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Supplementary Figure 1. Study design, CNN architecture, transfer learning approaches  

 

A. Study overview: 1) Deep convolutional neural networks (CNNs) were first pre-trained to 
detect common chest radiographic findings (e.g. infiltrate, pleural effusion) using 595,506 chest 
radiographs (CXRs). 2) CNN weights were then refined to detect ARDS using the UM training 
set of 8,073 chest radiographs annotated for ARDS. 3) Once training and validation was 
completed, CNNs were tested on a separate internal testing dataset from UM, including a 
subset by additional physicians. 4) The best performing CNN was also tested on an external 
test set of patients from UPenn. B. A 121-layer CNN with a dense network architecture was 
trained to identify ARDS. The CNN transforms a 320x320 pixel chest radiograph over multiple 
layers into increasingly abstract representations that are used to estimate the probability of 
ARDS (P(ARDS)). Transfer learning approaches that minimized the number of network 
parameters trained on the smaller dataset annotated for ARDS were evaluated: (i) refining 
parameters in the final layers (3,073 total parameters retrained), while keeping all other layers 
fixed after pre-training; (ii) refining parameters in the last convolutional block and subsequent 
layers (169,153 parameters retrained); (iii) refining all parameters on the ARDS dataset after 
pre-training (6,954,881 parameters retrained). The CNN illustrated is not to scale and zero 
padding layers are not shown. 
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Additional description of the chest radiograph pre-training dataset 

The chest radiograph pre-training dataset was created using two publicly available datasets, 

CheXpert (V1.0)1 and MIMIC-CXR (V1.0).2 CheXpert includes 224,316 chest radiograph studies 

from 65,240 patients performed in inpatient and outpatient centers at Stanford Hospital between 

October 2002 and July 2017. MIMIC-CXR includes 227,835 chest radiograph studies from 

65,379 patients who presented to the emergency department between 2011 and 2016 at Beth 

Israel Deaconess Medical Center. Images had been previously annotated for the presence of 

any of 14 common clinical findings but not ARDS (enlarged cardiomediastinum, cardiomegaly, 

airspace opacity, lung lesion, edema, consolidation, pneumonia, atelectasis, pneumothorax, 

pleural effusion, pleural other, fracture, support device, no finding) using a natural language 

processing algorithm applied to their associated reports written by radiologists. Images were 

previously converted from Digital Imaging and Communications in Medicine (DICOM) format to 

320 by 320 pixel, 8-bit grayscale JPEG images, and histogram equalization was applied. 

 

Additional description of the UM datasets 

The University of Michigan (UM) internal training dataset was created from chest radiographs 

performed during the first 7 days on consecutive patients hospitalized with acute hypoxemic 

respiratory failure between January 2016 to June 2017 at UM. The UM internal testing dataset 

was created from patients hospitalized with acute hypoxemic respiratory failure between July to 

December 2017. There was no overlap among patients in the training and the internal testing 

datasets. Acute hypoxemic respiratory failure was defined as having a PaO2/FiO2 < 300 while 

receiving invasive mechanical ventilation, non-invasive ventilation, or heated high flow nasal 

cannula during the first 7 days of hospitalization. PaO2/FiO2 was calculated using PaO2 values 

obtained from arterial blood gas results and the recorded FiO2 at the time the blood gas was 

performed. Patients who transferred from other hospitals were excluded because ARDS may 

have developed prior to transfer and the timing of ARDS could not be adequately determined. 
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In the UM internal test set, as an additional inclusion criteria, chest radiographs obtained during 

periods when patients met criteria for acute hypoxemic respiratory failure were analyzed to 

maximize the clinical relevance of the evaluation. A subset of 413 radiographs from consecutive 

patients hospitalized between August 15 – October 2, 2017 were each reviewed by additional 

physicians to compare the CNN performance to individual physician performance. Nine 

physicians participated in the reviews, with each physician reviewing at least 120 chest x-rays. 

Among the physicians was a chest radiologist with 5 years of experience who reviewed all 

radiographs in the subset. The group also included 6 physicians who completed a pulmonary 

and critical fellowship and were in general practice, 1 physician who completed an emergency 

department and critical care fellowship and was in general practice, and 1 physician who 

completed 2 years of a pulmonary and critical care fellowship. All physicians had interest and 

experience in ARDS research. 

