass: 320.0847, Observed ([M+H]) ⁺: 321.0919.

(S)-1-isopropyl-6,7-dimethyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3j): Yellow oil (12.7 mg, yield 91%), with 94% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 10.425$ min; $[\alpha]D^{25} = +43^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.51 – 7.32 (m, 5H), 6.56 (s, 1H), 6.43 (s, 1H), 4.43 (dd, *J* = 8.0, 2.4 Hz, 1H), 4.16 – 4.03 (m, 2H), 3.83 (s, 1H), 3.34 (d, *J* = 13.7 Hz, 1H), 3.00 (dd, *J* = 10.9, 8.5 Hz, 1H), 2.21 (s, 3H), 2.15 (s, 3H), 1.22 (d, *J* = 6.6 Hz, 3H), 1.09 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ142.56, 132.66, 132.11, 128.54, 127.76, 127.05, 126.28, 124.87, 115.83, 113.39, 55.25, 47.27, 46.86, 19.45, 18.74, 17.87.

HRMS (ESI): C₁₉H₂₄N₂ Neutral mass: 280.1939, Observed ([M+Na]) ⁺: 303.1851.

(S)-6-fluoro-1-isopropyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3k): Yellow oil (11.5 mg, yield 85%), with 86% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 8.768$ min; $[\alpha]D^{25} = +44^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.48 – 7.31 (m, 5H), 6.62 (dd, J = 8.7, 5.3 Hz, 1H), 6.46 – 6.30 (m, 2H), 4.51 (d, J = 5.5 Hz, 1H), 4.03 (dt, J = 13.0, 6.1 Hz, 2H), 3.36 (d, J = 11.0 Hz, 1H), 2.97 (d, J = 19.4 Hz, 1H), 1.24 (d, J = 6.6 Hz, 3H), 1.07 (d, J = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.02 (d, J=234.32 Hz), 141.92, 136.02 (d, J=10.10 Hz),
130.29 (d, J=3.03 Hz), 128.65, 127.98, 126.93, 112.06 (d, J=9.09 Hz), 103.75 (d, J=22.22 Hz),
100.76 (d, J=26.26 Hz), 55.29, 47.29, 46.73, 19.43, 17.57.

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -127.28.

HRMS (ESI):C₁₇H₁₉FN₂ Neutral mass: 270.1532, Observed ([M+H]) ⁺: 271.1605.

(S)-7-chloro-1-isopropyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3l): Yellow oil (13.1 mg, yield 92%), with 94% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 9.077$ min; $[\alpha]D^{25} = +52^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.47 – 7.33 (m, 5H), 6.69 (s, 1H), 6.56 (d, J = 7.1 Hz, 1H), 6.49 (d, J = 8.1 Hz, 1H), 4.41 (d, J = 5.6 Hz, 1H), 4.05 (dt, J = 13.2, 6.5 Hz, 1H), 3.98 (s, 1H), 3.40 (d, J = 13.3 Hz, 1H), 3.13 – 2.98 (m, 1H), 1.24 (d, J = 6.5 Hz, 3H), 1.11 (d, J = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ141.80, 135.27, 133.25, 128.68, 128.04, 127.01, 123.74, 116.37, 114.31, 111.03, 54.72, 46.97, 46.68, 19.18, 18.07.

HRMS (ESI):C₁₇H₁₉ClN₂ Neutral mass: 286.1237, Observed ([M+H]) ⁺: 287.1296.

(S)-6-bromo-1-isopropyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3m): Yellow oil (14.3 mg, yield 87%), with 92% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 11.585$ min; $[\alpha]D^{25} = +42^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.47 – 7.32 (m, 5H), 6.81 (dd, *J* = 8.6, 2.1 Hz, 1H), 6.69 (d, *J* = 2.2 Hz, 1H), 6.58 (d, *J* = 8.7 Hz, 1H), 4.47 (dd, *J* = 7.9, 3.0 Hz, 1H), 4.04 (dt, *J* = 13.1, 6.5 Hz, 2H), 3.37 (dd, *J* = 11.4, 3.0 Hz, 1H), 3.01 (dd, *J* = 11.3, 8.1 Hz, 1H), 1.23 (d, *J* = 6.6 Hz, 3H), 1.08 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.79, 136.27, 133.33, 128.69, 128.04, 126.95, 121.03, 116.02, 112.61, 108.97, 54.90, 46.97, 46.59, 19.25, 17.8.

HRMS (ESI):C₁₇H₁₉BrN₂ Neutral mass: 330.0732, Observed ([M+H]) ⁺: 331.0791.

(S)-6-iodo-1-isopropyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3n): Yellow oil (17.0 mg, yield 90%), with 88% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 11.600$ min; $[\alpha]D^{25} = +28^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 – 7.32 (m, 5H), 6.99 (d, *J* = 8.4 Hz, 1H), 6.85 (s, 1H), 6.48 (d, *J* = 8.5 Hz, 1H), 4.45 (dd, *J* = 7.7, 2.3 Hz, 1H), 4.08 – 3.96 (m, 2H), 3.38 (dd, *J* = 11.4, 2.6 Hz, 1H), 3.01 (dd, *J* = 11.2, 8.2 Hz, 1H), 1.22 (d, *J* = 6.6 Hz, 3H), 1.07 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ141.74, 136.60, 134.05, 128.67, 128.05, 127.31, 126.95, 126.46, 121.64, 113.18, 54.77, 46.88, 46.59, 38.80, 19.23, 17.94.

HRMS (ESI):C₁₇H₁₉IN₂ Neutral mass: 378.0593, Observed ([M+H]) +: 379.0656.

(S)-1-isopropyl-6-methoxy-3-phenyl-1,2,3,4-tetrahydroquinoxaline (30): Yellow oil (11.8 mg, yield 85%), with 92% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 16.408$ min; $[\alpha]D^{25} = +46^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.40 (dd, *J* = 8.7, 5.2 Hz, 4H), 7.37 – 7.31 (m, 1H), 6.66 (d, *J* = 8.7 Hz, 1H), 6.32 (dd, *J* = 8.7, 2.3 Hz, 1H), 6.25 (d, *J* = 2.7 Hz, 1H), 4.51 (dd, *J* = 8.1, 2.7 Hz, 1H), 4.02 (dt, *J* = 13.0, 6.5 Hz, 2H), 3.77 (s, 3H), 3.34 (dd, *J* = 11.3, 2.7 Hz, 1H), 2.96 (dd, *J* = 11.1, 8.4 Hz, 1H), 1.23 (d, *J* = 6.6 Hz, 3H), 1.08 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 152.36, 142.30, 136.15, 128.51, 127.84, 126.98, 112.74, 102.90, 100.82, 55.53, 47.23, 19.55, 17.53.

