Molecular Cell, Volume 81

Supplemental information

FANCM regulates repair pathway choice

at stalled replication forks

Arvind Panday, Nicholas A. Willis, Rajula Elango, Francesca Menghi, Erin E. Duffey, Edison T. Liu, and Ralph Scully

Figure S1. Genotype of *Fancm*^{Δ 85/ Δ} *Ter*-HR reporter clone #39. Related to Figure 1.

A. PCR primers for detection of 85 bp frame-shift $Fancm^{\Delta 85}$ allele. Red half-arrow heads: genotyping primers. Gel: PCR products from $Fancm^{+/+}$ and $Fancm^{\Delta 85/\Delta}$ gDNA. **B.** Primary DNA sequencing chromatogram of PCR product from a $Fancm^{\Delta 85/\Delta}$ clone harboring the $Fancm^{\Delta 85}$ allele. **C.** Whole genome sequencing reads spanning *Fancm* exons 1 and 2 in $Fancm^{\Delta 85/\Delta}$ clone #39. Note how 85 bp deletion within exon 2 has zero coverage. Red gapped reads in alignment track identify 2544 bp deletion in second ($Fancm^{\Delta}$) allele, overlapping the 85 bp deletion of the $Fancm^{\Delta 85}$ allele. *Fancm* exons are shown as blue bars below alignment track. Red bars below exons identify exact chromosome positions of the two deletions. **D.** RT qPCR analysis of *Fancm* mRNA normalized to *Gapdh* mRNA using the $2^{-\Delta CT}$ method. Data shows mean ± standard deviation (SD) from three independent experiments (n=3). ****: P < 0.0001 by one-way ANOVA. **E.** Cell cycle analysis of Fancm^{+/+} and *Fancm*^{\Delta 85/\Delta} clones showing modest enrichment of G2/M fraction in *Fancm*^{Δ85/Δ} cells.

Figure S2. *Fancm* hemizygous cells retain wild type stalled fork repair phenotypes. Related to Figure 2. **A.** RT qPCR analysis of *Brca1* mRNA in *Fancm*^{+/+} or *Fancm*^{Δ85/Δ} clones treated with siRNAs shown. Data shows mean \pm SD, normalized to *Gapdh* mRNA using the 2^{-ΔCT} method and analyzed by Student's *t*-test (n=3). **: P<0.01. **B.** Gene modification strategy to generate hemizygous *Fancm*^{+/-} clones using Cas9 with dual sgRNAs targeting exons 2 and 23. The *Fancm*⁻ allele harbors the expected loss of the 53.2 kb *Fancm* gene. Red half arrowheads: PCR primers specific to Exons 2 and 23. Predicted PCR product size for *Fancm*⁺ wild type allele shown. **C.** Upper left: Gel showing PCR products from *Fancm*^{+/+} and *Fancm*^{+/-} gDNA. Lower left: Primary DNA sequencing chromatogram of *Fancm*⁻ allele PCR product verifies exon2 (green) to exon 23 (red) breakpoint. Right: Primary DNA sequencing chromatograms of *Fancm*⁺ allelic PCR products from the same clone verify wild type sequence of *Fancm*⁺ allele at sgRNA target sites. **D.** RT qPCR analysis of *Fancm* mRNA in *Fancm*^{+/+} or *Fancm*^{+/-} clones. Data shows mean \pm SD, normalized to *Gapdh* using the 2^{-ΔCT} method. Analysis by Student's *t*-test (n=3). ns: not significant. **E.** Tus/*Ter*- and I-SceI-induced repair in *Fancm*^{+/+}, *Fancm*^{+/-}, and $Fancm^{\Delta 85/\Delta}$ Ter-HR reporter clones co-transfected with Tus or I-SceI expression plasmids and siRNAs as shown. Data shows mean \pm SEM. Analysis by Student's *t*-test (n=4). $Fancm^{\Delta 85/\Delta}$ cells serve as control for *Fancm* mutant phenotype. All repair outcomes for $Fancm^{+/+}$ vs. $Fancm^{+/-}$ are not significantly different.

