

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Injury mortality changes at the COVID-19 period in Guangdong, China

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045317
Article Type:	Original research
Date Submitted by the Author:	29-Sep-2020
Complete List of Authors:	Zheng, Xue-yan; Guangdong Center for Disease Control and Prevention, Institute of Non-communicable disease control and prevention; Tang, Si-li; Southern Medical University, School of Public Health Ma, Shu-li; Guangdong Pharmaceutical University, School of Public Health Guan, Weijie; First Affiliated Hospital of Guangzhou Medical College, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease Xu, Xiaojun; Guangdong Center for Disease Control and Prevention, Institute of Control and Prevention for Chronic Non-infective Disease Xu, Haofeng; Guangdong Center for Disease Control and Prevention, Institute of Control and Prevention for Chronic Non-infective Disease Xu, Ying-shan; Guangdong Center for Disease Control and Prevention, Institute of Control and Prevention for Chronic Non-infective Disease Xu, Ying-shan; Guangdong Center for Disease Control and Prevention, Institute of Control and Prevention for Chronic Non-infective Disease Xu, Ying-shan; Guangdong Center for Disease Control and Prevention, Institute of Control and Prevention for Chronic Non-infective Disease Xu, Yan-jun; Guangdong Center for Disease Control and Prevention Lin, Li-feng; Guangdong Center for Disease Control and Prevention
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, Suicide & self-harm < PSYCHIATRY
	·

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 2 of 25

1	Injury mortality changes at the COVID-19 period in Guangdong, China
2	Xue-yan Zheng ^{1#} , Si-li Tang ^{1,2#} , Shu-li Ma ^{1,3#} , Wei-jie Guan ^{4#} , Xiao-jun Xu ¹ , Hao-feng
3	Xu ¹ , Ying-shan Xu ¹ , Yan-jun Xu ^{1*} , Li-feng Lin ^{1,2*}
4	1 Guangdong provincial center for disease control and prevention, Guangdong,
5	China.
6	2 School of Public Health, Southern Medical University, Guangdong, China
7	3 Department of Epidemiology and Biostatistics, School of Public Health, Guangdong
8	Pharmaceutical University, Guangzhou, China.
9	4 State Key Laboratory of Respiratory Disease and National Clinical Research Center
10	for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University,
11	Guangzhou Medical University, Guangzhou, China.
12	
13	# Xue-yan Zheng, Si-li Tang, Shu-li Ma and Wei-jie Guan shared co-first authorship.
14	* Correspondence author 1: Li-feng Lin. Guangdong provincial center for disease
15	control and prevention, Guangdong, China. Address: 160 Qunxian Road, Panyu
16	district, Guangzhou, Guangdong, China. Fax: 020-31051821, Phone: 020-31051821,
17	E-mail: <u>1396320174 @qq.com</u> .
18	Correspondence author 2: Yan-jun Xu. Guangdong provincial center for disease
19	control and prevention, Guangdong, China. Address: 160 Qunxian Road, Panyu
20	district, Guangzhou, Guangdong, China. Fax: 020-31051492, Phone: 020-31051353,
21	E-mail: <u>759888406@qq.com</u> .
22	
23	
24	
25	
26	Word count, excluding title page, abstract, references, figures and tables: 2157
27	
28	
	1

2		
3 4	29	
5	23	
6 7	30	Abstract
8 9	31	Objective: To ascertain the injury mortality changes during the COVID-19 period in
10 11	32	southern China
12 13	33	Methods: We conducted a population-based retrospective analysis to compare
14 15	34	mortality changes of different injury categories including injury, transport injuries,
16 17	35	poisonings, falls/fire/heat/hot substances, drowning, self-harm and interpersonal
18	36	violence based on sex, age groups between study and control period in Guangdong,
20	37	China. We used negative binomial model to explore the associations of deaths with
21	38	socio-demographic factors including sex, age and duration.
23 24	39	Results: The injury mortality in Guangdong province decreased significantly from
25 26	40	28.65 per 100000 people in 2019 control period to 23.24 per 100000 people in
27 28	41	COVID-19 pandemic period. Similar results were found in lower categories of injury.
29 30	42	Mortality changes of self-harm had statistically significant increase in 0-14 age
31 32	43	groups. Though mortality changes in some groups did not have statistical
33 34	44	significances, some increases were noteworthy, i.e. self-harm, transport injury, falls,
35 36	45	in 70-79 age group.
37 38	46	Conclusion: The COVID-19 pandemic was associated with decreased mortality of all
39 40	47	injury, transport injury and drowning. However, increased mortality of falls,
41 42	48	fire/heat/hot substances injury and self-harm in specific age population during the
43 44	49	COVID-19 period, warrant selective, indicated and universal interventions for public.
45 46	50	
47 48	51	Key Words: Injury; Mortality; COVID-19
49	52	
50 51	53	
53	54	
54 55	55	
56 57	56	
58 59	57	
00		2
		\angle

58	
59	Strengths and limitations of this study
60	1. This is the first study to demonstrate multiple injury mortality at different age and
61	sex population at provincial level in China, making comparisons between COVID-19
62	pandemic period and control period.
63	2. The total and lower categories of injury mortality in Guangdong province
64	decreased significantly in COVID-19 pandemic period, when comparing with 2019
65	control period.
66	3. Mortality changes of self-harm had statistically significant increase in 0-14 age
67	groups.
68	4. The causative effect of the COVID-19 epidemic on injury mortality was limited
69	owning to the limitation of the observational study, and the lack of injury incidence
70	data.
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	

4	88	
5 6	89	Introduction
7 8	90	As a consequence of Coronavirus Disease 2019 (COVID-19) pandemic, strict
9 10	91	quarantine measures are introduced to stop the COVID-19 transmission in China,
11 12	92	even for people who have not contracted COVID-19 patients.[1] Guangdong is a
13 14	93	major province of China which suffered from one of the most massive epidemics of
15 16	94	COVID-19 in China. The government had imposed quarantine and lockdown
17 18	95	measures in an unprecedented effort to control the COVOD-19 epidemic. Except for
19 20	96	those who were responsible for providing living necessities and emergency services,
21 22	97	all members of the workforce ceased working from Chinese Lunar New Year (January
23 24	98	24th, 2020) and were required to return to work not before the date of February
25 26	99	10th, 2020. The COVID-19 has shattered the daily routine, business, schools, lifestyle
27 28	100	and economy of the globe.[2]
29 30	101	Recent studies showed that the COVID-19 pandemic is having a profound effect
31 32	102	on all aspects of society, not only physical health but also mental health. A significant
33 34	103	decrease in acute coronary syndrome (ACS) related hospitalization and
35 36	104	out-of-patient rates were reported in Italy during the early days of the Covid-19
30 37	105	outbreak.[3-4]Projected increases in suicide were found owing to COVID-19 in
38 39	106	Canada.[5] A recent study in China found that the vicarious traumatization scores of
40 41	107	the general public were significantly higher than those of the front-line nurses.[6]
42 43	108	Different levels of psychological impacts including stress, anxiety and depression
44 45	109	might be reasons for the increase suicide events in this period. Multidisciplinary
46 47	110	research priorities for the COVID-19 pandemic is calling for an urgent.[7]
48 49	111	Guangdong province has 108 million permanent residents that account for
50 51	112	8.03% of the population in China. Compared with other provinces, Guangdong has
52 53	113	achieved the highest gross domestic product, and become the most leading
54 55	114	developed province with the largest population in southern China. Currently, little is
56 57	115	known about the mortality changes of injury including suicide in different age and
58 59	116	sex group during COVID-19 period in southern China, even in Guangdong province.
60	117	This might help provide evidence about the situation of injury and metal health

problem at this scenario; guidance and actionable information for governments and public health authorities at the pandemic period. To solve the gap, we conducted this population-based retrospective study to ascertain the injury mortality changes at the COVID-19 period in Guangdong, China.

123 Methods and material

124 Study design and data source

We conducted a population-based retrospective analysis to compare mortality changes of injury in different categories including transport injuries, poisonings, falls, fire/heat/hot substances, drowning, self-harm and interpersonal violence based on sex, age group between study and control period. The study period was defined as the time between first cases found and guarantine measure implemented in Guangdong (1st January 2020) and 30th June 2020, while the control period was defined as a corresponding period during the previous year (from 1st January 2019 to 30th June 2019). Death registration in Guangdong province is an all-cause of death surveillance which covering the whole population living in Guangdong. Mortality data for this study was derived from Chinese Center for Disease Control and Prevention Cause of Death Reporting System.

Definition of major injury category

Injury deaths were identified according to the ICD-10 codes recommended by the US
CDC,[8-9] based on the following diagnosis codes: V01-Y89. Based on published
studies and ICD-10 codes of injury, we selected several categories of injury: transport
injuries (V01-V04,V06,V09-V80,V87,V89,V99), poisonings (X40-X49), falls (W00-W19),
fire, heat, and hot substances (X00-X09), drowning (W65-W74), self-harm
(X60-X84,Y87.0) and interpersonal violence (X85-Y09,Y87.1).

143 Statistical analyses

144 The completeness of death surveillance in Guangdong was estimated using an 145 empirical method reported by Adair T and Lopez AD.[10] Briefly, the following 146 equation was using to predict completeness for both sexes:

BMJ Open

147
$$\log it(C^{AII}) = (RegCDR_{sq} \times -0.0238) + (RegCDR \times 0.8419) + (\%65 \times -19.6118) + (ln(5q0) \times -1.5135) + (Year \times -0.0251) + 44.3755 + \gamma$$

where C^{All} is the completeness of registration at all ages, $\log it(C^{All})$ is $\ln\left(\frac{C^{All}}{1-C^{All}}\right)$,

Reg*CDR* is the registered crude death rate (CDR), $RegCDR_{sq}$ is the square of *RegCDR*, %65 is the fraction of the population aged 65 years and over, ln(5q0) is the natural log of the under-5 mortality rate, *Year* is calendar year, γ is a random effect,

152 Predicted completeness is converted using the inverse logit: $\frac{e^{\log it(C^{AII})}}{e^{\log it(C^{AII})}+1}$

Because of the overdispersion of injury deaths, we used negative binomial models to explore the associations of deaths with socio-demographic factors including sex, age group, and duration.[11-12] All statistical analyses were conducted using Stata statistical software version 12.1. Differences were considered statistically significant in 2-tailed tests if p-values were less than 0.05.