 

Determining chest radiograph class labels in the UM cohorts 

Physicians annotated each chest radiographs for ARDS while reviewing all other clinical details 

about the patient’s hospitalization. Additional details about the ARDS review process has been 

previously published.3 For each chest radiograph, physicians answered the following question: 

“Are their bilateral opacities on this chest x-ray that are consistent with ARDS?” and recorded 

their response using an 8-point ordinal confidence score. 
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Supplementary Table 1: Chest radiograph annotation scale for the UM cohort 

Score Description 
1 No ARDS, high confidence 
2 No ARDS, moderate confidence 
3 No ARDS, low confidence 
4 No ARDS, equivocal confidence 
5 Yes ARDS, equivocal confidence 
6 Yes ARDS, low confidence 
7 Yes ARDS, moderate confidence 
8 Yes ARDS, high confidence 

 

An 8-point score was used because the reliability is maximized when clinical scales with 7 or 

more categories is used.4 An 8-point scale was used specifically because it did not have a 

middle value, forcing physicians to choose whether they felt a radiograph was consistent with 

ARDS, while still quantifying their uncertainty. Inter-rater reliability among physicians reviewing 

the same chest radiograph was 0.56 as measured by the intra-class correlation, which is 

considered moderate reliability. Based on the Spearmon-Brown prophecy formula, a gold 

standard which combed annotations from 5 independent physician reviewers would have a 

reliability of 0.87, which is considered near perfect reliability. This is the rationale for the 

additional physician reviews in the UM testing subset.  

 

To determine the class label for each chest radiograph (consistent with ARDS, inconsistent with 

ARDS) in the University of Michigan datasets, a latent class model with two classes was fit 

using all annotations performed on each chest radiograph. In this model, the specific physician 

reviewer annotating each image was modeled as a fixed effect to account for the fact that 

individual physicians may have varying thresholds for scoring images as consistent with ARDS 

on the 1-8 scale. After fitting the model, the posterior probability of each class membership was 

estimated for each radiograph, and the chest radiograph was assigned to the class with the 

highest probability estimate. A two class model (“ARDS”, “Not ARDS”) was considered for the 

primary analysis, as this represents how detection of ARDS is performed in clinical practice. We 
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also explored the CNN results after fitting a three class model (“ARDS”, “equivocal”, “Not 

ARDS”), to determine how well the CNN performed on chest radiographs that physicians felt 

had less ambiguity. Average posterior probabilities for each class and fit statistics are presented 

below. 

 
Supplementary Table 2: Fit Statistics for the Latent Class Models in the UM test dataset 

Two class model Class 1  
(“Not ARDS”) 

Class 2  
(“ARDS”) 

 

N, chest x-rays 1122 438  
Posterior 
probability 

0.981 0.964  

    
Three class model Class 1  

(“Not ARDS”) 
Class 2  
(“uncertain”) 

Class 3  
(“ARDS”) 

N, chest x-rays 922 307 331 
Posterior 
probability 

0.934 0.790 0.957 

    
Fit Statistics Two class 

model 
Three class 
model 

 

Log likelihood -11245.106 -11099.393  
AIC 22526.21 22238.79  
BIC 22644.49 22370.21  

 

Additional description of the UPenn external testing datasets  

Chest radiographs in the external test set were from patients enrolled in the “Molecular 

Epidemiology of Sepsis in the ICU” (MESSI) cohort. Patients were enrolled if they were admitted 

to the intensive care unit with infection-associated organ failure, and were excluded if an 

alternative diagnosis explained their systemic inflammatory response syndrome, for declining 

life support on admission, or for lack of informed consent. For patients enrolled, all chest 

imaging studies obtained during the first 6 days over the ICU stay were reviewed by a trained 

physician investigator for the presence of ARDS. In this cohort, chest radiographs were 

annotated as “ARDS”, “equivocal”, and “not ARDS,” with consensus review performed in 

approximately 5% of images. Physicians annotated images as “equivocal” if the image was 
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deemed difficult to classify due to other abnormalities present on the image or poor technique. 

When evaluating the CNN in this dataset, both chest radiographs annotated as “equivocal” or 

“not ARDS” were analyzed as “not ARDS.” In a secondary analysis, performance metrics were 

also calculated after chest radiographs labeled “equivocal” were excluded. 

 

Chest Radiograph pre-processing 

Chest radiographs were exported from the Picture Archiving and Communication System 

(PACS) in Digital Imaging and Communications in Medicine (DICOM) format. Images were 

converted to 8-bit grayscale JPEG format, histogram equalized, and resized to a target 

dimension of 320 by 320 such that the smaller dimension was shrunk to the target size and 

large dimension was squashed to the target size. Chest radiographs from the University of 

Pennsylvania (UPenn) were exported from the UPenn PACS system in a DICOM format and 

pre-processed in an identical manner as in the University of Michigan datasets. 