Figure S3. Characterization of *Fancm*^{Δ MMI/-} cells. Related to Figure 3. A. *Fancm*^{Δ MMI} allele. Red half-arrow heads: genotyping primers as shown. Gel: PCR products from *Fancm*^{+/-}</sup> and*Fancm* $^{<math>\Delta$ MMI/-} gDNA. **B.** Primary DNA sequencing chromatogram from a representative *Fancm*^{Δ MMI/-} clone indicates in-frame 366 bp deletion of MM1 coding sequence within the residual *Fancm* allele. **C.** Cell cycle analysis of *Fancm*^{+/-}</sup> and*Fancm* $^{<math>\Delta$ MMI/-} clones. **D.** I-SceI-induced HR in *Fancm*^{+/-}</sup> (white bars) clones*vs. Fancm* $^{<math>\Delta$ MMI/-} (gray) clones. Data obtained from same experiments as in **Figure 3G**. Data shows mean ± SEM. **: P < 0.01, ***: P < 0.001 by one-way ANOVA (n=5). ns: not significant. **E.** I-SceI-induced HR in *Fancm*^{+/-}</sup>*vs. Fancm* $^{<math>\Delta$ MMI/-} clones co-transfected with I-SceI expression plasmid and siRNAs as shown. Data obtained from same experiments as in **Figure 3H**. Data shows mean ± SEM. Analysis by Student's *t*-test (n=6). *: P < 0.05, ns: not significant. **F.** Tus/*Ter*-induced repair in *Fancm*^{+/-}*vs. Fancm* $^{<math>\Delta$ MMI/-} clones co-transfected with Tus expression plasmid and siRNAs as shown. Data shows mean ± SEM. Analysis by Student's *t*-test (n=4). *: P < 0.05, ns: not significant. **G.** RT qPCR analysis of *FANCA* and *FANCF* mRNA in *Fancm*^{+/-} or*Fancm* $^{<math>\Delta$ MMI/-} clones treated with siRNAs shown. Data shows mean ± SD, normalized to *Gapdh* mRNA using the 2^{$-\Delta$ CT} method. Analysis by Student's *t*-test (n=3). **: P<0.01.</sup></sup></sup></sup></sup></sup>

Figure S4. Characterization of *Fancm*^{Δ MM2/-} **cells.** Related to **Figure 4**. **A.** *Fancm*^{Δ MM2} allele. Red half-arrow heads: genotyping primers as shown. Gel: PCR products of *Fancm*^{+/-}</sup> and*Fancm* $^{<math>\Delta$ MM2/-} gDNA. **B.** Primary DNA sequencing chromatogram from a representative *Fancm*^{Δ MM2/-} clone indicates in-frame 114 bp deletion of MM2 coding sequence within the residual *Fancm* allele. **C.** Proliferative competition assay in presence of Mitomycin C (MMC), measuring enrichment of GFP⁺ *Fancm*^{+/-} vs. GFP⁻*Fancm* $^{<math>\Delta$ MM2/-} cells. Data, normalized to 0 µg/mL MMC, shows mean value (n=3). Error bars: standard deviation. **D.** Cell cycle analysis of *Fancm*^{+/-} and*Fancm* $^{<math>\Delta$ MM2/-} clones. **E.** ChIP analysis of FANCM and FANCA at Tus/*Ter* RFB in *Fancm*^{+/-} cells (n=3)</sup></sup></sup></sup>

co-transfected with Tus expression plasmid and siRNAs as shown. Elements and data analysis as in Figure 1G. ***: P < 0.001 by one-way ANOVA. F. I-SceI-induced HR in three $Fancm^{+/-}$ (white) clones *vs.* three $Fancm^{\Delta MM2/-}$ (gray) clones. Data obtained from same experiments as in Figure 4F. Data shows mean \pm SEM. Analysis by one-way ANOVA (n=4). ns: not significant. G. I-SceI-induced HR in $Fancm^{+/-}$ *vs.* $Fancm^{\Delta MM2/-}$ clones co-transfected with I-SceI expression plasmid and siRNAs as shown. Data obtained from same experiments as in Figure 4G. Data shows mean \pm SEM. Analysis by Student's *t*-test (n=5).*: P < 0.05, **: P < 0.01, ns: not significant.