Results

The injury mortality in Guangdong province decreased significantly from 28.65 per 100000 people in 2019 control period to 23.24 per 100000 people in COVID-19 pandemic period (P<0.05). Likewise, mortality of lower injury categories including transport injuries (5.06 per 100000 people vs. 7.11 per 100000 people), poisonings (1.04 per 100000 people vs. 1.18 per 100000 people), falls (8.45 per 100000 people vs. 9.31 per 100000 people), fire, heat, and hot substances (0.17 per 100000 people vs. 0.24 per 100000 people), drowning (1.23 per 100000 people vs. 1.87 per 100000 people), self-harm (3.04 per 100000 people vs. 3.73 per 100000 people), interpersonal violence (0.16 per 100000 people vs. 0.29 per 100000 people) decreased significantly in COVID-19 pandemic period in 2020, when comparing with the control period in 2019. (Table 1)

Table 1. Comparison of mortality for injury causes in Guangdong, China between the Onset of the Covid-19 Outbreak and Control Period in 2019.

Injury subtypes	Study period (1/100000)	Control period (1/100000)	Changes (%)	Р
All cause of injury	23.24	28.65	-18.86	<i>P</i> < 0.0001
Transport injuries	5.06	7.11	-28.80	<i>P</i> < 0.0001
Poisonings	1.04	1.18	-11.71	0.028
Falls	8.45	9.31	-9.30	<i>P</i> < 0.0001
Fire, heat, and hot substances	0.17	0.24	-28.41	0.012
Drowning	1.23	1.87	-34.51	<i>P</i> < 0.0001
Self-harm	3.04	3.73	-18.46	<i>P</i> < 0.0001
Interpersonal violence	0.16	0.29	-43.19	<i>P</i> < 0.0001

Except for the increase death rate of Zhuhai (9.89%) and Qingyuan (0.52%), death rate of all injuries in 11 cities decreased significantly in Guangdong during COVID-19 period when comparing with control period in 2019. Mortality of transport injuries in 17 cities in Guangdong declined significantly in COVID-19 period, decreased rate falling from 11.82% people in Zhuhai to 71.26% in Shenzhen. Decreased death rate from falls fell from -0.16% to -44.48% in 16 cities in Guangdong, while mortalities increased from 0.07% to 28.28% in five cities including Guangzhou, Zhuhai, Heyuan, Qingyuan and Zhongshan. Self-harm mortality increased from 4.12% to 24.71% in Zhuhai, Zhaoqing, Meizhou, Yangjiang, Zhongshan and Jieyang in COVID-19 period, while reduced self-harm mortalities were reported in other cities. (E-Table 1, Figure 1)

Mortalities from all and other lower category injuries including transport injuries, falls, fire, heat, and hot substances, drowning, self-harm and interpersonal violence decreased significantly in total male and female population, except for heat, and hot substances in female (**Table 2, Figure 2**). Mortality from drowning declined from 0.44% to 55.27% in all age-sex groups. Interestingly, when dividing the

population into different age groups, some statistical significant increased mortalities could be observed. We noted that self-harm mortality in 0-14 age group had statistical significant increase in male/female/ general population. Even though, self-harm, transport injury, falls, interpersonal violence mortality changes in 70-79 age group did not yielded a statistical significance, while the increases of this age group in different sex population were noteworthy. Likewise, there were insignificant increases of mortality from fire, heat, and hot substances in 80+ age group in all sex population and falls in 80+ age group in male. (Table 2, Figure 3-4)

205Table2. Mortality changes for injury causes in Guangdong, China between the206Covid-19 Outbreak and Control Period in 2019 in different age groups in male and207female population.

25 26		Δσρ	Transport			Fire, heat,			Internersonal	All-cause
27	Sex group	group	iniuries	Poisonings	Falls	and hot	Drowning	Self-harm	violence	of injury
28		group	injunes			substances			violence	or injury
29 20	Male	0-14	-32.25*	-39.30	-13.19	-69.83*	-19.32	139.71*	56.90	-22.50*
31		15-59	-31.56*	-10.15	-16.89*	-48.01*	-32.84*	-24.25*	-55.36*	-25.99*
32		60-69	-35.86*	3.30	-27.63*	-42.45	-45.88*	-19.98	-35.54	-29.49*
33		70-79	7.44	-0.94	6.75	-40.91	-41.31*	21.41	87.11	2.71
34 35		80+	-13.68	-6.54	5.45	32.16	-15.04	-43.68*	3.84	0.53
36		Total	-27.06*	-9.16	-8.72*	-39.99*	-30.90*	-20.19*	-40.54*	-19.56*
37	Female	0-14	-36.34*	-35.24	-8.50	-6.46	-55.27*	115.13*	-48.98	-37.04*
38 30		15-59	-36.42*	-20.97	-10.48	-36.32	-41.98*	-19.51*	-47.01*	-26.13*
40		60-69	-43.33*	-14.22	-21.81	51.38	-50.51*	-35.40*	-52.69	-35.63*
41		70-79	-2.53	-22.83	3.49	49.58	-0.44	12.40	-28.77	2.51
42		80+	-33.09*	101.69	-6.87*	31.10	-42.37*	0.85	0.85	-6.86*
45 44		Total	-32.78*	-16.62	-9.93*	-1.21	-40.67*	-15.17*	-46.06*	-17.58*
45	General	0-14	-34.07*	-36.68*	-11.18	-52.00	-31.89*	127.36*	-16.00	-28.87*
46	population	15-59	-32.71*	-13.13*	-15.56*	-44.10*	-35.25*	-22.67*	-51.68*	-25.99*
47 48		60-69	-38.81*	-3.04	-27.01*	-31.62	-48.12*	-27.24*	-45.90	-32.22*
49		70-79	3.32	-12.44	4.92	-22.48	-20.40	16.83	27.69	2.12
50		80+	-21.92	29.26	-2.45	31.20	-33.03*	-22.78	2.05	-4.04
51 52		Total	-28.80*	-11.71*	-9.30*	-28.41*	-34.51*	-18.46*	-43.19*	-18.86*
53	208	*: statistic	al significance	using Poisson r	egression mo	del for comparis	on of COVID-1	9 period and o	control period	
54	209	in 2019 (P	< 0.05)							

58 211 **Discussion**

212 It seemed mortality from all injury and other lower category injury including

transport injuries, poisonings, falls, fire/heat/hot substances, drowning, self-harm and interpersonal violence decreased and benefited from the COVID-19 pandemic. However, when dividing the population into different city, age and sex groups, some statistical significant increased mortalities could be found in specific injury categories. Though mortality changes in some groups did not have statistical significances, increased mortalities were noteworthy, i.e. self-harm, transport injury, falls, interpersonal violence in 70-79 age group. This provide a priorities and longer-term strategies for injury and mental health science research, control and prevention. Based on our best knowledge, this is the first study that conducted to demonstrate multiple injury mortality at different age and sex population at provincial level in China, making comparisons between COVID-19 pandemic period and control period in 2019.

We have make big progress in improvements in road construction, expansion of road safety awareness, increased motor vehicle safety systems and establishment in road safety laws, annual drownings warnings from Ministry of Education, improved infrastructure projects to decrease exposure to bodies of water during these years. This might contribute in decreasing in transport injury [13] and drowning [14-15] mortality. As this study conducted at the time when China was facing the COVID-19 pandemic and imposed lockdown and quarantine measures, the full impact of COVID-19 on injury at its peak would be captured. During the COVID-19 outbreak and the outcomes of isolation and quarantine, most people were avoiding going out to reduce the chance of infecting with COVID-19 virus. As a result, there were sharp decreased mortalities from transport injury and drowning at all age from different population across 20 cities from Guangdong, except for Chaozhou and male population aging from 70 to 79 years old.

In line with our study, several researchers demonstrated that there is a correlation between age and mortality following fire, heat, and hot substances with elderly patients usually bearing a higher mortality.[16-17] Different from previous study, scalds were accounted for 60% of deaths of injury in >75 years age group in UK, [18] yet fire or smoke inhalation is the main cause resulting to the main death of

Page 11 of 25

BMJ Open

fire, heat, and hot substances among elderly in Guangdong. A comprehensive fire,
heat, and hot substances reduction strategy in the elderly is still lacking.
Comprehensive strategy employing public education, distribution of firefighting
equipment, adequate supervision for vulnerable adults while heating and cooking as
well as the use of aging electric appliance to prevent fire, heat, and hot substances
injury in the elderly warrants development and evaluation.

The death rate of falls declined overall for decades of years, yet with a notable increase in older people. This is probably due to the increased life expectancy in the past two decades. Greater proportion of older people living with chronic diseases were at risk of falls.[19] The problem is going to worsen among elderly during COVID-19 period, since elderly subjects remain exposed to trauma due to domestic falls with reduced number of health services. [20] In this case, older population were suffering from a higher risk of disability or death due to delayed care and treatment for fall-related injuries.[21-22] Given the relative high burden of falls among elderly, systematic implementation for reducing injuries from falls was needed including sufficient medical and occupational-therapy, [23] professional environment hazard assessment and modification, [24] vitamin D and calcium supplementation, hip protectors, reduction of many of the predisposing and situational risk factors. [25]

Self-harm is becoming a more pressing concern as the pandemic spreads and has longer-term effects on the general population, the economy, and vulnerable groups. There is some evidence that deaths by suicide increased in the USA during the 1918–19 influenza pandemic [26] and among older people in Hong Kong during the 2003 severe acute respiratory syndrome (SARS) epidemic.[27] The infectious disease epidemics seemed to serve as a catalyst to trigger the suicidal thought of people with mental health problems. As shown by our results, increased death rate for self-harm was observed at the age of 0-14 and 70-79 in both sex. The likely adverse effects of the pandemic on population mental health, might be exacerbated by fear, self-isolation and physical distancing, [28] contributing to an increase in the prevalence of PTSD symptoms, depression, anxiety and stress in general population in China during the COVID-19 outbreak. [29] Together with the extraordinary high

 case fatality rate for those elderly patients, [30] older adults and people with mental health problems became even more worried. A higher risk of being exposed to family conflicts, physical and/or sexual violence at home and economic damage caused by the COVID-19 crisis may lead to increased suicide rates among children.[31] Loss of employment and financial stressors are also well-recognized risk factors for suicide. [32] Selective and universal interventions are required for targeted individuals at heightened risk of suicide, including making evidence-based online interventions freely available, increasing volunteer workforce for crisis hotlines, providing financial safety nets for unemployment support.[33] In addition, domestic violence and alcohol consumption might increase during lockdown. Public health responses must ensure that those facing interpersonal violence are supported and that safe drinking messages are communicated, particularly for bereaved individuals. Accessible health education and promotion for COVID-19 is recommended, regarding that the extent that people proactively engaged in hand hygiene could decrease the likelihood that the workforce experience psychiatric symptoms.[29,34]

One of the main limitations of measuring injury burden in Guangdong during COVID-19 period was a lack of reliable injury incidence data. Second, we need to be a bit more cautious about the causative effect of the COVID-19 epidemic on injury mortality, owning to the limitation of the observational study. Despite the limitations, this study are still considered to be robust. Death registration in Guangdong province is an all-cause of death surveillance which covering all the population living in Guangdong. Data from the registration system in recent years aligned well with the vital registration data that achieved large increases in coverage over the past decade.[35] Moreover, we have used the empirical method to avoid underestimation in death surveillance.