HRMS (ESI):C₁₈H₂₂N₂O Neutral mass: 282.1732, Observed ([M+Na]) ⁺: 305.1650.

(S)-7-bromo-6-chloro-1-isopropyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (3p): Yellow oil (17.3 mg, yield 95%), with 92% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 10.568 \text{ min}; \lceil \alpha \rceil D^{25} = +56^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 – 7.32 (m, 5H), 6.85 (s, 1H), 6.63 (s, 1H), 4.43 (dd, *J* = 7.8, 3.0 Hz, 1H), 4.06 (s, 1H), 3.97 (dq, *J* = 13.2, 6.6 Hz, 1H), 3.36 (dd, *J* = 11.5, 3.1 Hz, 1H), 3.00 (dd, *J* = 11.4, 7.9 Hz, 1H), 1.22 (d, *J* = 6.6 Hz, 3H), 1.07 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ141.38, 135.12, 134.16, 128.72, 128.15, 126.87, 121.09, 115.02, 113.98, 109.65, 54.67, 47.15, 46.24, 19.10, 17.90.

HRMS (ESI):C₁₇H₁₈BrClN₂ Neutral mass: 364.0342, Observed ([M+H]) ⁺: 365.0395.

(S)-3-(furan-2-yl)-1-isopropyl-1,2,3,4-tetrahydroquinoxaline (3q): Yellow oil (11.8 mg, yield 98%), with 90% ee (HPLC, Diacel Chiralcel OD-H column 90:10 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 7.417$ min; $[\alpha]D^{25} = +38^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.41 (d, J = 1.0 Hz, 1H), 6.79 – 6.69 (m, 2H), 6.66 – 6.57 (m, 2H), 6.38 (dd, J = 3.1, 1.8 Hz, 1H), 6.28 (d, J = 3.2 Hz, 1H), 4.64 (dd, J = 7.2, 3.0 Hz, 1H), 4.11 (dt, J = 13.2, 6.6 Hz, 1H), 4.02 (s, 1H), 3.49 (dd, J = 11.2, 3.1 Hz, 1H), 3.28 (dd, J = 11.2, 7.3 Hz, 1H), 1.24 (d, J = 6.6 Hz, 3H), 1.14 (d, J = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ155.26, 141.70, 134.40, 133.57, 119.29, 117.39, 114.42, 111.47, 110.38, 105.91, 49.22, 46.72, 43.50, 19.07, 18.27.

HRMS (ESI): C₁₅H₁₈N₂O Neutral mass: 242.1419, Observed ([M+H]) ⁺: 243.1428.

(S)-1-isopropyl-3-(thiophen-2-yl)-1,2,3,4-tetrahydroquinoxaline (3r): Yellow oil (12.3 mg, yield 96%), with 92% ee (HPLC, Diacel Chiralcel OD-H column 90:10 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 12.153$ min; $[\alpha]D^{25} = +56^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.31 (dd, *J* = 5.0, 0.9 Hz, 1H), 7.10 (d, *J* = 3.0 Hz, 1H), 7.04 (dd, *J* = 5.0, 3.5 Hz, 1H), 6.80 – 6.73 (m, 2H), 6.66 – 6.56 (m, 2H), 4.85 (dd, *J* = 7.6, 3.1 Hz, 1H), 4.20 – 4.04 (m, 2H), 3.48 (dd, *J* = 11.3, 3.1 Hz, 1H), 3.19 (dd, *J* = 11.3, 7.6 Hz, 1H), 1.25 (d, *J* = 6.6 Hz, 3H), 1.17 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ146.18, 134.29, 133.83, 126.50, 125.00, 124.05, 119.39, 117.46, 114.35, 111.50, 50.91, 47.15, 46.70, 19.21, 18.14.

HRMS (ESI): C₁₅H₁₈N₂S Neutral mass: 258.1191, Observed ([M+H]) ⁺: 259.1261.

(S)-3-(4-fluorophenyl)-1-isopropyl-1,2,3,4-tetrahydroquinoxaline (3s): Yellow oil (12.0 mg, yield 89%), with 96% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 8.515$ min; $[\alpha]D^{25} = +72^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.38 (dd, *J* = 8.5, 5.5 Hz, 2H), 7.08 (t, *J* = 8.6 Hz, 2H), 6.75 (d, *J* = 2.7 Hz, 2H), 6.61 (s, 2H), 4.46 (d, *J* = 5.7 Hz, 1H), 4.11 (dt, *J* = 12.8, 6.4 Hz, 1H), 3.95 (s, 1H), 3.35 (d, *J* = 11.0 Hz, 1H), 3.07 – 2.93 (m, 1H), 1.23 (d, *J* = 6.6 Hz, 3H), 1.09 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.40 (d, J = 246.44 Hz), 138.12, 134.58, 134.18, 128.59 (d, J = 8.08 Hz), 119.06, 117.36, 115.41 (d, J = 21.21 Hz), 114.01, 111.43, 54.31, 46.91, 46.68, 19.27, 17.99.

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -114.75.

HRMS (ESI): C₁₇H₁₉FN₂ Neutral mass: 270.1532, Observed ([M+H]) ⁺: 271.1601.

(S)-3-(4-chlorophenyl)-1-isopropyl-1,2,3,4-tetrahydroquinoxaline (3t): Yellow oil (13.3 mg, yield 93%), with 98% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 7.277$ min; $[\alpha]D^{25} = +82^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.40 – 7.31 (m, 4H), 6.89 – 6.43 (m, 4H), 4.47 (d, *J* = 4.9 Hz, 1H), 4.19 – 3.82 (m, 2H), 3.35 (dd, *J* = 11.2, 2.5 Hz, 1H), 3.01 (dd, *J* = 11.1, 8.0 Hz, 1H), 1.29 (s, 1H), 1.22 (d, *J* = 6.6 Hz, 3H), 1.08 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.98, 134.44, 134.19, 133.48, 128.71, 128.37, 119.08, 117.44, 114.04, 111.50, 54.41, 46.69, 29.73, 19.18, 18.08.