Figure S5. Characterization of ATP hydrolysis -defective *Fancm*^{ΔDEAH/-} and point mutant *Fancm*^{D202A/Δ85} cells. Related to Figure 5. A. *Fancm*^{ΔDEAH/-} allele. Red half-arrow heads: genotyping primers as shown. Gel: PCR products from *Fancm^{+/-}* and *Fancm^{ΔDEAH/-}* gDNA. **B.** Primary DNA sequencing chromatogram from a representative *Fancm*^{ΔDEAH/-} clone indicates in-frame 66 bp deletion of sequence encoding the DEAH motif within the residual *Fancm* allele. C. Cell cycle analysis of $Fancm^{+/-}$ and $Fancm^{\Delta DEAH/-}$ cells. D. I-SceI-induced HR in $Fancm^{+/-}$ (white) clones vs. $Fancm^{\Delta DEAH/-}$ (gray) clones. Data shows mean \pm SEM values from same experiments as in Figure 5I. Analysis by one-way ANOVA (n=5). ****: P < 0.0001. ns: not significant. E. I-Scel-induced HR in Fancm^{+/-} vs. Fancm^{\DEAH/-} clones co-transfected with I-Scel expression plasmid and siRNAs as shown. Data shows mean \pm SEM values from same experiments as in Figure 5J. Analysis by Student's *t*-test (n=5). *: P < 0.05, **: P < 0.01, ***: P < 0.001, ns: not significant. F. Primary DNA sequencing chromatogram from a Fancm^{D202A} clone indicates D202A point mutation sequence. G. Immunoblot of chromatin-extracted FANCM in *Fancm*^{+/-} and *Fancm*^{D202A/\Delta85} clones. *: non-specific band. **H.** Immunoblot showing FANCD2 ubiquitination in $Fancm^{+/-}$ and $Fancm^{D202A/\Delta 85}$ cells. I. Proliferative competition assay in presence of MMC, measuring enrichment of GFP⁺ Fancm^{+/-} vs. GFP⁻ Fancm^{D202A/Δ85} cells. Data, normalized to 0 µg/mL MMC, shows mean \pm SD (n=3). J. ChIP analysis of FANCM and FANCA at Tus/*Ter* in *Fancm*^{+/-} and *Fancm*^{D202A/ $\Delta 85$} cells. Elements and data analysis as in **Figure 1G**. ***: P < 0.001 by one-way ANOVA (n=3). K. Tus/*Ter*-induced repair in $Fancm^{+/-}$ vs. $Fancm^{D202A/\Delta 85}$ clones co-transfected with Tus expression plasmid

and siRNAs as shown. Data shows mean \pm SEM. Analysis by Student's *t*-test (n=5). *: P < 0.05, **: P < 0.01, ***: P < 0.001, ***: P < 0.0001, ns: not significant.

Figure S6. BLM can act independently of *Fancm* in stalled fork repair. Related to Figure 5. A. Upper: Cartoon of degron tagged BLM, indicating position of SMASh protease cleavage. Note 8x HA tag is positioned at the very C terminus of the protease-cleaved protein. Lower: Anti-HA immunoblot of degron-tagged BLM 24 hours after addition of degron-activating drugs 5-IAA and/or Asunaprevir, vs. DMSO control. H3: Histone H3 loading control. **B.** Anti-HA ChIP analysis of BLM-HA at Tus/Ter in Blm^{deg/-} cells treated with 5-IAA+Asunaprevir or with DMSO control (n=3). Data shows mean \pm SD. Analysis by ANOVA (n=3). ****: P < 0.0001. C. Tus/*Ter*-induced repair in $Blm^{deg/-}$ Fancm^{+/+} and $Blm^{deg/-}$ Fancm^{$\Delta 85/\Delta$} clones co-transfected with Tus expression plasmid and siRNAs as indicated. Cells were treated with IAA+Asunaprevir vs. DMSO control beginning 6 hours after transfection with replenishment with fresh drug 24 hours after transfection. Data shows mean \pm SEM. Analysis by Student's *t*-test (n=5). *: P<0.05, **: P<0.01. ns: not significant. **D.** RT qPCR analysis of *BRCA1* mRNA in *Fancm*^{+/+} or *Fancm*^{Δ 85/ Δ} clones treated with siRNAs shown. Data shows mean ± SD, normalized to *Gapdh* mRNA using the $2^{-\Delta CT}$ method. Analysis by Student's *t*-test (n=3). **: P<0.01 E. Tus/*Ter*-induced repair in $Fancm^{+/+}$, $Fancm^{\Delta MM2/-}$, $Fancm^{\Delta 85/\Delta}$ and $Fancm^{\Delta DEAH/-}$ clones co-transfected with Tus expression plasmid and siRNAs as indicated. Data shows mean ± SEM. Analysis by Student's *t*-test (n=5). *: P<0.05. F. RT qPCR analysis of *Blm* mRNA in *Fancm*^{+/+} or *Fancm*^{$\Delta 85/\Delta$} clones treated with siRNAs shown. Data shows mean \pm SD, normalized to *Gapdh* mRNA using the 2^{- Δ CT} method. Analysis by Student's *t*-test (n=3). ***: P < 0.001, **: P<0.01. G. RT qPCR analysis of *Brca1* or *Blm* mRNA in *Fancm*^{+/-}, *Fancm*^{Δ 85/ Δ}, clones treated with siRNAs as shown. Data shows mean \pm SD, normalized to *Gapdh* mRNA using the 2^{- Δ CT} method. Analysis by Student's *t*-test (n=3). **: P < 0.01, ***: P < 0.001, ns: not significant.