In conclusion, the COVID-19 pandemic was associated with decreased mortality of
 all injury, transport injury and drowning. However, increased mortality of falls, fire,
 heat, and hot substances injury, self-harm in specific age population during the
 COVID-19 period, warrant selective, indicated and universal interventions for public.

1 2		
2 3 4	303	
5 6	304	
7 8	305	Acknowledgements: None.
9 10	306	Contributors: Xue-yan Zheng ^{1#} , Si-li Tang ^{1,2#} , Shu-li Ma ^{1,3#} , Xiao-jun Xu ¹ , Hao-feng
11 12	307	Xu, Ying-shan Xu ¹ , Yan-jun Xu ^{1*} , Li-feng Lin
13 14	308	Xiao-jun Xu, Hao-feng Xu, Ying-shan Xu, Yan-jun Xu and Li-feng Lin conceived of the
15 16	309	study and provided overall guidance. Xue-yan Zheng, Si-li Tang, Shu-li Ma, Wei-jie
17 18	310	Guan and Li-feng Lin prepared the first draft and finalized the manuscript based on
19 20	311	comments from all other authors and reviewer feedback. Xue-yan Zheng, Wei-jie
21 22	312	Guan, Yan-jun Xu and Li-feng Lin played a key role in formulating the analysis. All
23	313	other authors contributed to the analysis and reviewed the manuscript.
25	314	Funding: This research received no specific grant from any funding agency in the
27	315	public, commercial or not-for-profit sectors.
29	316	
30 31	317	Competing interests:
33 24	318	We declare no competing interests.
34 35	319	
36 37	320	
38 39	321	Reference:
40 41	322	1. Hao F, Tan W, Jiang L, et al. Do psychiatric patients experience more psychiatric
42 43	323	symptoms during COVID-19 pandemic and lockdown? A case-control study with
44 45	324	service and research implications for immunopsychiatry. Brain Behav Immun.
46 47	325	2020;87:100-106.
48 49	326	2. Gautam R, Sharma M. 2019-nCoV pandemic: A disruptive and stressful
50 51	327	atmosphere for Indian academic fraternity. Brain Behav Immun. 2020;88:948-949.
52 53	328	doi:10.1016/j.bbi.2020.04.025.
54 55	329	3. Baldi E, Sechi GM, Mare C, et al. Out-of-Hospital Cardiac Arrest during the
56 57	330	Covid-19 Outbreak in Italy. N Engl J Med. 2020;383(5):496-498.
58 59	331	4. De Filippo O, D'Ascenzo F, Angelini F, et al. Reduced Rate of Hospital Admissions
60	332	for ACS during Covid-19 Outbreak in Northern Italy. <i>N Engl J Med</i> . 2020;383(1):88-89.

5. McIntyre RS, Lee Y. Projected increases in suicide in Canada as a consequence of COVID-19. Psychiatry Res. 2020;290:113104. 6. Li Z, Ge J, Yang M, et al. Vicarious traumatization in the general public, members, and non-members of medical teams aiding in COVID-19 control. Brain Behav Immun. 2020;88:916-919. 7. Holmes EA, O'Connor RC, Perry VH, et al. Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. Lancet Psychiatry. 2020;7(6):547-560. 8. Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Atlanta: US Centers for Disease Control and Prevention; 2010. 9. Thurman DJ, Sniezek JE, Johnson D, Greenspan A, Smith SM. Guidelines for surveillance of central nervous system injury. Washington (DC): US Department of Health and Human Services; 1995. 10. Adair T, Lopez AD. Estimating the completeness of death registration: An empirical method. PLoS One. 2018; 13(5):e0197047. 11. Adams RS, Larson MJ, Corrigan JD, Ritter GA, Williams TV. Traumatic brain injury among U.S. active duty military personnel and negative drinking-related consequences. Subst Use Misuse. 2013; 48:821-36. 12. Statistical Consulting Group. Negative binomial regression: Stata annotated output. Available from: https://stats.idre.ucla.edu/stata/output/negative-binomial-regression/. Accessed 2017 Jun 1. 13. Leilei D, Pengpeng Y, Haagsma JA, et al. The burden of injury in China, 1990-2017: findings from the Global Burden of Disease Study 2017. Lancet Public Health. 2019;4(9):e449-e461. 14. Ministry of Education of the People's Republic of China. The education status of China in 2013. http://www.moe.gov.cn/jyb sjzl/s5990/201503/t20150331 186797.html (accessed June 13, 2018; in Chinese).

Page 15 of 25

BMJ Open

15. The Central People's Government of the People's Republic of China. Circular of the State Council on printing and distributing the outline of the development of Chinese women and the program for the development of children in China. http://www.gov.cn/gongbao/content/2011/content 1927200.htm(accessed June 13, 2018; in Chinese). 16. Sadeghian F, Saeedi Moghaddam S, Saadat S, et al. The trend of burn mortality in Iran - A study of fire, heat and hot substance-related fatal injuries from 1990 to 2015. Burns. 2019;45(1):228-240.

17. Tang K, Jian L, Qin Z, Zhenjiang L, Gomez M, Beveridge M. Characteristics of burn
patients at a major burn center in Shanghai. Burns 2006;32: 1037-43.

18. Hussain A, Dunn K. Burn related mortality in Greater Manchester: 11-year review
of Regional Coronial Department Data. Burns. 2015;41(2):225-234.

19 Centers for Disease Control and Prevention. Fatalities and injuries from falls
among older adults, United States, 1993–2003 and 2001–2005. MMWR Morb Mortal
Wkly Rep 2006; 55: 1221–24.

378 20. Gumina S, Proietti R, Polizzotti G, Carbone S, Candela V. The impact of COVID-19
379 on shoulder and elbow trauma: an Italian survey [published online ahead of print,
380 2020 May 20]. J Shoulder Elbow Surg. 2020; S1058-2746(20)30401-8.

21. Tong HJ, Huang CY. Changes of family structure and their social influence in
contemporary China. Xi Bei Ren Kou Za Zhi 2015; 6: 81–84 (in Chinese).

22. Gao M, Li Y, Zhang S, et al. Does an empty nest affect elders' health? Empirical
evidence from China. Int J Environ Res Public Health 2017; 14: E463.

23. Close J, Ellis M, Hooper R, Glucksman E, Jackson S, Swift C. Prevention of falls in
the elderly trial (PROFET): a randomised controlled trial. Lancet. 1999;
353(9147):93-97.

388 24. Keall MD, Pierse N, Howden-Chapman P, et al. Home modifications to reduce
389 injuries from falls in the home injury prevention intervention (HIPI) study: a
390 cluster-randomised controlled trial. Lancet. 2015;385(9964):231-238.

25. Kannus P, Sievänen H, Palvanen M, Järvinen T, Parkkari J. Prevention of falls and
consequent injuries in elderly people. Lancet. 2005; 366(9500):1885-1893.

393 26. Wasserman IM. The impact of epidemic, war, prohibition and media on suicide:

394 United States, 1910–1920. Suicide Life Threat Behav 1992; 22: 240–54.

27. Cheung YT, Chau PH, Yip PS. A revisit on older adults suicides and severe acute
respiratory syndrome (SARS) epidemic in Hong Kong. Int J Geriatr Psychiatry 2008; 23:
1231–38.

28. Yao H, Chen JH, Xu YF. Patients with mental health disorders in the COVID-19
epidemic. Lancet Psychiatry 2020; 7: e21

29. Wang C, Pan R, Wan X, et al. A longitudinal study on the mental health of general
population during the COVID-19 epidemic in China. Brain Behav Immun.
2020;87:40-48.

403 30. Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients
404 with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547.

405 31. Hoekstra PJ. Suicidality in children and adolescents: lessons to be learned from
406 the COVID-19 crisis. Eur Child Adolesc Psychiatry. 2020;29(6):737-738.

407 32. Stuckler D, Basu S, Suhrcke M, Coutts A, McKee M. The public health effect of
408 economic crises and alternative policy responses in Europe: an empirical analysis.
409 Lancet 2009; 374: 315-23.

410 33. Gunnell D, Appleby L, Arensman E, et al. Suicide risk and prevention during the
411 COVID-19 pandemic. Lancet Psychiatry. 2020;7(6):468-471.

412 34. Tan W, Hao F, McIntyre RS, et al. Is returning to work during the COVID-19 413 pandemic stressful? A study on immediate mental health status and 414 psychoneuroimmunity prevention measures of Chinese workforce. Brain Behav 415 Immun. 2020;87:84-92.

416 35. GBD 2017 Mortality Collaborators. Global, regional, and national age- and
417 sex-specifc mortality and life expectancy for 195 countries and territories,
418 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017.
419 Lancet 2018;392: 1684–735.

60

Rate difference

-0.49 - -0.30 -0.29 - -0.10

-0.09 - 0.10

0.10 - 0.30

ZH: Zhuhai

FS: Foshan

ZJ: Zhanjiang

ZQ: Zhaoqing

MZ: Meizhou

HY: Heyuan

QY: Qingyuan

ZS: Zhongshan

JY: Jieyang

GZ: Guangzhou SG: Shaoguan

SZ: Shenzhen

ST: Shantou

JM: Jiangmen

MM: Maoming

HZ: Huizhou

SW: Shanwei

YJ: Yangjiang

DG: Dongguan

CZ: Chaozhou

YF: Yunfu

<−0.50

Figure 2. All injury, transport injuries, falls and self-harm in different sex groups between the Covid-19 pandemic period and control period in Guangdong province, China.

191x181mm (300 x 300 DPI)

Figure 4. All injury, transport injuries, falls and self-harm mortality changes in different age and sex groups between the Covid-19 pandemic period and control period in Guangdong province, China.