HRMS (ESI): C₁₇H₁₉ClN₂ Neutral mass: 286.1237, Observed ([M+H]) ⁺: 287.1245.

(S)-3-(4-bromophenyl)-1-isopropyl-1,2,3,4-tetrahydroquinoxaline (3u): Yellow oil (14.5 mg, yield 88%), with 99% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 9.283$ min; $[\alpha]D^{25} = +80^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.51 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 3.2 Hz, 2H), 6.75 (dd, *J* = 4.4, 2.0 Hz, 2H), 6.62 (qd, *J* = 7.3, 2.0 Hz, 2H), 4.45 (dd, *J* = 7.8, 3.0 Hz, 1H), 4.09 (dq, *J* = 13.2, 6.6 Hz, 1H), 3.95 (s, 1H), 3.34 (dd, *J* = 11.4, 3.1 Hz, 1H), 3.01 (dd, *J* = 11.3, 7.8 Hz, 1H), 1.22 (d, *J* = 6.6 Hz, 3H), 1.08 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.51, 134.41, 134.19, 131.66, 128.72, 121.59, 119.08, 117.44, 114.03, 111.50, 54.47, 46.66, 19.17, 18.09.

HRMS (ESI): C₁₇H₁₉BrN₂ Neutral mass: 330.0732, Observed ([M+H]) ⁺: 331.0795.

(S)-1-isopropyl-3-(4-methoxyphenyl)-1,2,3,4-tetrahydroquinoxaline (3v): Yellow oil (13.1 mg, yield 93%), with 98% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 10.752 \text{ min}; [\alpha]D^{25} = +76^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 8.6 Hz, 2H), 6.74 (d, *J* = 2.4 Hz, 2H), 6.67 – 6.54 (m, 2H), 4.40 (dd, *J* = 8.4, 3.0 Hz, 1H), 4.12 (dp, *J* = 13.4, 6.7 Hz, 1H), 3.93 (s, 1H), 3.85 (s, 3H), 3.36 (dd, *J* = 11.3, 3.1 Hz, 1H), 3.02 (dd, *J* = 11.2, 8.5 Hz, 1H), 1.23 (d, *J* = 6.6 Hz, 3H), 1.11 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 155.25, 141.70, 134.40, 133.56, 128.16, 119.29, 117.38, 114.42, 113.98, 111.47, 110.38, 105.91, 55.36, 49.21, 46.72, 43.49, 19.07, 18.26.

HRMS (ESI): C₁₈H₂₂N₂O Neutral mass: 282.1732, Observed ([M+Na]) ⁺: 305.1744.

(S)-1-isopropyl-3-methyl-1,2,3,4-tetrahydroquinoxaline (3w) Yellow oil (7.6 mg, yield 80%), with 64% ee (HPLC, Diacel Chiralcel OD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 10.373$ min; $[\alpha]D^{20} = +34^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 6.68 (d, *J* = 5.4 Hz, 2H), 6.60 – 6.49 (m, 2H), 4.16 – 4.04 (m, 1H), 3.50 (s, 1H), 3.29 – 3.20 (m, 1H), 2.84 – 2.72 (m, 1H), 1.22 (d, *J* = 1.9 Hz, 3H), 1.21 (d, *J* = 1.3 Hz, 3H), 1.18 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 134.49, 134.34, 118.86, 117.03, 113.99, 111.06, 46.38, 45.85, 20.32, 19.29, 17.88.

HRMS (ESI): C₁₂H₁₈N₂ Neutral mass: 190.1470, Observed ([M+H]) +: 191.1479.

(R)-3-phenyl-1-(3-(trifluoromethoxy)benzyl)-1,2,3,4-tetrahydroquinoxaline (3y) Yellow oil (18.4 mg, yield 96%), with 94% ee (HPLC, Diacel Chiralcel AD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 10.990$ min; $[\alpha]D^{20} = +54^{\circ}$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl**₃) δ 7.41 (dd, *J* = 7.0, 4.7 Hz, 4H), 7.36 (dd, *J* = 5.1, 3.5 Hz, 1H), 7.35 – 7.31 (m, 1H), 7.22 (d, *J* = 7.7 Hz, 1H), 7.17 – 7.09 (m, 2H), 6.73 – 6.63 (m, 3H), 6.59 (dd, *J* = 7.6, 4.4 Hz, 1H), 4.58 (t, *J* = 5.6 Hz, 1H), 4.54 – 4.42 (m, 2H), 4.07 (s, 1H), 3.40 (d, *J* = 5.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 149.62 (d, J = 2.02), 141.40 (d, J = 15.15), 134.32 (d, J = 21.21), 129.93, 128.68, 128.02, 127.00, 125.22, 123.02 (t, J = 258.56) 121.74, 119.48, 119.32, 119.13, 118.37, 114.07, 112.04, 56.05, 55.15, 54.33.

HRMS (ESI): C₂₂H₁₉F₃N₂O Neutral mass: 384.1449, Observed ([M+H]) +: 385.1522

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -57.66

(2R,3S)-2-benzyl-1-isopropyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (5a): White solid (7.9 mg, yield 46%), with 90% ee (HPLC, Diacel Chiralcel OD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 6.762$ min; m.p. 122-125 °C; $[\alpha]D^{20} = -36^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.38 (dt, *J* = 15.1, 7.5 Hz, 4H), 7.26 (t, *J* = 7.0 Hz, 1H), 7.03 (dq, *J* = 14.1, 6.9 Hz, 3H), 6.84 (d, *J* = 7.9 Hz, 1H), 6.73 (dd, *J* = 9.5, 5.7 Hz, 3H), 6.66 (d, *J* = 4.0 Hz, 2H), 4.22 (d, *J* = 2.5 Hz, 1H), 3.97 (s, 1H), 3.75 (dq, *J* = 13.5, 6.7 Hz, 1H), 3.44 (dt, *J* = 10.1, 3.0 Hz, 1H), 2.38 - 2.15 (m, 2H), 0.97 (d, *J* = 6.6 Hz, 3H), 0.33 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 141.50, 140.69, 134.93, 131.55, 130.59, 126.76, 125.56, 119.35, 118.68, 115.17, 58.33, 56.23, 53.57, 32.92, 20.83, 19.39.

HRMS (ESI): C₂₄H₂₆N₂ Neutral mass: 342.2096, Observed ([M+H]) ⁺: 343.2174.