Figure S7. Analysis of viable *Fancm*^{$\Delta 85/\Delta$} *Brca1*^{$\Delta/11$} clone #68. Related to Figure 6.

A. Whole genome sequencing reads spanning *Brca1* exons 10, 11 and 12 in the viable *Fancm*^{$\Delta 85/\Delta$} *Brca1*^{$\Delta/11$} clone #68. *Brca1* exons shown in blue bars beneath alignment track. *Fancm* exons are shown as blue bars below

alignment track. Red bars below exons identify positions of the two deletions within exon 11. **B.** Whole genome sequencing reads spanning *Fancm* exons 1 and 2 in *Fancm*^{Δ 85/ Δ} clone #39. Elements as in Figure S1C. **C.** Tus/*Ter*-induced repair in *Fancm*^{+/+} or Cre-transduced *Fancm*^{Δ 85/ Δ} clones having retained or deleted (clone #68) *Brca1* exon 11, co-transfected with Tus-expression plasmid and siRNAs as shown. Note induction of TDs in *Fancm*^{Δ 85/ Δ} *Brca1*^{Δ /11} clone in absence of BRCA1 depletion. Data shows mean ± SEM. Analysis by Student's *t*-test (n=3). *: P<0.05, **: P < 0.01. ns: not significant. **D.** I-SceI-induced repair in the same experiments as in panel C.

С

Fancm^{A85/A} Clone #39

I-Scel STGC

I-Scel GFP- RFP+

GFP+RFP- (%) 0.00 Clone #: 03 06 09 22 26 27 Fancm: +/-∆MM2/-

GFP+RFP+ (%) 0.00 03 06 09 22 26 27 +/-ΔMM2/-

I-Scel LTGC

Total GFP+ (%) 22 26 27 03 06 09 +/-∆MM2/-

I-Scel GFP- RFP+

G

siLUC

Panday et al Suppl Fig S5 ns С B PCR: ns CAGGTCATGGTAAATGACCTTGGGAACTATGCTTAC 3' Exon 2 505 bp 70 Cell Cycle phase (%) 3 GTCCAGTACCATTTACTGGAACCCTTGATACGAATG 5 60 o D G A 50 439 bp 40 30-20 ATGGTAAATGAC CTTGGGAACTATGCTTAC 10-**Fancm**^{∆DEAH} Ш 1 67 C ∆DEAH/-Fancm: +/ **ADEAH** I-Scel LTGC I-Scel LTGC/Total I-Scel GFP- RFP+ HR 0.03 0.10

sgRNA1

DEAH

∆66 bp

13 14

+/-

I-Scel STGC

F

F,

kb 0.5

0.4

Clone #: 12

0.35

Fancm:

D

sgRNA2

R

R

16 55

#68

#68

#68

#68

Supplemental Table S1.	Oligonucleotides	used in this study.	. Related to STAR Methods	3.
		•		