155x112mm (600 x 600 DPI)

Page 21 of 25

 BMJ Open

	Transport			Fire, heat,			Internersonal	
	injuries	Poisonings	Falls	and hot substances	Drowning	Self-harm	violence	All injury
Guangzhou	-24.44*	-34.69*	3.04	-52.10	-15.31	-27.80*	-32.59	-15.91*
Shaoguan	-21.59*	-15.56	-23.96*	-80.43	-36.08*	-37.32*	-75.53	-26.99*
Shenzhen	-71.26*	-44.48	-44.48*	-100.00	-65.11*	-33.23*	-66.85*	-43.55*
Zhuhai	-11.82	83.86	28.28	-	-2.32	15.91	-38.71	9.89
Shantou	-29.92*	-7.49	-5.40	-58.02	95.90	-34.19*	95.90	-11.01
Foshan	-23.01*	-4.62	-15.05*	-18.25	-43.97*	-13.04	-68.21	-21.80*
Jiangmen	-7.92	-38.49	-3.97	193.09	-46.10*	-17.50	-30.22	-13.05*
Zhanjiang	-25.31*	-18.24	-22.99*	76.61	-19.29	-19.58	-75.47	-25.13*
Maoming	-29.77*	-26.58	-16.27	-44.70	-35.09*	-15.96	45.16	-27.33*
Zhaoqing	-40.75*	-47.01*	-1.19	-21.91	-52.77*	4.12	13.88	-17.90*
Huizhou	-44.99*	-16.52	-12.96	-26.95	-43.06*	-45.78*	-51.30	-28.22*
Meizhou	-21.70*	63.96*	-5.19	47.57	2.09	21.19	-83.60	-1.38
Shanwei	-56.72*	-2.05	-35.39	-100.00*	-21.64	-19.54	-100.00	-42.23*
Heyuan	-29.16*	1.28	15.00	31.18	-45.34	-3.95	-	-11.26
Yangjiang	-33.28*	128.64*	-21.33	95.98	11.35	24.71	-2.01	-19.12*
Qingyuan	-9.59	39.44	17.42*	-50.94	-40.57*	-15.70	-1.88	0.52

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Dongguan	-11.10	-43.32*	-17.44*	-34.74	-54.71*	-15.758	-61.54*	-17.90*
Zhongshan	-40.26*	-45.44*	0.07	-78.45*	-36.45	24.70	-75.75	-18.59*
Chaozhou	6.93	-1.74	-0.16	-26.30	-45.96	-33.53	1	-4.66
Jieyang	-35.11*	14.83	-27.02*	-26.18	-18.55	23.03	-1.58	-17.69*
Yunfu	-41.93*	14.87	-16.59	13.91	-73.15*	-22.80	144.10	-26.19*
Guangdong	-28.80*	-11.71*	-9.30*	-28.41*	-34.51*	-18.46*	-43.19*	-18.86*

 BMJ Open

					Fire, heat,		o 16		All-
Sex group	Age	Transport	Poisonings	Falls	and hot	Drowning	Self-	Interpersonal	cause o
	group	injuries			substances		harm	violence	injury
				Control P	eriod in 2019				
Male	0-14	2.12	0.41	1.18	0.25	2.72	0.17	0.1	9.57
	15-59	8.7	1.69	3.75	0.17	1.82	4.89	0.33	25.35
	60-69	31.36	2.42	20.74	0.87	4.16	9	0.31	79.04
	70-79	25.61	1.56	41.12	1.74	4.04	7.89	0.28	98.13
	80+	37.36	4.67	225.8	2.57	7.71	13.78	0.7	359.13
	Total	9.87	1.54	9.02	0.32	2.29	4.51	0.29	33.33
Female	0-14	1.74	0.63	1.11	0.12	1.66	0.24	0.27	8.71
	15-59	3.08	0.72	1.02	0.09	0.73	2.63	0.28	9.57
	60-69	12.77	1	8.09	0.13	3.48	7.75	0.53	38.9
	70-79	10.13	1.6	31.11	0.44	3.91	6.84	0.27	65.77
	80+	16.73	1.61	285.89	1.61	10.14	8.37	0.16	418.94
	Total	4.06	0.78	9.64	0.15	1.41	2.87	0.29	23.47
General	0-14	1.95	0.5	1.15	0.19	2.25	0.2	0.17	9.19
population	15-59	6.02	1.23	2.45	0.13	1.3	3.81	0.31	17.82
	60-69	22.41	1.74	14.65	0.52	3.83	8.4	0.42	59.71
	70-79	17.75	1.58	36.03	1.08	3.97	7.36	0.27	81.69
	80+	25.15	2.86	261.38	2	9.14	10.57	0.38	394.54
	Total	7.11	1.18	9.31	0.24	1.87	3.73	0.29	28.65

E-Table 2. Mortality for init al Dariad in 2010 in diff •.. -1 Chi <u>ما ب</u> 10 Outh . . . nt age

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Male	0-14	1.44	0.25	1.02	0.08	2.2	0.42	0.15	7.42
	15-59	5.96	1.52	3.12	0.09	1.22	3.7	0.15	18.76
	60-69	20.11	2.5	15.01	0.5	2.25	7.2	0.2	55.74
	70-79	27.52	1.55	43.9	1.03	2.37	9.58	0.52	100.79
	80+	32.25	4.36	238.11	3.39	6.55	7.76	0.73	361.04
	Total	7.2	1.4	8.23	0.19	1.58	3.6	0.17	26.81
Female	0-14	1.11	0.41	1.02	0.11	0.74	0.52	0.14	5.48
	15-59	1.96	0.57	0.92	0.06	0.42	2.12	0.15	7.07
	60-69	7.24	0.86	6.32	0.2	1.72	5.01	0.25	25.05
	70-79	9.88	1.23	32.19	0.66	3.89	7.69	0.19	67.42
	80+	11.19	3.24	266.24	2.11	5.84	8.44	0.16	390.2
	Total	2.73	0.65	8.68	0.15	0.83	2.43	0.16	19.35
General population	0-14	1.29	0.32	1.02	0.09	1.53	0.46	0.14	6.54
	15-59	4.05	1.07	2.07	0.07	0.84	2.95	0.15	13.19
	60-69	13.71	1.69	10.69	0.35	1.99	6.11	0.23	40.48
	70-79	18.34	1.38	37.81	0.84	3.16	8.6	0.35	83.42
	80+	19.63	3.69	254.96	2.62	6.12	8.17	0.39	378.6
	Total	5.06	1.04	8.45	0.17	1.23	3.04	0.16	23.24

	Item No	Recommendation	
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or	
		the abstract	_
		(b) Provide in the abstract an informative and balanced summary of what	
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	
Methods			
Study design	4	Present key elements of study design early in the paper	
Setting	5	Describe the setting, locations, and relevant dates, including periods of	
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	
· · · · ·		of participants	
Variables	1	Clearly define all outcomes, exposures, predictors, potential confounders,	
	0*	and effect modifiers. Give diagnostic criteria, if applicable	
Data sources/	8*	For each variable of interest, give sources of data and details of methods	
measurement		of assessment (measurement). Describe comparability of assessment	
Diag	0	Describe any efforts to address potential sources of higs	
Study size	9	Explain how the study size was arrived at	
Quantitative variables	10	Explain how duantitative variables were handled in the analyses. If	_
Quantitative variables	11	applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	-
Results			-
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	
I		potentially eligible, examined for eligibility, confirmed eligible, included	
		in the study, completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	_
		(c) Consider use of a flow diagram	-
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical,	_
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	1

3
4
5
6
7
/
8
9
10
11
12
13
14
15
10
16
17
18
19
20
21
22
-∠- 22
∠3 24
24
25
26
27
28
29
30
50 51
51
32
33
34
35
36
37
38
20
27
40
41
42
43
44
45
46
-10 //7
4/ 40
48
49
50
51
52
53
54
55
55
56
57
58
59

1 2

		(b) Report category boundaries when continuous variables were	7-8
		categorized	
		(c) If relevant, consider translating estimates of relative risk into absolute	8
		risk for a meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	8
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	8-11
Limitations	19	Discuss limitations of the study, taking into account sources of potential	11
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	10-
		limitations, multiplicity of analyses, results from similar studies, and other	11
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Trends of injury mortality during the COVID-19 period in Guangdong, China: A population-based retrospective analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045317.R1
Article Type:	Original research
Date Submitted by the Author:	08-Dec-2020
Complete List of Authors:	Zheng, Xue-yan; Guangdong Center for Disease Control and Prevention, Institute of Non-communicable disease control and prevention; Tang, Si-li; Southern Medical University, School of Public Health Ma, Shu-li; Guangdong Pharmaceutical University, School of Public Health Guan, Wei-jie; First Affiliated Hospital of Guangzhou Medical College, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease Xu, Xiaojun; Guangdong Center for Disease Control and Prevention, Institute of Control and Prevention for Chronic Non-infective Disease Xu, Haofeng; Guangdong Center for Disease Control and Prevention, Institute of Control and Prevention for Chronic Non-infective Disease Xu, Ying-shan; Guangdong Center for Disease Control and Prevention, Institute of Control and Prevention for Chronic Non-infective Disease Xu, Ying-shan; Guangdong Center for Disease Control and Prevention, Institute of Control and Prevention for Chronic Non-infective Disease Xu, Ying-shan; Guangdong Center for Disease Control and Prevention, Institute of Control and Prevention for Chronic Non-infective Disease Xu, Yan-jun; Guangdong Center for Disease Control and Prevention, Lin, Li-feng; Guangdong Center for Disease Control and Prevention
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, Suicide & self-harm < PSYCHIATRY

SCHOLARONE[™] Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Trends of injury mortality during the COVID-19 period in Guangdong,

China: A population-based retrospective analysis

Xue-yan Zheng^{1#}, Si-li Tang^{1,2#}, Shu-li Ma^{1,3#}, Wei-jie Guan^{4#}, Xiao-jun Xu¹, Hao-feng Xu¹, Ying-shan Xu¹, Yan-jun Xu^{1*}, Li-feng Lin^{1,2*}

1 Guangdong provincial center for disease control and prevention, Guangdong, China.

2 School of Public Health, Southern Medical University, Guangdong, China

3 Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.

4 State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.

Xue-yan Zheng, Si-li Tang, Shu-li Ma and Wei-jie Guan shared co-first authorship.

* **Correspondence author 1: Li-feng Lin.** Guangdong provincial center for disease control and prevention, Guangdong, China. Address: 160 Qunxian Road, Panyu district, Guangzhou, Guangdong, China. Fax: 020-31051821, Phone: 020-31051821, E-mail: 1396320174 @qq.com.