(2R,3S)-3-(4-fluorophenyl)-1-isopropyl-2-(4-methylbenzyl)-1,2,3,4-tetrahydroquinoxaline (5b): White solid (7.5 mg, yield 40%), with 90% ee (HPLC, Diacel Chiralcel OD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 4.117$ min; m.p. 134-136 °C ; $[\alpha]D^{20}=-49^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.38 (d, *J* = 7.9 Hz, 2H), 7.28 (d, *J* = 8.1 Hz, 2H), 6.94 (d, *J* = 7.8 Hz, 1H), 6.91 – 6.73 (m, 7H), 4.29 (d, *J* = 2.1 Hz, 1H), 4.07 (s, 1H), 3.88 (dt, *J* = 13.3, 6.5 Hz, 1H), 3.46 (dt, *J* = 10.0, 3.0 Hz, 1H), 2.43 (d, *J* = 7.9 Hz, 3H), 2.37 (dt, *J* = 24.1, 12.0 Hz, 2H), 1.08 (d, *J* = 6.5 Hz, 3H), 0.46 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.34(d, J = 243.41 Hz), 138.36, 137.06, 136.34 (d, J = 3.03 Hz),
135.06, 132.85, 131.38(d, J = 8.08 Hz), 129.36, 126.60, 119.29, 118.83 (d, J = 8.08 Hz), 115.14,
114.41, 114.20, 58.21, 55.81, 53.69, 31.96, 29.73, 21.16, 20.94, 19.36.

HRMS (ESI): C₂₅H₂₇FN₂ Neutral mass: 374.2158, Observed ([M+Na]) ⁺: 397.2011.

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -118.32.

(2R,3S)-2-(4-fluorobenzyl)-3-(4-fluorophenyl)-1-isopropyl-1,2,3,4-tetrahydroquinoxaline (5c): White solid (5.7 mg, yield 30%), with 90% ee (HPLC, Diacel Chiralcel IC-H column 99:1 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 6.275$ min; m.p. 122-125°C; $[\alpha]D^{20}=-56^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.47 (dd, *J* = 8.2, 5.5 Hz, 2H), 7.17 (t, *J* = 8.6 Hz, 2H), 6.94 (d, *J* = 7.9 Hz, 1H), 6.86 (dd, *J* = 11.9, 5.3 Hz, 3H), 6.78 (dt, *J* = 7.1, 5.4 Hz, 4H), 4.30 (s, 1H), 4.04 (s, 1H), 3.87 (dt, *J* = 13.4, 6.7 Hz, 1H), 3.43 (dd, *J* = 9.4, 4.2 Hz, 1H), 2.35 (d, *J* = 6.9 Hz, 2H), 1.07 (d, *J* = 6.6 Hz, 3H), 0.46 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.13 (d, *J* = 247.45 Hz), 161.38 (d, *J* = 244.42 Hz); 137.13 (d, *J* = 3.03 Hz), 136.02 (d, *J* = 3.03 Hz), 134.82, 132.81, 131.34 (d, *J* = 7.07 Hz), 128.26 (d, *J* = 8.08 Hz),

119.59, 118.96, 118.92, 115.59 (d, *J* = 21.21 Hz), 115.30, 114.40 (d, *J* = 21.21 Hz), 58.13, 55.47, 53.70, 31.82, 29.73, 20.91, 19.37.

¹⁹F{¹H} NMR (**376** MHz, CDCl₃) δ -115.11, -118.08.

HRMS (ESI): C₂₄H₂₄F₂N₂ Neutral mass: 378.1908, Observed ([M+H]) +:379.1992.

(2R,3S)-3-(4-fluorophenyl)-1-isopropyl-6,7-dimethyl-2-(4-methylbenzyl)-1,2,3,4tetrahydroquinoxaline (5d): White solid (8.1 mg, yield 40%), with 94% ee (HPLC, Diacel Chiralcel IC-H column 99:1 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 4.603$ min; m.p. 142-145°C; $[\alpha]D^{20} = -48^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.38 (d, *J* = 8.0 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 6.91 – 6.78 (m, 4H), 6.75 (s, 1H), 6.58 (s, 1H), 4.25 (s, 1H), 3.94 – 3.77 (m, 1H), 3.40 (d, *J* = 9.5 Hz, 1H), 2.44 (s, 3H), 2.39 – 2.30 (m, 2H), 2.25 (d, *J* = 6.9 Hz, 6H), 1.07 (d, *J* = 6.6 Hz, 3H), 0.47 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.31 (d, J = 243.41 Hz), 138.69, 136.90, 136.58 (d, J = 3.03), 132.94,
131.39 (d, J = 8.08 Hz), 130.64, 129.30, 127.08, 126.81, 126.58, 120.35, 116.70, 114.22 (d, J = 21.21),
58.54, 55.91, 53.71, 31.84, 21.13, 21.02, 19.42, 19.16, 19.03.

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -118.49.

HRMS (ESI): C₂₇H₃₁FN₂ Neutral mass: 402.2471, Observed ([M+H]) +: 403.2482.

(2R,3S)-2-(4-fluorobenzyl)-3-(4-fluorophenyl)-1-isopropyl-6,7-dimethyl-1,2,3,4-

tetrahydroquinoxaline (5e): White solid (6.1 mg, yield 30%), with 92% ee (HPLC, Diacel Chiralcel OD-H column 99:1 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 5.885$ min; m.p. 140-143°C; $[\alpha]D^{20}=-36^\circ$ (c 0.01, CH₂Cl₂).

¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 8.3, 5.5 Hz, 2H), 7.16 (t, J = 8.6 Hz, 2H), 6.93 – 6.78 (m, 4H), 6.75 (s, 1H), 6.58 (s, 1H), 4.27 (s, 1H), 3.80 (d, J = 48.6 Hz, 2H), 3.37 (s, 1H), 2.41 – 2.31 (m, 2H), 2.25 (d, J = 4.2 Hz, 6H), 1.07 (d, J = 6.5 Hz, 3H), 0.47 (d, J = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.07 (d, *J* = 246.44 Hz), 161.34 (d, *J* = 243.41 Hz), 136,26, 136.24, 132.72 (d, *J* = 2.02 Hz), 131.34 (d, *J* = 8.08 Hz), 132.71, 130.58, 128.22 (d, *J* = 7.07 Hz), 126.98, 120.48, 116.81, 115.51 (d, *J* = 22.22 Hz), 114.31 (d, *J* = 21.21 Hz), 58.43, 55.55, 53.71, 31.70, 20.97, 19.45, 19.12.