Oligonucleotides	SOURCE	IDENTIFIER
Primer: <i>Fancm</i> ^{Δ85/Δ} 5' exon2 breaksite sgRNA transcription,	ThermoFisher	N/A
5'-GGTTCTTTTCCTGACACCGCAGG-3'	Scientific	
Primer: Fancm ^{285/2} 3' exon2 breaksite sgRNA transcription,	ThermoFisher	N/A
5'-GATGAAGCTCATAAGGCACTTGG-3'	Scientific	,
Primer: Fancm exon23 breaksite sqRNA transcription,	ThermoFisher	N/A
5'-GTTACCAAATGATCTTAACCAĞG-3'	Scientific	
Primer: Fancm exon2 sense PCR and sequencing,	ThermoFisher	N/A
5'-CTACCTCAAGCTCCAGAGTCCTGG-3'	Scientific	
Primer: Fancm exon2 antisense PCR and sequencing,	ThermoFisher	N/A
5'-AGTTCCCATCACTGAGACTTATTCC-3'	Scientific	
Primer: Fancm exon23 sense PCR and sequencing,	ThermoFisher	N/A
5'-CTACCTCAAGCTCCAGAGTCCTGG-3'	Scientific	
Primer: Fancm exon23 antisense PCR and sequencing,	ThermoFisher	N/A
5'-AGGGATGACCTGAGGTTGTC-3'	Scientific	
Primer: Fancm MM1 5' breaksite sqRNA transcription.	ThermoFisher	N/A
5'-ATGCTGACACTGTTAAACAAAGG-3'	Scientific	
Primer: Fancm MM1 3' breaksite sqRNA transcription.	ThermoFisher	N/A
5'-GTGAACAGCTCTTCTTCCAATGG-3'	Scientific	
Primer: Fancm MM2 5' breaksite sqRNA transcription.	ThermoFisher	N/A
5'-CAAGAAGAGCTGAGGACTGACGG-3'	Scientific	
Primer: Fancm MM2 3' breaksite soRNA transcription.	ThermoFisher	N/A
5'-TCTGATAGGACTCGCACCCTGGG-3'	Scientific	
Primer: <i>Fancm</i> DEAH 5' breaksite sgRNA transcription.	ThermoFisher	N/A
5'-TGGTAAATGACCTTACTAGAGGG-3'	Scientific	
Primer: Fancm DEAH 3' breaksite soRNA transcription.	ThermoFisher	N/A
5'-ATGAAGCTCATAAGGCACTTGGG-3'	Scientific	
Primer: Fancm MM1 sense PCR and sequencing.	ThermoFisher	N/A
5'-CTTGTTTGGTAGGGTGAATGCA-3'	Scientific	
Primer: Fancm MM1 antisense PCR and sequencing.	ThermoFisher	N/A
5'-GGGAGAACGGGATAAAAATCTCT-3'	Scientific	
Primer: Fancm MM2 sense PCR and sequencing.	ThermoFisher	N/A
5'-TAGATGATGATTCTGAACCTGAAGAC-3'	Scientific	
Primer: <i>Fancm</i> MM2 antisense PCR and sequencing.	ThermoFisher	N/A
5'-TGTGCTCCTGACTCTCTGCT-3'	Scientific	
Primer: Fancm DEAH sense PCR and sequencing.	ThermoFisher	N/A
5'-CTACCTCAAGCTCCAGAGTCCTGG-3'	Scientific	
Primer: Fancm DEAH antisense PCR and sequencing,	ThermoFisher	N/A
5'-AGTTCCCATCACTGAGACTTATTCC-3'	Scientific	,
ultramer: ssODN D202A mutation within exon 2,	Integrated	N/A
5'-	DNĂ	
TGGTCCAGCAGGAGGGTTCTTTTCCTGACACCGCAGGTCA	Technologies	
TGGTAAATGACCTTACTAGAGGGGCTGTTCCTGCCACCCAC	Ū	
GTAAAGTGTCTTGTGGTGGCTGAGGCACACAAGGCCTTAG		
GGAACTATGCTTACTGCCAGGTAAGCTCTTTTTCAAATGCT		
AGTTTGTAGAGGATGCATAAATTCTTAACGGGCTTGG-3'		
Primer: Fancm exon2 D202A targeting sgRNA transcription.	ThermoFisher	N/A
5'-GATGAAGCTCATAAGGCACŤTGĞ-3	Scientific	
Primer: <i>Blm</i> gene 5' breaksite sgRNA transcription,	ThermoFisher	N/A
5'-ATCCACČCCAGGAAATCCČGAGG-3'	Scientific	