Correspondence author 2: Yan-jun Xu. Guangdong provincial center for disease control and prevention, Guangdong, China. Address: 160 Qunxian Road, Panyu district, Guangzhou, Guangdong, China. Fax: 020-31051492, Phone: 020-31051353, E-mail: <u>759888406@qq.com</u>.

Word count, excluding title page, abstract, references, figures and tables: 2447

Abstract

Objective: To ascertain the trends of injury mortality during the COVID-19 period in southern China.

Methods: We conducted a population-based retrospective analysis to compare mortality changes of all-cause injury and transport injuries, poisoning, falls, fire/heat/hot substances, drowning, self-harm and interpersonal violence, and stratified by sex and age. Comparisons were made between the COVID-19 period (between Jan 2020 and Jun 2020) and control period (between Jan 2019 and Jun 2019) in Guangdong, China. We used negative binomial models to explore the associations of deaths during the COVID-19 period, according to different sex and age strata..

Results: The all-cause injury mortality in Guangdong province decreased significantly from 28.65 per 100,000 population during the control period to 23.24 per 100,000 population during COVID-19 pandemic period. Similar results were found in specific injury categories. Mortality changes of self-harm increased by 127.36% in the 0-14-year group during the COVID-19 period as compared with the control period. Although mortality changes in some groups did not reach statistical significance, some increases were also noteworthy during the COVID-19 period (i.e. self-harm, transport injury and falls) in the 70-79-year group. The respective increase in mortality changes was 16.86%, 3.32% and 4.92%.

Conclusion: There was a decreased mortality of all-cause injury, transport injury and drowning during the COVID-19 pandemic. However, the increase in mortality associated with falls, fire/heat/hot substance injury and self-harm in specific age population warrant targeted control and prevention measures for the population at risk.

Key Words: Injury; Mortality; COVID-19

Strengths and limitations of this study

1. This is the first study which demonstrated the trends of changes in multiple injury mortality at different age and sex population at provincial level in China, during the COVID-19 period.

2. This is the first study comparing the injury mortality between COVID-19 period and the control period.

3. The completeness of death surveillance in Guangdong province was estimated using an empirical method to minimize under-reporting.

4. The causative effect of the COVID-19 epidemic on injury mortality could not be confirmed due to the limitation of the observational study.

5. There was a lack of injury incidence which should be regarded as another limitation of measuring the injury-associated burden.

Introduction

During the coronavirus disease 2019 (COVID-19) pandemic, strict quarantine measures have been introduced to curb the transmission of severe acute respiratory syndrome coronavirus-2 in mainland China, including the people who have not contracted COVID-19 patients [1]. Guangdong is a major province which has suffered from one of the major massive epidemics of COVID-19 in mainland China. The government had enforced stringent quarantine and lockdown measures with an unprecedented effort to control the COVID-19 outbreak. Except for those who were responsible for providing living necessities and emergency services, the workforce has ceased working since the Chinese Lunar New Year (January 24th, 2020) and were requested to return to work after February 10th, 2020. The COVID-19 has also markedly dampened the social orders and economy around the globe [2].

Recent studies have showed that the COVID-19 pandemic confers a profound effect on all aspects of society which is also extended to the mental health. Significant decreases in acute coronary syndrome-related hospitalization and out-of-patient rates have been reported in Italy early during the COVID-19 outbreak [3-4]. The projected increases in suicide have also been linked to the COVID-19 outbreak in Canada [5]. The vicarious traumatization scores of the general public have recently been shown to be significantly higher than those of the front-line nurses [6]. Different levels of psychological impacts including stress, anxiety and depression might be the reasons for the increase in suicide events. Multidisciplinary research priorities for the COVID-19 pandemic have called for an urgent action for mental health science [7].

Guangdong province has 108 million permanent residents that account for 8.03% of the population in mainland China. Twenty-one cities with 122 counties are located in Guangdong province. Compared with other provinces, Guangdong has achieved the highest gross domestic product and become the most developed province with the largest population in southern China. Currently, little is known about the mortality changes of injury including suicide in different age and sex strata during the COVID-19 period in southern China.

We hypothesized that there would be both physical and mental health issues

caused by the lockdown and quarantine measures during COVID-19 period. We sought to ascertain the injury mortality changes in Guangdong, China. This might help provide the evidence about the *status quo* of injury and metal health issues, as well as the guidance and actionable information for governments and public health authorities during the COVID-19 pandemic period.

Methods and material

Study design and data source

We conducted a population-based retrospective analysis to compare the mortality changes of injury in different categories (including transport injuries, poisonings, falls, fire/heat/hot substances, drowning, self-harm and interpersonal violence which were stratified by sex and age) between the study and control period. The study period was defined as the duration between the first cases being identified and the time when quarantine measures were implemented in Guangdong (January 1st 2020) and the data cut-off (June 30th 2020). The control period was defined as a corresponding period during the previous year (from 1st January 2019 to 30th June 2019). Death registration is an all-cause of death surveillance which covers the whole population living in Guangdong province. Mortality data was derived from Chinese Center for Disease Control and Prevention (CDC) Cause of Death Reporting System [8]. We performed analysis based on the 21 cities because the population size remained stable and cities constituted an important administrative unit in Guangdong province.

Definition of major injury category

Injury deaths were identified according to the ICD-10 codes recommended by the US CDC [9-10], based on the diagnostic codes of V01-Y89. Based on published studies and the ICD-10 codes of injury, we selected several categories of injury: transport injuries (V01-V04,V06,V09-V80,V87,V89,V99), poisonings (X40-X49), falls (W00-W19), fire, heat, and hot substances (X00-X09), drowning (W65-W74), self-harm (X60-X84,Y87.0) and interpersonal violence (X85-Y09,Y87.1).

Statistical analyses

The registered population number in different age and sex strata in both 2019 and

BMJ Open

2020 that corresponded to different cities in Guangdong province were obtained from the Population Basic Information System, by using as the denominators for mortality calculation. The percentage changes were calculated with the following formula:

 $\frac{\text{Mortality in COVID-19 period-Mortality in control period in 2019}}{\text{Mortality in control period in 2019}} \times 100\%$

The completeness of death surveillance in Guangdong was estimated empirically [11]. Briefly, the following equation was applied to predict the completeness for both sexes:

 $logit(C^{All}) = (RegCDR_{sq} \times -0.0238) + (RegCDR \times 0.8419) + (\%65 \times -19.6118) + (ln(5q0) \times -1.5135) + (Year \times -0.0251) + 44.3755 + \gamma$

where C^{AII} was the completeness of registration of all ages, $\log it(C^{AII})$ equated to

$$\ln\left(\frac{C^{All}}{1-C^{All}}\right)$$
, $RegCDR$ was the registered crude death rate (CDR), $RegCDR_{sq}$ was

the square of *RegCDR*, %65 was the fraction of the population aged 65 years or greater, $\ln(5q0)$ was the natural log of the under-5 mortality rate, *Year* was calendar year, γ was a random effect, Predicted completeness was converted by using the inverse logit:

$$\frac{\mathrm{e}^{\mathrm{logit}\left(C^{\mathrm{All}}\right)}}{\mathrm{e}^{\mathrm{logit}\left(C^{\mathrm{All}}\right)}+1}$$

Because of the overdispersion of injury deaths, we used negative binomial models to explore the associations of deaths within the COVID-19 period in different sex and age strata [12-13]. All statistical analyses were conducted using Stata statistical software version 12.1. Differences were considered statistically significant in 2-tailed tests if p-values were less than 0.05.

Patient and Public Involvement

No patient involved

Results

The completeness was 97.03% and 98.53% based on the empirical estimation, respectively. The all-cause injury mortality in Guangdong province decreased from
28.65 per 100,000 population in the control period to 23.24 per 100,000 people in the COVID-19 pandemic (P<0.05). Furthermore, the mortality of specific injury categories including transport injuries (5.06 per 100,000 population vs. 7.11 per 100,000 population), poisonings (1.04 per 100,000 population vs. 1.18 per 100,000 population), falls (8.45 per 100,000 population vs. 9.31 per 100,000 population), fire, heat, and hot substances (0.17 per 100,000 population vs. 0.24 per 100,000 population), drowning (1.23 per 100,000 population vs. 1.87 per 100,000 population), self-harm (3.04 per 100,000 population vs. 3.73 per 100,000 population), interpersonal violence (0.16 per 100,000 population vs. 0.29 per 100,000 population) decreased significantly during the COVID-19 pandemic as compared with the control period. (All P<0.05, **Table 1**)

19 Outbreak and the cor			-1	
Injury subtypes	Study period (1/100000)	Control period (1/100000)	Changes (%)	Р
All cause of injury	23.24	28.65	-18.86	< 0.0001
Transport injuries	5.06	7.11	-28.80	< 0.0001
Poisonings	1.04	1.18	-11.71	0.028
Falls	8.45	9.31	-9.30	< 0.0001
Fire, heat, and hot substances	0.17	0.24	-28.41	0.012
Drowning	1.23	1.87	-34.51	< 0.0001
Self-harm	3.04	3.73	-18.46	< 0.0001
Interpersonal violence	0.16	0.29	-43.19	< 0.0001

 Table 1. Comparison of mortality for injury causes between the onset of the Covid-19 Outbreak and the control period in Guangdong province

Except for the increased death rate in Zhuhai (9.89%) and Qingyuan city (0.52%), the death rate of all-cause injuries in 11 cities decreased significantly during the COVID-19 period as compared with the control period. The mortality of transport injuries in 17 cities declined significantly during the COVID-19 period. The death rate associated with falls decreased markedly (ranging from 0.16% to 44.48%) in 16 cities, while the mortality rate increased notably (ranging from 0.07% to 28.28%) in Guangzhou, Zhuhai, Heyuan, Qingyuan and Zhongshan city. Self-harm mortality

BMJ Open

increased by 4.12% to 24.71% in Zhuhai, Zhaoqing, Meizhou, Yangjiang, Zhongshan and Jieyang, while the self-harm mortality decreased in other cities. (E-Table 1-2, Figure 1)

The mortality from all-cause and specific category injuries (including transport injuries, falls, fire/heat/hot substances, drowning, self-harm and interpersonal violence) decreased significantly in the total population, and in both males and females, with exception of heat and hot substances in females (**Table 2, Figure 2**). Interestingly, stratification of the study population into different age groups revealed a significantly increased mortality. The self-harm mortality in the 0-14-year group significantly increased in males, females and the general population. Although the increased mortality of self-harm, transport injury, falls and interpersonal violence in the 70-79-year group did not reach statistical significance, the increase in mortality in this age group was noteworthy. Moreover, there was an insignificant increase in mortality from fire, heat, and hot substances in the 80+-year group in both sexes and from falls in the 80+-year group in males. (**Table 2, Figure 3**)

The number of deaths due to all-cause injuries and specific types of injuries in different age group and cities were provided in supplementary material. (E-Table 3-5)

Table2. Mortality changes in injury causes between the Covid-19 Outbreak and Control Period in different age groups of the male and female population in Guangdong province.