 

Additional Description of Convolutional Neural Network training 

All CNNs were trained using Keras (version 2.2.4) with Tensorflow (version 1.13.1) in Python 

(version 3.6). A 121-layer dense network architecture (DenseNet121) was used.5 Prior to 

training the CNN to detect ARDS, networks were either first pre-trained to detect common 

descriptive findings on chest radiographs (chest radiograph pre-training), initialized using 

parameter weights from pre-trained natural images from ImageNet (e.g. animals, plants, 

household objects)6, or randomly initialized. 

 

CNN pre-training 

When pre-training the CNN to detect common chest radiograph findings, 592,540 images were 

used for training and 2,966 images were used for validation. Training images were further 

augmented by randomly rotating them up to 15 degrees and translating them up to 10%. During 
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training, parameter weights were initialized using ImageNet weights. The network had 14 total 

output nodes with sigmoid activation functions that corresponded to each radiograph finding 

(described above). The model was trained to minimize the binary cross entropy loss across 

these activation nodes. Parameters of the model were optimized using Adam with an initial 

learning rate of 10-4.7 If the validation set’s loss did not improve for 2 consecutive epochs, the 

learning rate was reduced by a factor of 10. The learning rate could be reduced to a minimum of 

10-8. The model was trained for three epochs to minimize computational time. The model from 

the epoch with the highest validation area under the receiver operator characteristic curve 

(AUROC) was selected and used in the subsequent ARDS training steps. The validation 

AUROC was highest after the second epoch. 

 

CNN training to detect ARDS 

The same 121-layer dense network architecture was used as in the pre-training steps, but the 

final layer of the network was changed to a single node with a sigmoid activation function to 

estimate the probability of ARDS. Similar to the pre-training step, images were augmented by 

randomly rotating them up to 15 degrees and translating them up to 10%. CNNs were trained 

for 10 epochs using the same learning rate schedule as the pre-training step. The model from 

the epoch with the highest validation AUROC was selected as the final model and used for 

testing. 

 

Transfer learning approaches were evaluated during ARDS training that limited the number of 

network parameters that were fine-tuned to detect ARDS using the UM training data. 

Approaches evaluated included: i) refining parameters in the final layers, including a batch 

normalization (BN), rectified linear unit (ReLU) activation which does not have parameters, 

average pooling, and dense layer (3,073 total parameters retrained), while keeping all other 

layers fixed after pre-training; ii) refining parameters in the last convolutional block and 
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subsequent layers, including a BN, ReLU, convolution, BN, ReLU, convolution, BN, ReLU, 

average pooling, dense layer (169,153 parameters retrained); iii) refining all parameters on the 

ARDS dataset after pre-training (6,954,881 parameters retrained). 

 

To improve calibration of the model, the CNN output was transformed using Platt scaling.8 In 

Platt scaling, a univariate logistic regression model is fit that uses the CNN output as the 

independent variable and the binary outcome as the dependent variable. The intercept and 

slope of the logistic regression model represent the scaling parameters which are then used to 

transform the CNN outputs within a sigmoid function. These scaling parameters were 

determined using the validation portion of the training dataset. 

 

Additional description of the statistical analysis 

To account for clustering of chest radiographs within patients when determine 95% confidence 

intervals for all performance metrics, including the area under the receiver operator 

characteristic curve (AUROC), the area under the precision recall curve (AUPRC), sensitivity, 

and specificity, we drew 1000 cluster bootstrap samples (drawing samples at the patient-level 

with replacement). We used a similar bootstrapping procedure when evaluating differences in 

AUROC.9 P values < 0.05 was considered statistically significant. All statistical analysis was 

performed in Stata version 16.1. 
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Supplementary Table 3. Training, validation, and test performance of all 7 CNNs in the UM 
datasets 
 

  CNN Performance for detecting ARDS, AUROC (95%CI) 
  UM Internal training dataset UM internal 

testing dataset 
Pre-training 
Datasets 

Network layers refined 
during ARDS training 

Training sample 
(N=6,493) 
Annotations per 
image = 2.5 

Validation sample 
(N=1,578) 
Annotations per 
image = 2.5 

(N=1,560) 
Annotations per 
image = 3.5 

Chest x-ray 
+ ImageNet 

Last BN and dense layer 0.875  
(0.86-0.889) 

0.867  
(0.838-0.894) 

0.907  
(0.882-0.931) 

Last convolutional block 
and subsequent layers 

0.888  
(0.874-0.901) 

0.884  
(0.858-0.908) 

0.916  
(0.894-0.936) 

All layers 0.965  
(0.96-0.971) 

0.893  
(0.866-0.917) 

0.913  
(0.89-0.933) 

ImageNet Last BN and dense layer 0.67  
(0.649-0.691) 

0.688  
(0.655-0.721) 

0.692  
(0.651-0.729) 

Last convolutional block 
and subsequent layers 

0.743  
(0.724-0.76) 