¹⁹F{¹H} NMR (**376** MHz, CDCl₃) δ -115.32, -118.26.

HRMS (ESI): C₂₆H₂₈F2N₂ Neutral mass: 406.2221, Observed ([M+H]) ⁺: 407.2230.

(2R,3S)-2-benzyl-6-bromo-1-isopropyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (5f): White solid (6.3 mg, yield 30%), with 96% ee (HPLC, Diacel Chiralcel OD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 7.765$ min; m.p. 133-135°C; $[\alpha]D^{20} = -68^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl**₃) δ 7.47 (d, *J* = 4.4 Hz, 4H), 7.41 – 7.34 (m, 1H), 7.20 – 7.09 (m, 3H), 6.94 – 6.86 (m, 2H), 6.83 (d, *J* = 6.6 Hz, 2H), 6.78 (d, *J* = 8.5 Hz, 1H), 4.30 (d, *J* = 2.7 Hz, 1H), 4.14 (s, 1H), 3.78 (dt, *J* = 13.4, 6.7 Hz, 1H), 3.53 (dd, *J* = 13.4, 2.8 Hz, 1H), 2.44 – 2.25 (m, 2H), 1.06 (d, *J* = 6.6 Hz, 3H), 0.42 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 140.86, 140.28, 136.35, 131.98, 129.99, 128.76, 127.65, 126.68 (s), 125.69, 121.83, 119.98, 117.31, 110.46, 58.07, 56.15, 53.83, 32.82, 20.62, 19.41.

HRMS (ESI): C₂₄H₂₅BrN₂ Neutral mass: 420.1201, Observed ([M+H]) +: 421.1274

(2R,3S)-7-bromo-6-chloro-3-(4-fluorophenyl)-1-isopropyl-2-(4-methylbenzyl)-1,2,3,4tetrahydroquinoxaline (5g): White solid (6.3 mg, yield 26%), with 90% ee (HPLC, Diacel Chiralcel IC-H column 99:1 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 5.563$ min; m.p. 162-165°C; $[\alpha]D^{20} = -46^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 – 7.24 (m, 4H), 7.07 (s, 1H), 6.88 (t, *J* = 8.7 Hz, 2H), 6.84 – 6.74 (m, 3H), 4.23 (d, *J* = 2.4 Hz, 1H), 4.14 (s, 1H), 3.83 – 3.70 (m, 1H), 3.45 (d, *J* = 8.3 Hz, 1H), 2.43 (s, 3H), 2.41 – 2.34 (m, 1H), 2.32 – 2.22 (m, 1H), 1.07 (d, *J* = 6.5 Hz, 3H), 0.44 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.45 (d, J = 242.42 Hz), 137.49, 137.31, 135.66 (d, J = 3.03 Hz),
135.41, 132.91, 131.25 (d, J = 7.07 Hz), 129.52, 126.47, 122.92, 122.29, 115.45, 114.57 (d, J = 21.21 Hz), 110.11, 57.82, 55.92, 54.09, 32.04, 21.14, 20.60, 19.42.

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -117.72.

HRMS (ESI): C₂₅H₂₅BrClFN₂ Neutral mass:486.0874, Observed ([M+H]) ⁺: 487.0892.

(2R,3S)-1-isopropyl-2-phenethyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline (5h): White solid (6.2 mg, yield 35%), with 82% ee (HPLC, Diacel Chiralcel OD-H column 95:5 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 6.288$ min; m.p. 136-138°C; $[\alpha]D^{20} = -18^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.46 (q, *J* = 7.7 Hz, 4H), 7.36 (t, *J* = 6.6 Hz, 1H), 7.18 (t, *J* = 7.2 Hz, 2H), 7.12 (t, *J* = 7.2 Hz, 1H), 7.00 (d, *J* = 7.9 Hz, 1H), 6.93 (d, *J* = 7.2 Hz, 2H), 6.82 (dd, *J* = 11.4, 4.8

Hz, 1H), 6.74 (q, *J* = 7.7 Hz, 2H), 4.33 (d, *J* = 2.4 Hz, 1H), 4.13 (dt, *J* = 13.3, 6.6 Hz, 1H), 4.03 (s, 1H), 3.53 - 3.43 (m, 1H), 2.69 (ddd, *J* = 14.4, 11.1, 5.2 Hz, 1H), 2.22 (ddd, *J* = 13.8, 11.4, 5.9 Hz, 1H), 1.72 - 1.59 (m, 1H), 1.56 - 1.44 (m, 1H), 1.35 (d, *J* = 6.8 Hz, 3H), 1.27 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 142.61, 141.37, 135.05, 132.97, 128.60, 128.31, 128.09, 127.36, 126.85, 125.42, 119.05, 118.65, 118.23, 115.06, 55.99, 55.37, 53.48, 33.12, 29.07, 22.24, 19.68

HRMS (ESI): C₂₅H₂₈N₂ Neutral mass: 356.2252, Observed ([M+H]) ⁺: 357.2268.

(2R,3S)-2-benzyl-1,3-diphenyl-1,2,3,4-tetrahydroquinoxaline (5i): White solid (6.0 mg, yield 32%), with 96% ee (HPLC, Diacel Chiralcel IC-H column 99:1 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 4.718$ min; m.p. 139-141°C; $[\alpha]D^{20} = -92^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl**₃) δ 7.45 (dd, *J* = 7.3, 6.0 Hz, 4H), 7.41 – 7.34 (m, 1H), 7.28 – 7.18 (m, 3H), 7.09 (t, *J* = 7.4 Hz, 3H), 7.02 (d, *J* = 7.0 Hz, 2H), 6.97 (t, *J* = 7.5 Hz, 1H), 6.87 (dd, *J* = 13.5, 7.0 Hz, 2H), 6.79 (t, *J* = 7.5 Hz, 1H), 6.54 (d, *J* = 8.1 Hz, 2H), 4.58 (d, *J* = 2.7 Hz, 1H), 4.28 (s, 1H), 3.98 – 3.87 (m, 1H), 2.70 – 2.59 (m, 1H), 2.54 (dd, *J* = 13.5, 2.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 150.42, 140.41, 140.08, 136.71, 129.81, 128.93, 128.71, 128.26, 127.91, 127.66, 126.92, 126.06, 123.37, 122.17, 121.63, 121.36, 118.79, 115.71, 67.32, 54.95, 31.99.