41.										
42						Fire, heat,				All-
43	Sex	Age	Transpor	Poisonin	Falls	and hot	Drownin	Self-	Interperson	cause
44	strata	group	t injuries	gs	Falls	substance	g	harm	al violence	of
45 46						S				injury
47	Mala	0.1.4	22.25*	20.20	12.10	<u> </u>	10.22	120 71*	56.00	-
48	wale	0-14	-32.25*	-39.30	-13.19	-09.83*	-19.32	139.71*	56.90	22.50*
49 50					4 6 9 9 4		00 0 4*	0 4 0 - *		-
50		15-59	-31.56*	-10.15	-16.89*	-48.01*	-32.84*	-24.25*	-55.36*	25.99*
52										-
53		60-69	-35.86*	3.30	-27.63*	-42.45	-45.88*	-19.98	-35.54	29.49*
54		70-79	7 44	-0 94	6 75	-40 91	-41 31*	21 41	87 11	2 71
55 F6		1015	12.50	0.54	0.75	40.51	41.51	21.41	07.11	2.71
50 57		80+	-13.68	-6.54	5.45	32.16	-15.04	-43.68*	3.84	0.53
58		Total	-27.06*	-9.16	-8.72*	-39,99*	-30.90*	-20.19*	-40.54*	-
59		rotar	27.00	5110	0.72	00100	00100	20110	10101	19.56*
60	Female	0-14	-36.34*	-35.24	-8.50	-6.46	-55.27*	115.13*	-48.98	-

1 2										
- 3 4			-							37.04*
5 6		15-59	-36.42*	-20.97	-10.48	-36.32	-41.98*	-19.51*	-47.01*	- 26.13*
/ 8 9		60-69	-43.33*	-14.22	-21.81	51.38	-50.51*	-35.40*	-52.69	- 35.63*
10		70-79	-2.53	-22.83	3.49	49.58	-0.44	12.40	-28.77	2.51
11 12		80+	-33.09*	101.69	-6.87*	31.10	-42.37*	0.85	0.85	-6.86*
13 14		Total	-32.78*	-16.62	-9.93*	-1.21	-40.67*	-15.17*	-46.06*	- 17.58*
15 16 17	General populatio	0-14	-34.07*	-36.68*	-11.18	-52.00	-31.89*	127.36*	-16.00	- 28.87*
18 19 20	n	15-59	-32.71*	-13.13*	-15.56*	-44.10*	-35.25*	-22.67*	-51.68*	- 25.99*
20 21 22		60-69	-38.81*	-3.04	-27.01*	-31.62	-48.12*	-27.24*	-45.90	- 32.22*
23		70-79	3.32	-12.44	4.92	-22.48	-20.40	16.83	27.69	2.12
24 25		80+	-21.92	29.26	-2.45	31.20	-33.03*	-22.78	2.05	-4.04
26 27		Total	-28.80*	-11.71*	-9.30*	-28.41*	-34.51*	-18.46*	-43.19*	- 18.86*
28		*· statis	tical signifi	cance using	negative l	hinomial m	odel for cor	nnarison o		

*: statistical significance using negative binomial model for comparison of COVID-19 period and control period in 2019 (P< 0.05)

Discussion

 Our study revealed that the mortality from all-cause of injury and specific categories of injury (including transport injuries, poisonings, falls, fire/heat/hot substances, drowning, self-harm and interpersonal violence) has decreased dramatically, which might have resulted from the COVID-19 pandemic. However, stratification of the study population into different city, age and sex strata has unraveled a significantly increased mortality in certain types of injury. Despite that the mortality changes in some strata did not reach statistical significance, there has been a notably increased mortality during the COVID-19 period (i.e. self-harm, transport injury, falls, interpersonal violence in the 70-79 year group). This has shed light on the priorities and longer-term strategies for injury and mental health scientific research, control and prevention. To our knowledge, this is the first study that demonstrated the injury mortality at different age and sex strata at provincial level in mainland China. Our findings have added new insights by providing comparisons between the COVID-19

BMJ Open

pandemic period and the control period in 2019.

Because our study was conducted during the COVID-19 pandemic when stringent lockdown and quarantine measures were enforced in mainland China, the most prominent impact of COVID-19 on injury would not be fully captured. During the COVID-19 outbreak, most people avoided outdoor activities to minimize the use of healthcare services and the likelihood of SARS-CoV-2 infection (Severe Acute Respiratory Syndrome Coronavirus-2). Consequently, there has been a notable decrease in the mortality from transport injury and drowning at all age strata. Similar results have been documented in the UK [14] and India [15]. Degenerative spine and traumatic brain injuries also decreased significantly during the pandemic in UK [14]. The lockdown has grossly decreased the disability-adjusted life year caused by road traffic injury [15].

It remains unclear why the mortality of fire, heat, and hot substances in the general population decreased during the COVID-19 period based on the existing data and literature reports. In line with our study, some researchers have demonstrated a higher mortality in the elderly [16-17]. In the UK, scalds were accounted for 60% of deaths of fire, heat, and hot substances in the >75-year group [18]. By contrast to the findings from the previous study, fire or smoke inhalation caused by fire are the main causes of the increased mortality among the elderly during the COVID-19 period in our study. People who died from fire, heat and hot substances were reported from the rural areas, where the elderly living alone were more likely to use biomass fuel (i.e., wood, coal, animal dung, crop residues) for cooking and heating. A comprehensive strategy that integrates public education, distribution of firefighting equipment, adequate supervision for the vulnerable adults while heating and cooking and the use of aging electric appliance in the elderly would be indispensable to improve public health.

The causes of death from interpersonal violence have been multifactorial. Theoretically, unemployment and fear of acquiring COVID-19 infection would have predisposed to an increased incidence of household interpersonal violence that is usually not fatal. However, both the incidence and mortality of social interpersonal violence would sharply decrease because of the stringent lockdown and quarantine measures which could be fatal. The decrease in the mortality associated with social interpersonal violence might have largely been offset by the non-fatal incidence of household interpersonal violence.

The death rate of falls has been declining despite a notable increase in the elderly, which is probably due to the increased life expectancy in the past two decades. A greater proportion of the elderly living with chronic diseases were at risk of falls [19]. This problem tended to aggravate during the COVID-19 period because the elderly remain exposed to trauma due to domestic falls with a reduced number of health services [20]. In this case, the elderly suffered from a higher risk of disability or death due to the delayed care and treatment for fall-related injuries [21-22]. Given the relatively high burden of falls among the elderly, a systematic implementation to reduce the incidence of injuries from falls would be urgently needed. These measures include a sufficient medical and occupational-therapy [23], professional environment hazard assessment and modification [24], vitamin D and calcium supplementation, hip protectors, reduction of many of the predisposing and situational risk factors [25].

Self-harm is becoming a more pressing concern as the pandemic is spreading rapidly and has the longer-term effects on the general population, the economy, and the vulnerable population. The infectious disease epidemics seemed to serve as a catalyst to trigger the suicidal thought of people with mental health problems [26-27]. Our results revealed an increased death rate for self-harm in the 0-14-year and 70-79year group in both sexes. The likely adverse effects of the pandemic on children's mental health might be exacerbated by fear of being infected by SARS-CoV-2, selfisolation and physical distancing because of school closure [28]. These contributed to an increase in the prevalence of post-traumatic stress disorder symptoms, depression, anxiety and stress [29]. In conjunction with a higher risk of being exposed to the family conflicts, the household physical violence, academic stress and economic damage which were caused by the COVID-19 crisis might have collectively led to an increased rate of suicide among children [30]. A loss of employment, financial stressors and alcohol consumption, which have also been the well-recognized risk factors causing Page 13 of 32

BMJ Open

family conflict [31], might have aggravated during the lockdown. Despite of the mental health problems, the family conflict, the elderly might be increasingly concerned because of the extraordinarily high case-fatality rate [32]. This might have also contributed to the increased risk of self-harm in the elderly. Selective and universal interventions are required for the targeted individuals at risk of suicide, including making evidence-based online interventions available, increasing volunteer workforce for crisis hotlines, providing financial safety nets for unemployment support [33]. Public health responses must ensure that those facing interpersonal violence are supported and that safe drinking messages are communicated, particularly for the bereaved individuals. Accessible health education and promotion for COVID-19 is recommended, because a previous study found that people who are proactively engaged in hand hygiene could have a decrease in the likelihood that the workforce experience psychiatric symptoms [29,34].

Some limitations should be addressed. There was a lack of reliable injury incidence data. Therefore, the comparability of mortality data and incidence data due to the death registration completeness and coverage should be interpreted with caution. Although we have used an empirical method to minimize the underestimation in the death surveillance, the magnitude of completeness of the mortality data varied considerably for children and adult deaths based on the GBD 2010 study's finding [35]. The completeness of data in children was usually lower than that in adults in Latin America and Asia. Second, caution should also be exercised regarding the causative effect of the COVID-19 epidemic on injury mortality because of the limitation of the observational study design. Despite these limitations, our findings remained robust. The death registration is an all-cause of death surveillance which covered all the population residing in Guangdong. Data from the registration system in the recent years have been aligning well with the vital registration data that achieved a large increase in the coverage over the past decade [36].

In conclusion, the COVID-19 pandemic was associated with a decreased mortality of all injury, transport injury and drowning. However, the increase i nthe mortality of falls, fire, heat, and hot substances injury, self-harm in specific age populations during the COVID-19 period still warranted the targeted and universal interventions for the mass public.

Acknowledgement: None.

Contributors: Xue-yan Zheng^{1#}, Si-li Tang^{1,2#}, Shu-li Ma^{1,3#}, Xiao-jun Xu¹, Hao-feng Xu, Ying-shan Xu¹, Yan-jun Xu^{1*}, Li-feng Lin

Xiao-jun Xu, Hao-feng Xu, Ying-shan Xu, Yan-jun Xu and Li-feng Lin conceived of the study and provided overall guidance. Xue-yan Zheng, Si-li Tang, Shu-li Ma, Wei-jie Guan and Li-feng Lin prepared the first draft and finalized the manuscript based on comments from all other authors and reviewer feedback. Xue-yan Zheng, Wei-jie Guan, Yan-jun Xu and Li-feng Lin played a key role in formulating the analysis. All other authors contributed to the analysis and reviewed the manuscript. **Funding:** This research received no specific grant from any funding agency in the

public, commercial or not-for-profit sectors.