Primer: <i>Blm</i> gene 3' breaksite sgRNA transcription,	ThermoFisher	N/A
5'-GCACGCTCTGCGCGGCAAGAAGG-3'	Scientific	
Primer: <i>Blm</i> gene exon22 targeting sgRNA transcription, 5'-CGCAGAGAACTGTTAGGAGAAGG-3'	ThermoFisher Scientific	N/A
Primer: <i>Blm</i> gene 5' breaksite sense PCR and sequencing.	ThermoFisher	N/A
5'-CATTCGGATTGGGCTTTAGTAGTACG-3'	Scientific	
Primer: <i>Blm</i> gene 5' breaksite antisense PCR and sequencing.	ThermoFisher	N/A
5'-TTTCTGGGTCACCAGGTCTCTACTC-3'	Scientific	
Primer: <i>Blm</i> gene 3' breaksite sense PCR and sequencing	ThermoFisher	N/A
5'-CAAGGAAAATCATGTTTGTTCTCCTGG-3'	Scientific	
Primer: <i>Blm</i> gene 3' breaksite antisense PCR and sequencing	ThermoFisher	N/A
5'-TGTTTCCTCTGTCATTTGTCAAGGC-3'	Scientific	
Primer: <i>Blm</i> exon22 sense PCR and sequencing.	ThermoFisher	N/A
5'-ATGTCTTCATGCCAGGCAGTG-3'	Scientific	
Primer: AiD antisense PCR and sequencing	ThermoFisher	N/A
5'-GGAGGTTTGGCTGGATCTTTA-3'	Scientific	
Primer: Neomycin sense PCR and sequencing.	ThermoFisher	N/A
5'-CTATCGCCTTCTTGACGAGT-3'	Scientific	
Primer: <i>Blm</i> gene exon22 antisense PCR and sequencing.	ThermoFisher	N/A
5'-GCATTACACAAAGGGCAAACTAGG-3'	Scientific	
Primer: SMASh antisense PCR and sequencing.	ThermoFisher	N/A
5'-AGGAACCCTTATCGTCATCGTCC-3'	Scientific	
SMASh antisense2 PCR and sequencing.	ThermoFisher	N/A
5'-GGTTCTCCACAGGGATGAAGTCC-3'	Scientific	
Blm 3' locus sense PCR and sequencing	ThermoFisher	N/A
5'-TGCTTCTCAGGCAACATCATCAGC-3'	Scientific	
Neomycin antisense PCR and sequencing.	ThermoFisher	N/A
5'-GCCCAGTCATAGCCGAATAG-3'	Scientific	
AiD antisense PCR and sequencing.	ThermoFisher	N/A
5'-CTCCGTCCATTGATACCTTCAC-3'	Scientific	
ChIP Primer: +109 bp sense	ThermoFisher	N/A
5'-TCCGGATAGGGATAACAGGGTA-3'	Scientific	
ChIP Primer: +109 bp antisense	ThermoFisher	N/A
5'-GTCGGCCATGATATAGACGTTG-3'	Scientific	
ChIP Primer: +309 bp sense	ThermoFisher	N/A
5'-AGCTCGCCGACCACTAC-3'	Scientific	
ChIP Primer: +309 bp antisense	ThermoFisher	N/A
5'-TCCAGCAGGACCATGTGAT-3'	Scientific	
ChIP Primer: +921 bp sense	ThermoFisher	N/A
5'-GGACAAGACTTCCCACAGATT-3'	Scientific	
ChIP Primer: +921 bp antisense	ThermoFisher	N/A
5'-GAGGCGGATCACAAGCAATAAT-3'	Scientific	
ChIP Primer: +1.6 kb sense	ThermoFisher	N/A
5'-TCCACATTTGGGCCTATTCTC-3'	Scientific	
ChIP Primer: +1.6 kb antisense	ThermoFisher	N/A
5'-CAATAATGAAATATACCTTTTAATGTCT-3'	Scientific	
ChIP Primer: 128 bp sense	ThermoFisher	N/A
5'-GAGCGCACCATCTTCTTCA-3'	Scientific	
ChIP Primer: 128 bp antisense	ThermoFisher	N/A
5'-TCCCTACGATGCCCTTCA-3'	Scientific	
ChIP Primer: 350 bp sense	ThermoFisher	N/A
5'-CTGGACGGCGACGTAAAC-3'	Scientific	
ChIP Primer: 350 bp antisense	ThermoFisher	N/A
5'-CGGTGGTGCAGATGAACTT-3'	Scientific	