HRMS (ESI): C₂₇H₂₄N₂ Neutral mass: 376.1939, Observed ([M+H]) ⁺:377.2017.

(2R,3S)-2-(4-fluorobenzyl)-3-(4-fluorophenyl)-1-phenyl-1,2,3,4-tetrahydroquinoxaline (5j):

White solid (7.2 mg, yield 35%), with 92% ee (HPLC, Diacel Chiralcel IC-H column 99:1 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 6.275$ min; m.p. 140-142°C; $[\alpha]D^{20}=-58^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl**₃) δ 7.42 (dd, *J* = 8.4, 5.4 Hz, 2H), 7.11 (ddd, *J* = 20.9, 12.9, 8.7 Hz, 5H), 6.95 (dd, *J* = 10.0, 7.2 Hz, 5H), 6.88 (t, *J* = 7.3 Hz, 2H), 6.79 (t, *J* = 7.5 Hz, 1H), 6.54 (d, *J* = 7.8 Hz, 2H), 4.55 (d, *J* = 2.6 Hz, 1H), 4.22 (s, 1H), 3.89 – 3.72 (m, 1H), 2.67 – 2.55 (m, 1H), 2.51 – 2.40 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.22 (d, *J* = 250.48 Hz), 161.57 (d, *J* = 244.42 Hz), 150.35, 136.05 (d, *J* = 3.03 Hz), 136.45 (d, *J* = 3.03 Hz), 131.13 (d, *J* = 7.07Hz), 129.03, 128.47 (d, *J* = 7.07 Hz), 127.79, 123.39, 122.34, 121.57, 119.08, 115.86, 115.63 (d, *J*=21.21 Hz), 115.04 (d, *J* = 21.21 Hz), 114.94, 67.29, 54.19, 30.98.

¹⁹F{¹H} NMR (**376** MHz, CDCl₃) δ -114.63, -117.26.

HRMS (ESI): C₂₇H₂₂F₂N₂ Neutral mass: 412.1751, Observed ([M+H]) ⁺:413.18258.

(2R,3S)-3-(4-fluorophenyl)-2-(4-methylbenzyl)-1-phenyl-1,2,3,4-tetrahydroquinoxaline (5k): White solid (7.1mg, yield 35%), with 96% ee (HPLC, Diacel Chiralcel IC-H column 99:1 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 11.297$ min; m.p. 143-146°C; $[\alpha]D^{20} = -49^\circ$ (c 0.01, CH₂Cl₂).

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.21 (m, 5H), 7.10 (dd, J = 15.9, 8.0 Hz, 3H), 6.96 (dd, J = 14.6, 6.6 Hz, 5H), 6.88 (t, J = 7.7 Hz, 2H), 6.79 (t, J = 7.3 Hz, 1H), 6.56 (d, J = 7.8 Hz, 2H), 4.54 (s, 1H), 4.24 (s, 1H), 3.86 (d, J = 11.1 Hz, 1H), 2.68 – 2.49 (m, 2H), 2.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 161.55 (d, J = 244.42 Hz), 150.46, 137.37, 137.27, 136.83, 135.76 (d, J = 3.03 Hz), 131.19 (d, J = 7.07 Hz), 129.41, 129.01, 127.71, 126.77, 123.39, 122.29, 121.54, 121.44, 118.75, 115.71, 114.99(d, J = 21.21 Hz), 67.28, 54.60, 31.11, 21.15.

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -117.43.

HRMS (ESI): C₂₈H₂₅FN₂ Neutral mass: 408.2001, Observed ([M+H]) ⁺: 409.2076

(2R,3S)-2-benzyl-3-(4-fluorophenyl)-1-phenyl-1,2,3,4-tetrahydroquinoxaline (51): White solid (7.5 mg, yield 38%), with 88% ee (HPLC, Diacel Chiralcel IC-H column 99:1 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 12.630$ min; m.p. 144-146°C; $[\alpha]D^{20} = -38^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 7.45 (d, J = 4.3 Hz, 4H), 7.38 (td, J = 8.3, 4.0 Hz, 1H), 7.10 (dd, J = 16.4, 8.4 Hz, 3H), 7.02 – 6.92 (m, 5H), 6.88 (t, J = 6.9 Hz, 2H), 6.79 (t, J = 7.4 Hz, 1H), 6.56 (d, J = 7.9 Hz, 2H), 4.57 (s, 1H), 4.27 (s, 1H), 3.89 (d, J = 11.3 Hz, 1H), 2.69 – 2.56 (m, 1H), 2.51 (dd, J = 13.6, 2.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 161.54 (d, *J* = 244.42 Hz), 150.42, 140.28, 136.73, 135.64, 131.15 (d, *J* = 8.08 Hz), 129.01, 128.72, 127.71 (d, *J* =2.02 Hz), 126.88, 123.40, 122.32, 121.555, 121.49, 118.84, 115.76, 115.00 (d, *J* = 21.21Hz), 67.26, 54.80, 31.13.

¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -117.39

HRMS (ESI): C₂₇H₂₃FN₂ Neutral mass: 394.1845, Observed ([M+H]) ⁺: 395.1919.

(2R,3S)-2-benzyl-7-chloro-1,3-diphenyl-1,2,3,4-tetrahydroquinoxaline (5m): White solid (5.1 mg, yield 30%), with 86% ee (HPLC, Diacel Chiralcel IC-H column 99:1 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 21.177$ min; m.p. 146-148°C; $[\alpha]D^{20} = -28^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl**₃) δ 7.44 (d, *J* = 3.7 Hz, 4H), 7.40 – 7.34 (m, 1H), 7.28 – 7.19 (m, 3H), 7.10 (t, *J* = 7.9 Hz, 2H), 7.01 (dd, *J* = 12.4, 4.5 Hz, 3H), 6.89 (dd, *J* = 13.5, 4.9 Hz, 2H), 6.78 (d, *J* = 8.5 Hz, 1H), 6.49 (d, *J* = 7.9 Hz, 2H), 4.54 (d, *J* = 2.9 Hz, 1H), 4.28 (s, 1H), 3.87 (dt, *J* = 10.6, 3.0 Hz, 1H), 2.65 – 2.49 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 149.77, 139.96, 139.72, 135.08, 129.75, 129.22, 128.75, 128.36, 127.78, 126.85, 126.19, 123.27, 122.15, 121.75, 116.48, 67.32, 54.92, 32.15, 29.72.