Competing interests:

We declare no competing interests.

Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information

Reference:

1. Hao F, Tan W, Jiang L, et al. Do psychiatric patients experience more psychiatric symptoms during COVID-19 pandemic and lockdown? A case-control study with service and research implications for immunopsychiatry. Brain Behav Immun. 2020;87:100-106.

2. Gautam R, Sharma M. 2019-nCoV pandemic: A disruptive and stressful atmosphere for Indian academic fraternity. Brain Behav Immun. 2020;88:948-949. doi:10.1016/j.bbi.2020.04.025.

BMJ Open

3. Baldi E, Sechi GM, Mare C, et al. Out-of-Hospital Cardiac Arrest during the Covid-19 Outbreak in Italy. *N Engl J Med*. 2020;383(5):496-498.

4. De Filippo O, D'Ascenzo F, Angelini F, et al. Reduced Rate of Hospital Admissions for ACS during Covid-19 Outbreak in Northern Italy. *N Engl J Med*. 2020;383(1):88-89.

5. McIntyre RS, Lee Y. Projected increases in suicide in Canada as a consequence of COVID-19. Psychiatry Res. 2020;290:113104.

6. Li Z, Ge J, Yang M, et al. Vicarious traumatization in the general public, members, and non-members of medical teams aiding in COVID-19 control. Brain Behav Immun.
2020;88:916-919.

7. Holmes EA, O'Connor RC, Perry VH, et al. Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. Lancet Psychiatry. 2020;7(6):547-560.

8. Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet. 2016 Jan 16;387(10015):251-72.

9. Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Atlanta: US Centers for Disease Control and Prevention; 2010.

10. Thurman DJ, Sniezek JE, Johnson D, Greenspan A, Smith SM. Guidelines for surveillance of central nervous system injury. Washington (DC): US Department of Health and Human Services; 1995.

11. Adair T, Lopez AD. Estimating the completeness of death registration: An empirical method. PLoS One. 2018; 13(5):e0197047.

12. Adams RS, Larson MJ, Corrigan JD, Ritter GA, Williams TV. Traumatic brain injury among U.S. active duty military personnel and negative drinking-related consequences. Subst Use Misuse. 2013; 48:821-36.

13. Statistical Consulting Group. Negative binomial regression: Stata annotated output.Availablefrom: https://stats.idre.ucla.edu/stata/output/negative-binomial-regression/. Accessed 2017 Jun 1.

14. Jayakumar N, Kennion O, Villabona AR, Paranathala M, Holliman D. Neurosurgical

Referral Patterns During the Coronavirus Disease 2019 Pandemic: A United Kingdom Experience. World Neurosurg. 2020; 144:e414-e420.

15. Jain A, Goyal V, Varma C. Reflection of Epidemiological Impact on Burden of Injury in Tertiary Care Centre, Pre-COVID and COVID Era: "Lockdown, a Good Fortune for Saving Life and Limb". Indian J Surg. 2020; 24:1-5.

16. Sadeghian F, Saeedi Moghaddam S, Saadat S, et al. The trend of burn mortality in Iran - A study of fire, heat and hot substance-related fatal injuries from 1990 to 2015. Burns. 2019;45(1):228-240.

17. Tang K, Jian L, Qin Z, Zhenjiang L, Gomez M, Beveridge M. Characteristics of burn patients at a major burn center in Shanghai. Burns 2006;32: 1037-43.

18. Hussain A, Dunn K. Burn related mortality in Greater Manchester: 11-year review of Regional Coronial Department Data. Burns. 2015;41(2):225-234.

19 Centers for Disease Control and Prevention. Fatalities and injuries from falls among older adults, United States, 1993–2003 and 2001–2005. MMWR Morb Mortal Wkly Rep 2006; 55: 1221–24.

20. Gumina S, Proietti R, Polizzotti G, Carbone S, Candela V. The impact of COVID-19 on shoulder and elbow trauma: an Italian survey [published online ahead of print, 2020 May 20]. J Shoulder Elbow Surg. 2020; S1058-2746(20)30401-8.

21. Tong HJ, Huang CY. Changes of family structure and their social influence in contemporary China. Xi Bei Ren Kou Za Zhi 2015; 6: 81–84 (in Chinese).

22. Gao M, Li Y, Zhang S, et al. Does an empty nest affect elders' health? Empirical evidence from China. Int J Environ Res Public Health 2017; 14: E463.

23. Close J, Ellis M, Hooper R, Glucksman E, Jackson S, Swift C. Prevention of falls in the elderly trial (PROFET): a randomised controlled trial. Lancet. 1999; 353(9147):93-97.

24. Keall MD, Pierse N, Howden-Chapman P, et al. Home modifications to reduce injuries from falls in the home injury prevention intervention (HIPI) study: a cluster-randomised controlled trial. Lancet. 2015;385(9964):231-238.

25. Kannus P, Sievänen H, Palvanen M, Järvinen T, Parkkari J. Prevention of falls and consequent injuries in elderly people. Lancet. 2005; 366(9500):1885-1893.

26. Wasserman IM. The impact of epidemic, war, prohibition and media on suicide: United States, 1910–1920. Suicide Life Threat Behav 1992; 22: 240–54.

27. Cheung YT, Chau PH, Yip PS. A revisit on older adults suicides and severe acute respiratory syndrome (SARS) epidemic in Hong Kong. Int J Geriatr Psychiatry 2008; 23: 1231–38.

28. Yao H, Chen JH, Xu YF. Patients with mental health disorders in the COVID-19 epidemic. Lancet Psychiatry 2020; 7: e21

29. Wang C, Pan R, Wan X, et al. A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain Behav Immun. 2020;87:40-48.

30. Hoekstra PJ. Suicidality in children and adolescents: lessons to be learned from the COVID-19 crisis. Eur Child Adolesc Psychiatry. 2020;29(6):737-738.

31. Stuckler D, Basu S, Suhrcke M, Coutts A, McKee M. The public health effect of economic crises and alternative policy responses in Europe: an empirical analysis. Lancet 2009; 374: 315-23.

32. Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547.

33. Gunnell D, Appleby L, Arensman E, et al. Suicide risk and prevention during the COVID-19 pandemic. Lancet Psychiatry. 2020;7(6):468-471.

34. Tan W, Hao F, McIntyre RS, et al. Is returning to work during the COVID-19 pandemic stressful? A study on immediate mental health status and psychoneuroimmunity prevention measures of Chinese workforce. Brain Behav Immun. 2020;87:84-92.

35. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2095–128.

36. GBD 2017 Mortality Collaborators. Global, regional, and national age- and sex-specifc mortality and life expectancy for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392: 1684–735.

Figure legends: Figure 1. All injury, transport injuries, falls and self-harm mortality changes between the Covid-19 pandemic period and control period in 21 cities in Guangdong province,

China.

GZ: Guangzhou; SG: Shaoguan; SZ: Shenzhen; ZH: Zhuhai; ST: Shantou; FS: Foshan; JM: Jiangmen; ZJ: Zhanjiang; MM: Maoming; ZQ: Zhaoqing; HZ: Huizhou; MZ: Meizhou; SW: Shanwei; HY: Heyuan; YJ: Yangjiang; QY: Qingyuan; DG: Dongguan; ZS: Zhongshan; CZ: Chaozhou; JY: Jieyang; YF: Yunfu.

Figure 2. All injury, transport injuries, falls and self-harm in different sex groups between the Covid-19 pandemic period and control period in 21 cities in Guangdong province, China.

Figure 3. All injury, transport injuries, falls and self-harm mortality changes in different age and sex groups between the Covid-19 pandemic period and control period in Guangdong province, China.

60

Rate difference

-0.49 - -0.30 -0.29 - -0.10

-0.09 - 0.10

0.10 - 0.30

ZH: Zhuhai

FS: Foshan

ZJ: Zhanjiang

ZQ: Zhaoqing

MZ: Meizhou

HY: Heyuan

QY: Qingyuan

ZS: Zhongshan

JY: Jieyang

<-0.50

Figure 2. All injury, transport injuries, falls and self-harm in different sex groups between the Covid-19 pandemic period and control period in 21 cities in Guangdong province, China.

191x181mm (300 x 300 DPI)

Figure 3. All injury, transport injuries, falls and self-harm mortality changes in different age and sex groups between the Covid-19 pandemic period and control period in Guangdong province, China.

198x216mm (300 x 300 DPI)

2
3
4
5
6
7
, 8
0
10
10
17
12
13
14 1 <i>г</i>
15
10
1/
10
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	Transport			Fire, heat,			Internersonal	
	iniuries	Poisonings	Falls	and hot	Drowning	Self-harm	violence	All injury
	injunes			substances			Holenee	
Guangzhou	-24.44*	-34.69*	3.04	-52.10	-15.31	-27.80*	-32.59	-15.91*
Shaoguan	-21.59*	-15.56	-23.96*	-80.43	-36.08*	-37.32*	-75.53	-26.99*
Shenzhen	-71.26*	-44.48*	-44.48*	-100.00	-65.11*	-33.23*	-66.85*	-43.55*
Zhuhai	-11.82	83.86	28.28	-	-2.32	15.91	-38.71	9.89
Shantou	-29.92*	-7.49	-5.40	-58.02	-	-34.19*	80.69	-11.01
Foshan	-23.01*	-4.62	-15.05*	-18.25	-43.97*	-13.04	-68.21	-21.80*
Jiangmen	-7.92	-38.49	-3.97	193.09	-46.10*	-17.50	-30.22	-13.05*
Zhanjiang	-25.31*	-18.24	-22.99*	76.61	-19.29	-19.58	-75.47	-25.13*
Maoming	-29.77*	-26.58	-16.27	-44.70	-35.09*	-15.96	45.16	-27.33*
Zhaoqing	-40.75*	-47.01*	-1.19	-21.91	-52.77*	4.12	13.88	-17.90*
Huizhou	-44.99*	-16.52	-12.96	-26.95	-43.06*	-45.78*	-51.30	-28.22*
Meizhou	-21.70*	63.96*	-5.19	47.57	2.09	21.19	-83.60	-1.38
Shanwei	-56.72*	-2.05	-35.39	-100.00*	-21.64	-19.54	-100.00	-42.23*
Heyuan	-29.16*	1.28	15.00	31.18	-45.34	-3.95	-	-11.26
Yangjiang	-33.28*	128.64*	-21.33	95.98	11.35	24.71	-2.01	-19.12*
Qingyuan	-9.59	39.44	17.42*	-50.94	-40.57*	-15.70	-1.88	0.52

E-Table 1. Mortality changes for injury causes in 21 cities of Guangdong, China between the Covid-19 Outbreak and Control Period in 2019.