0.731  
(0.69-0.766) 

0.742  
(0.700-0.782) 

All layers 0.969  
(0.964-0.973) 

0.885  
(0.859-0.911) 

0.891  
(0.867-0.914) 

None 
(randomized 
weights) 

All layers   0.820  
(0.805-0.836) 

0.820  
(0.785-0.85) 

0.828  
(0.795-0.859) 

 
All deep convolutional neural networks (CNNs) had a 121-layer dense network architecture. 
Networks underwent chest radiograph pre-training, were initialized using ImageNet parameter 
weights, or randomly initialized. Networks that underwent chest radiograph pre-training were 
first trained to detect 14 common descriptive findings on chest radiographs (e.g. infiltrate, 
pleural effusion) using the publicly available CheXpert and MIMIC-CXR datasets. During training 
on ARDS, parameters in some layers were refined while others kept fixed after pre-training. The 
internal training and validation datasets included patients hospitalized between January 1, 2016 
and June 30, 2017 at a single center. The internal testing dataset included patients hospitalized 
between July 1, 2017 and December 31, 2017 at the same center. There was no overlap 
between patients in the training and testing data. Annotations per image is the average number 
of physicians who annotated each image in that dataset. Increase in performance between 
internal validation (valid) and testing may be due to more annotations resulting in an improved 
ARDS reference standard. AUROC: Area under the receiver operator characteristic curve; BN: 
Batch normalization. The bolded CNN is the network used for all subsequent analysis 
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Supplementary Table 4: CNN performance on patient subgroups in the UM test set 
 

  N 
AUROC  
(95% CI) p-value 

Sensitivity*  
(95% CI) 

Specificity*  
(95% CI) 

Overall 1560 0.92 (0.89-0.94)   77.4 (72.3-82.4) 88.7 (86.1-90.9) 
Sex           
  Male 899 0.91 (0.87-0.93) 0.212 73.0 (65.4-80.0) 89.8 (86.8-92.5) 
  Female 661 0.93 (0.90-0.96) ref 83.3 (76.5-90.1) 87.2 (82.5-91.2) 
Age           
  <40 253 0.91 (0.85-0.96) 0.706 69.2 (55.9-81.6) 92.6 (87.0-96.8) 
  40-60 476 0.92 (0.88-0.96) ref 80.0 (70.1-87.7) 88.5 (83.5-93.1) 
  60-75 652 0.91 (0.87-0.94) 0.623 77.3 (69.0-84.8) 86.6 (82.4-90.4) 
  >75 179 0.92 (0.85-0.97) 0.878 81.0 (62.0-93.5) 91.2 (84.9-95.6) 
Race           
  Black 163 0.90 (0.81-0.97) 0.629 80.0 (64.9-93.0) 86.1 (76.6-94.7) 
  White 1287 0.92 (0.90-0.94) ref 77.5 (71.3-82.6) 89.5 (86.8-92.0) 
  Other 110 0.85 (0.67-0.97) 0.405 69.6 (40.0-90.9) 86.1 (76.6-94.7) 
BMI           
<25 502 0.89 (0.83-0.93) 0.004 76.3 (66.0-84.5) 82.7 (77.5-87.4) 
25-30 425 0.93 (0.89-0.96) 0.126 69.6 (40.0-90.9) 90.0 (85.2-94.1) 
30-35 249 0.95 (0.92-0.98) ref 86.1 (77.3-92.3) 93.2 (88.7-96.7) 
>35 313 0.90 (0.85-0.95) 0.024 69.4 (56.6-82.1) 91.2 (86.1-95.4) 

 
*Sensitivity and Specificity was determined using a CNN calibrated probability of 50% as the 
threshold for identifying chest radiographs with ARDS. 
 
 
Supplementary Table 5. CNN performance in the UM test dataset based on the 3-class latent 
class model 
 

 N* AUROC  
(95% CI) 

AUPRC  
(95% CI) 

UM testing dataset 1253 0.96 (0.95-0.97) 0.91 (0.87-0.94) 
UM testing subset 
reviewed by additional 
physicians 

293 0.98 (0.96-0.99) 0.91 (0.82-0.96) 

 
*This analysis excludes chest radiographs categorized as “uncertain” in a 3-class latent class 
model of ARDS, with groups: “ARDS”, “uncertain”, “Not ARDS” 
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Supplementary Figure 2. Calibration of the CNN in the UM internal test set 
 

 
Lowess is a lowess smoothed plot of predicted probabilities and observed ARDS rates.  
Green circles are the mean predicted probability and observed ARDS rates for chest 
radiographs grouped by decile 
 
Supplementary Figure 3. Calibration of the CNN in the UPenn external test set 
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