HRMS (ESI): C₂₇H₂₃ClN₂ Neutral mass: 410.1549, Observed ([M+H]) ⁺: 411.1637.

(S)-2-benzyl-1-isopropyl-3-phenyl-1,2-dihydroquinoxaline (5a'): Yellow solid (5.1 mg, yield 30%), with 94% ee (HPLC, Diacel Chiralcel IC-H column 99:1 hexanes/2-propanol, 1 mL/min, 254 nm; $t_R = 8.968$ min; m.p. 134-136°C; $[\alpha]D^{20} = +28^\circ$ (c 0.01, CH₂Cl₂).

¹**H NMR (400 MHz, CDCl₃)** δ 8.01 (dd, *J* = 7.3, 1.9 Hz, 2H), 7.56 (d, *J* = 7.7 Hz, 1H), 7.51 – 7.42 (m, 3H), 7.27 (d, *J* = 7.4 Hz, 2H), 7.23 (d, *J* = 4.6 Hz, 1H), 7.20 (d, *J* = 7.3 Hz, 1H), 7.12 (d, *J* = 7.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 1H), 6.99 (t, *J* = 7.5 Hz, 1H), 4.76 (dd, *J* = 9.6, 4.7 Hz, 1H), 3.82 (dt, *J* = 13.3, 6.7 Hz, 1H), 2.68 (dd, *J* = 13.4, 4.6 Hz, 1H), 2.52 (dd, *J* = 13.3, 9.6 Hz, 1H), 0.88 (d, *J* = 6.5 Hz, 3H), 0.80 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.69, 137.83, 137.02, 136.43, 130.08, 129.97, 128.68, 128.06, 127.58, 127.00, 126.37, 119.49, 118.44, 53.86, 50.91 – 50.58, 36.37, 29.72, 21.60, 21.17.

HRMS (ESI): C₂₄H₂₄N₂ Neutral mass: 340.1939, Observed ([M+H]) ⁺: 341.2013.

(S)-1-methyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline

(S)-3-phenyl-1-propyl-1,2,3,4-tetrahydroquinoxaline

(S)-1-allyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline

Volts

(S)-1-isopropyl-6,7-dimethyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline

i-Pr

Volts

i-Pr

(S)-1-isopropyl-3-(thiophen-2-yl)-1,2,3,4-tetrahydroquinoxaline

(S)-3-(4-bromophenyl)-1-isopropyl-1,2,3,4-tetrahydroquinoxaline

(S)-1-isopropyl-3-(4-methoxyphenyl)-1,2,3,4-tetrahydroquinoxaline

(R)-3-phenyl-1-(3-(trifluoromethoxy)benzyl)-1,2,3,4-tetrahydroquinoxaline

Peak#	t _R (min)	Area	Area (%)
1	6.187	800085	93.796
2	7.070	52922	6.204

(2R,3S)-3-(4-fluorophenyl)-1-isopropyl-2-(4-methylbenzyl)-1,2,3,4tetrahydroquinoxaline

(2R,3S)-2-(4-fluorobenzyl)-3-(4-fluorophenyl)-1-isopropyl-1,2,3,4-tetrahydroquinoxaline

(2R,3S)-3-(4-fluorophenyl)-1-isopropyl-6,7-dimethyl-2-(4-methylbenzyl)-1,2,3,4-tetrahydroquinoxaline

(2R,3S)-2-(4-fluorobenzyl)-3-(4-fluorophenyl)-1-isopropyl-6,7-dimethyl-1,2,3,4-tetrahydroquinoxaline

(2R,3S)-2-benzyl-6-bromo-1-isopropyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline

1	7.765	269645	51.200
2	8.473	257006	48.800

Реак#	t_{R} (min)	Area	Area (%)
1	8.105	41298	1.621
2	8.515	2506228	98.379

(2R,3S)-7-bromo-6-chloro-3-(4-fluorophenyl)-1-isopropyl-2-(4-methylbenzyl)-1,2,3,4tetrahydroquinoxaline

(2R,3S)-1-isopropyl-2-phenethyl-3-phenyl-1,2,3,4-tetrahydroquinoxaline

(2R,3S)-2-benzyl-1,3-diphenyl-1,2,3,4-tetrahydroquinoxaline

(2R,3S)-2-(4-fluorobenzyl)-3-(4-fluorophenyl)-1-phenyl-1,2,3,4-tetrahydroquinoxaline

(2R,3S)-3-(4-fluorophenyl)-2-(4-methylbenzyl)-1-phenyl-1,2,3,4-tetrahydroquinoxaline

(2R,3S)-2-benzyl-3-(4-fluorophenyl)-1-phenyl-1,2,3,4-tetrahydroquinoxaline

(2R,3S)-2-benzyl-7-chloro-1,3-diphenyl-1,2,3,4-tetrahydroquinoxaline

(S)-2-benzyl-1-isopropyl-3-phenyl-1,2-dihydroquinoxaline

NMR spectrum

hj-386-2	$\begin{pmatrix} 134.35\\ 134.29\\ 128.66\\ -127.94\\ -127.11 \end{pmatrix}$	-119.21 -117.16 -114.02 -111.32
ł	Y NIC	$(\ (\) \)$

~55.86 ~54.19 ~53.36

-11.66

-152.5 f1 (ppm)

f1 (ppm)

i-Pr

3k

″Ph

-40000

-45000

-35000

-30000

-25000

-20000

-15000

-10000

-5000

-0

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

141.79	[36.27 [33.33 [28.69 [28.04 [26.95	[21.03 [16.02 [12.61 [08.97
ί.		
ł		

--54.90 46.97 46.59 ~19.25 ~17.81

ılı		
	1.	