ChIP Primer: 900 bp-sense	ThermoFisher	N/A
5'-TCTGGAGCATGCGCTTTAG-3'	Scientific	
ChIP Primer: 900 bp antisense	ThermoFisher	N/A
5'-CTAAAGCGCATGCTCCAGA-3'	Scientific	
ChIP Primer: 1.4kb sense	ThermoFisher	N/A
5'-CCACTGCCCTTGTGACTAAA-3'	Scientific	,
ChIP Primer: 1.4kb antisense	ThermoFisher	N/A
5'-AGGCTACACCAACGTCAATC-3'	Scientific	
RT qPCR Primer: Gapdh sense	ThermoFisher	N/A
5'-CGTCCCGTAGACAAAATGGT-3'	Scientific	
RT qPCR Primer: Gapdh antisense	ThermoFisher	N/A
5'-TCGTTGATGGCAACAATCTC-3'	Scientific	
RT qPCR Primer: <i>Fancm</i> sense	ThermoFisher	N/A
5'-GTCGTTATCCTCGCTGAAGG-3'	Scientific	
RT qPCR Primer: <i>Fancm</i> antisense	ThermoFisher	N/A
5'-TTTGTTGGACTGACTCTGATTATATGT-3'	Scientific	
RT qPCR Primer: <i>Fancm</i> MM1 sense	ThermoFisher	N/A
5'-CTGTTAAACAAAGGGATTCTAAAT-3'	Scientific	
RT qPCR Primer: Fancm MM1 antisense	ThermoFisher	N/A
5'-GATACAGATTTCTCATCACTG A-3'	Scientific	
RT qPCR Primer: <i>Fancm</i> MM2 sense	ThermoFisher	N/A
5'-TCGTTGTAGTTCGGGTTCAGA-3'	Scientific	
RT qPCR Primer: <i>Fancm</i> MM2 antisense	ThermoFisher	N/A
5'-AGTGTTCAACTTCAGTGCGCC-3'	Scientific	
RT qPCR Primer: <i>Fancm</i> DEAH sense	ThermoFisher	N/A
5'-TGGCTGAAATGACAGGTTCAACT-3'	Scientific	
RT qPCR Primer: <i>Fancm</i> DEAH antisense	ThermoFisher	N/A
5'-GCCTTATGAGCTTCATCCACC-3'	Scientific	
RT qPCR Primer: <i>Brca1</i> sense	ThermoFisher	N/A
5'-ATGAGCTGGAGAGGATGCTG-3'	Scientific	
RT qPCR Primer: <i>Brca1</i> antisense	ThermoFisher	N/A
	Scientific	
RT qPCR Primer: <i>Fanca</i> sense	ThermoFisher	N/A
5'-GGCAGCCCTGTACAACTGAT-3'	Scientific	
RT qPCR Primer: Fanca antisense	I hermo⊢isher	N/A
5-GCCAGCAGCTCTGTCATGTT-3	Scientific	N1/A
RI qPCR Primer: Fanct sense	I hermo⊢isher	N/A
	Scientific	
RI qPCR Primer: Fanct antisense	I hermo⊢isher	N/A
	Scientific	
RI qPCR Primer: <i>Bim</i> sense	I hermo⊢isher	N/A
5-CGCGACGTAAGCCTGAGT-3	Scientific	
RI QPCR Primer: <i>Bim</i> antisense	I nermo-isner	N/A
5-IGGUIGAGIGIUGUIGIAGI-3	Scientific	N1/A
Genotyping Primer: Brca1 intron10 sense	I hermo⊢isher	N/A
		N1/A
Genotyping Primer: Brca1 exon11 antisense	I nermo⊢isher	IN/A
	Scientific	N1/A
Genotyping Primer: Brca1 exon12 antisense	I hermo⊢isher	N/A
5-CIGUGAGUAGICIICAGAAAG-3'	Scientific	