			- T - T	-	1	- T		- T	· ·	1	· · · ·		- T - 1	· · · ·	- T - T	,		- T	·		1	- 1	· · ·	- I	- T - 1	- T - 1			
145	140	135	130	125	120	115	110	105	100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0
														f1 (p	pm)														

hj-12 4 103ac 8 6 5 7 7 6 7 9 9 9 9 1 5 6 9 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	$\frac{18}{03}$
21. 22. 21.	13. 13.
	\searrow^1

-54.77 -54.77 -546.84

 $\overbrace{17.86}^{19.23}$

	11

т 95 75 70 f1 (ppm) $145 \quad 140 \quad 135 \quad 130 \quad 125 \quad 120 \quad 115 \quad 110 \quad 105 \quad 100$

-155.26	—141.70	~134.40 ~133.57	-119.29 -117.39 -114.42 -111.47 -105.91	

~19.07 ~18.27

	1 1				
 140 130	120 110	100 90 80 f1 (ppm)	70 60 50	40 30	20 10 0

	<pre>134.29 133.83</pre>	-126.50 125.00 124.05 -119.39 -117.46 -111.50
ł	ነሰ	

~50.91 ~47.15 ~46.70 ∽19.21 ≻18.14

145 140 135 130 125 120 115 110 105 100 80 75 70 f1 (ppm)

hj-1-9-2	~163.62 ~161.18	∠138.12 ∠134.58 ∠134.18	$< \frac{128.63}{128.55}$ $< \frac{119.06}{117.36}$	111.43				54.31	-46.91 -46.68		~19.27 ~17.99	
				رک 3s	i-Pr N	F						
	and k da a kan kan kan kan kan kan kan kan kan				an da an aik da pala da ku		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. Jak, Handon (1) yaa (1911) 1945 - Handon (1) yaa (1911) 1947 - Handon (1) yaa (1911)		19 Ma Alexandra y Maria a Prancipa 19 Ma Alexandra y Maria a Prancipa		
170	160 150	140	130 120	110 1	00 90	80	70	60	50 40	30	20	10 0

hj- 1 9-17-3a C S I 	—141.70	 134.40 133.56 −128.16 	119.29 117.38 114.42 113.98 111.47 110.38 105.91	49.21 46.72 43.49	~19.07 ~18.26
			j-Pr N N Sv		
					••••••••••••••••••••••••••••••••••••••

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 f1 (ppm)

 $\underset{134.34}{<}134.49$

-58.33 -56.23 -53.57 ~20.83 ~19.39

-32.92

hj-3-15-4 # 7 160.13 7 /	$\begin{bmatrix} 138.36\\ 137.06\\ 135.06\\ 136.35\\ 131.32\\ 131.34\\ 1132.85\\ 131.34\\ 1132.85\\ 131.34\\ 1132.85\\ 131.34\\ 119.29\\ 118.79\\ 118.79\\ 118.79\\ 118.79\\ 118.79\\ 114.20\\$	~58.21 ~55.81 ~53.69	-31.96 -29.73 -29.116 -20.94 19.36
	F F F F F		
nine of the stand of the standard of the stand		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 	

10

-0

-1000

$ \begin{bmatrix} 163.34\\ 163.29\\ 162.56\\ 162.56\\ 160.15\\ 160.15\\ 160.15\\ 132.75\\ 132.75\\ 133.24\\ 133.26\\ 1$		~58.43 ~55.55 ~53.71	~31.70 ~29.72	 20.97 20.97 19.45 19.12
		1 1 1	1 1	ז ור
	F F N 5e F			
			,	uni-Manusan

hj-3-27-13	97 97 97 95 95 95 95 95 95 95 97 97 97 97 97 97 97 97 97 97 97 97 97
[42. [41.	132. 128. 128. 128. 128. 132. 132. 132. 132. 132. 132. 132. 132
57	

~55.99 ~55.37 ~53.48 --29.07 --22.24 --19.68

--33.12

|--|

			- I I			1 1		· ·	1 1	1 1	1 1	1				1 1	1 1	1 1	I			1 1	,			
145	140	135	130	125	120	115	110	105	100	95	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15
f1 (ppm)																										

hj-20-9-20-1	$\int \frac{163.46}{162.78}$ $\tilde{160.98}$ $\tilde{160.36}$	-150.35 $\int_{-136.03}$ $\int_{-136.03}$	×135.43 131.16 131.09 128.50	all127.79 127.79 123.39 122.34 121.57	-119.08 -115.86 -115.73 -115.73 -115.15	-114.94	-67.29	54.19	~30.98 ~29.72		
	F										
	Ph N N H										
5	j	F		4				1			
d the stict of about the solution		յուն են վեն երավով ի՞րդիոլ և ններիս եր Դուսու են վեն երավոր է հայուն են հետ		and with the second stands when	(paintine distance) (m. 1990). November 2010 (m. 1990). November 2010 (m. 1990).	ر اور اور اور اور اور اور اور اور اور او	hula, mhadad hala, yi	lá, storá dista da jezi de svery sterá ježe	i de ji nasaya kala da ana al dala ana da da da ana da da da ana da	i an tabla a an	
אוקא יאניוי די און אואיזיני 180 1	70 160	יין אוין אין אין אין אין אין אין אין אין אין א	130 120	ען דיי קארי דוו מז אז ק יי זי 110	לא היהי הי אנוויין איייייי 100 90 11 (ppm)	80	י ייזוי יון ייזיי יון ייז <u>י</u> 70	nen numere d un appenden d 1	40 30	20 10	0

hj-20-9-20	—162.7瓦 ~160.34	-150.46 $\begin{bmatrix} 137.37\\ & 137.27 \end{bmatrix}$	-136.83 -135.78 -135.75	^{131.22} ^{131.15} ^{131.15} ^{129.41}	1 129.01 1 127.71 1 126.77	122.29 121.54 121.44	1118.75 115.71 115.09	L114.88		67.28				-31.11	-21.15		
		Ph N N H Sk	F														
Manada dalah kilana akar Manada dalah kilana akar Manada dalah kilana kilana akar Manada dalah kilana kilana akar Manada dalah kilana kilana kilana kilana kilana		i (Datala, Atadés, Atadés atadés inflicent group a pipelini (Salanja)				s (i bil slats, stj	айда <mark>Маранан калан</mark> 1997 - Эр Үнд Полонун аран 1			information by a state of the second	алы на Шай, алай Майка Алайн 18 ул 19 ул 19 ул 19 ул 19 ул 19 ул 19		. R. de Anglis I. Sta al vill J. State de La State de La State de La State de La State de La State de La State State de La State de La St State de La State de La St State de La State de La Stat State de La State de La St State de La State de La State de La State de La State de La State de La S			Ба <mark>лійська во во 11 най сай піськи на карало</mark> на во проста по по стали по	
170	160	150	140	130	120	110	100	90 f1 (pp	80 om)	70	60	50	40	30	20	10	0

 1 1				·						·	· 1						·					
10	0	-10	-20	-30	-40	-50	-60	-70	-80	-90	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200	-210
											fl (ppm)										

10