 BMJ Open

	Dongguan	-11.10	-43.32*	-17.44*	-34.74	-54.71*	-15.758	-61.54*	-17.90*
Z	Zhongshan	-40.26*	-45.44*	0.07	-78.45*	-36.45	24.70	-75.75	-18.59*
	Chaozhou	6.93	-1.74	-0.16	-26.30	-45.96	-33.53	-	-4.66
	Jieyang	-35.11*	14.83	-27.02*	-26.18	-18.55	23.03	-1.58	-17.69*
	Yunfu	-41.93*	14.87	-16.59	13.91	-73.15*	-22.80	144.10	-26.19*
C	Guangdong	-28.80*	-11.71*	-9.30*	-28.41*	-34.51*	-18.46*	-43.19*	-18.86*

*: statistical significance using negative binomial model for comparison of COVID-19 period and control period in 2019 (P< 0.05)

1	
2	
2	
2	
4	
5	
6	
7	
8	
9	
10	
11	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
20	
20	
39	
40	
41	
42	
43	
44	
45	
46	
-10	

Sev group	Age	Transport	Poisonings	Falls	Fire, heat,	Drowning	Self-	Interpersonal	All-
Jex group	group	injuries	1 Olsonings	1 6115	substances	Drowning	harm	violence	injury
				Control P	eriod in 2019)			
Male	0-14	2.12	0.41	1.18	0.25	2.72	0.17	0.1	9.57
	15-59	8.7	1.69	3.75	0.17	1.82	4.89	0.33	25.35
	60-69	31.36	2.42	20.74	0.87	4.16	9	0.31	79.04
	70-79	25.61	1.56	41.12	1.74	4.04	7.89	0.28	98.13
	80+	37.36	4.67	225.8	2.57	7.71	13.78	0.7	359.13
	Total	9.87	1.54	9.02	0.32	2.29	4.51	0.29	33.33
Female	0-14	1.74	0.63	1.11	0.12	1.66	0.24	0.27	8.71
	15-59	3.08	0.72	1.02	0.09	0.73	2.63	0.28	9.57
	60-69	12.77	1	8.09	0.13	3.48	7.75	0.53	38.9
	70-79	10.13	1.6	31.11	0.44	3.91	6.84	0.27	65.77
	80+	16.73	1.61	285.89	1.61	10.14	8.37	0.16	418.94
	Total	4.06	0.78	9.64	0.15	1.41	2.87	0.29	23.47
General	0-14	1.95	0.5	1.15	0.19	2.25	0.2	0.17	9.19
population	15-59	6.02	1.23	2.45	0.13	1.3	3.81	0.31	17.82
	60-69	22.41	1.74	14.65	0.52	3.83	8.4	0.42	59.71
	70-79	17.75	1.58	36.03	1.08	3.97	7.36	0.27	81.69
	80+	25.15	2.86	261.38	2	9.14	10.57	0.38	394.54
	Total	7.11	1.18	9.31	0.24	1.87	3.73	0.29	28.65

E-Table 2. Mortality for injury causes in Guangdong, China between the Covid-19 Outbreak and Control Period in 2019 in different age
groups in male and female population.

 BMJ Open

Male	0-14	1.44	0.25	1.02	0.08	2.2	0.42	0.15	7.42
	15-59	5.96	1.52	3.12	0.09	1.22	3.7	0.15	18.76
	60-69	20.11	2.5	15.01	0.5	2.25	7.2	0.2	55.74
	70-79	27.52	1.55	43.9	1.03	2.37	9.58	0.52	100.79
	80+	32.25	4.36	238.11	3.39	6.55	7.76	0.73	361.04
	Total	7.2	1.4	8.23	0.19	1.58	3.6	0.17	26.81
Female	0-14	1.11	0.41	1.02	0.11	0.74	0.52	0.14	5.48
	15-59	1.96	0.57	0.92	0.06	0.42	2.12	0.15	7.07
	60-69	7.24	0.86	6.32	0.2	1.72	5.01	0.25	25.05
	70-79	9.88	1.23	32.19	0.66	3.89	7.69	0.19	67.42
	80+	11.19	3.24	266.24	2.11	5.84	8.44	0.16	390.2
	Total	2.73	0.65	8.68	0.15	0.83	2.43	0.16	19.35
General population	0-14	1.29	0.32	1.02	0.09	1.53	0.46	0.14	6.54
	15-59	4.05	1.07	2.07	0.07	0.84	2.95	0.15	13.19
	60-69	13.71	1.69	10.69	0.35	1.99	6.11	0.23	40.48
	70-79	18.34	1.38	37.81	0.84	3.16	8.6	0.35	83.42
	80+	19.63	3.69	254.96	2.62	6.12	8.17	0.39	378.6
	Total	5.06	1.04	8.45	0.17	1.23	3.04	0.16	23.24

BMJ Open

Injury subtypes	Study period (No.)	Control period (No.)
All cause of injury	12858	15988
Transport injuries	2871	3978
Poisonings	591	667
Falls	4792	5209
Fire, heat, and hot substances	97	134
Drowning	695	1053
Self-harm	1725	2093
Interpersonal violence	93	162
		non/

BMJ Open

E-Table 4. Numbers for injury causes in Guangdong, China between the Covid-19 Outbreak and Control Period in 2019 in different age group
in male and female population.

Sex group	Age group	Transport injuries	Poisonings	Falls	Fire, heat, and hot substances	Drowning	Self- harm	Interpersonal violence	All- cause of injury		
Control Period in 2019											
Male	0-14	113	22	63	13	145	9	5	511		
	15-59	1806	351	778	35	378	1014	68	5260		
	60-69	520	40	344	14	69	149	5	1312		
	70-79	288	18	462	20	45	89	3	1102		
	80+	165	21	997	11	34	61	3	1585		
	Total	2892	451	2644	94	672	1322	85	9770		
Female	0-14	74	27	47	5	71	10	11	372		
	15-59	582	136	194	18	138	498	54	1810		
	60-69	197	15	125	2	54	120	8	600		
	70-79	117	19	361	5	45	79	3	763		
	80+	107	10	1831	10	65	54	1	2684		
	Total	1078	207	2558	40	373	761	77	6228		
General	0-14	188	48	110	19	216	20	16	883		
population	15-59	2388	487	972	53	516	1512	122	7070		
	60-69	717	56	469	16	123	269	13	1912		
	70-79	405	36	822	25	91	168	6	1864		
	80+	272	31	2828	22	99	114	4	4269		
	Total	3970	659	5201	134	1045	2083	162	15998		
				Covid-19 C	Dutbreak period	l					

iviale	0-14	77	13	55	4	118	22	8	398
	15-59	1239	317	649	18	255	770	30	3904
	60-69	408	51	304	10	46	146	4	1131
	70-79	271	15	432	10	23	94	5	993
	80+	135	18	997	14	27	32	3	1511
	Total	2130	414	2437	57	469	1066	51	7937
Female	0-14	50	18	46	5	33	23	6	247
	15-59	370	108	174	11	80	401	28	1338
	60-69	145	17	127	4	35	100	5	502
	70-79	106 🔍	13	344	7	42	82	2	721
	80+	70	20	1665	13	37	53	1	2441
	Total	741	177	2356	41	226	660	43	5248
General opulation	0-14	127	31	100	9	151	46	14	644
	15-59	1610	424	822	29	335	1171	59	5242
	60-69	553	68	431	14	80	247	9	1633
	70-79	377	28	776	17	65	177	7	1713
	80+	205	39	2662	27	64	85	4	3953
	Total	2871	591	4792	97	695	1725	93	13186

Page 29 of 32

 BMJ Open

	Transport injuries	Poisonings	Falls	Fire, heat, and hot substances	Drowning	Self-harm	Interpersonal violence	All injury
			Cont	trol Period in 20)19			
Guangzhou	312	68	532	14	71	351	28	1889
Shaoguan	187	53	411	5	50	92	4	970
Shenzhen	149	30	120	2	20	395	21	827
Zhuhai	50	9	44	0	16	47	6	222
Shantou	120	19	211	7	12	66	1	496
Foshan	230	33	321	7	82	105	6	1053
Jiangmen	233	28	362	2	90	93	7	965
Zhanjiang	319	37	273	10	64	63	4	966
Maoming	297	30	183	14	85	78	4	815
Zhaoqing	207	36	423	5	64	62	6	940
Huizhou	246	36	262	4	67	100	19	854
Meizhou	202	31	370	4	55	71	6	827
Shanwei	89	11	48	11	15	29	4	241
Heyuan	129	35	159	3	37	43	0	483
Yangjiang	145	9	146	1	23	34	5	454

19.

Qingyuan	236	39	309	12	73	73	3	929		
Dongguan	202	59	257	6	69	170	29	933		
Zhongshan	156	33	130	9	30	65	4	487		
Chaozhou	70	14	193	4	21	35	0	381		
Jieyang	233	31	243	4	60	66	2	705		
Yunfu	158	18	205	6	41	44	2	562		
Guangdong	3970	659	5201	134	1045	2083	162	15998		
Covid-19 Outbreak period										
Guangzhou	243	46	563	7	62	261	19	1633		
Shaoguan	147	45	315	1	32	58	1	712		
Shenzhen	45	17	69	0	7	274	7	485		
Zhuhai	48	18	61	3	17	59	4	261		
Shantou	84	17	201	3	24	44	2	444		
Foshan	183	32	281	6	48	94	2	851		
Jiangmen	216	17	350	6	49	77	5	845		
Zhanjiang	240	30	211	18	52	51	1	726		
Maoming	212	22	156	8	56	67	6	603		
Zhaoqing	124	19	421	4	30	65	7	778		
Huizhou	137	30	230	3	39	55	9	620		

 BMJ Open

Meizhou	158	51	351	6	56	86	1	816
Shanwei	39	11	31	0	12	23	0	140
Heyuan	91	36	183	4	20	42	0	429
Yangjiang	97	21	116	2	25	43	5	369
Qingyuan	214	55	364	6	44	62	3	937
Dongguan	181	33	213	4	31	144	11	770
Zhongshan	94	18	132	2	19	82	1	403
Chaozhou	75	14	193	3	11	23	1	364
Jieyang	151	36	178	3	49	81	2	581
Yunfu	92	20	173	7	11	35	5	418
Guangdong	2871	591	4792	97	695	1725	93	13186

ny ony

2
2
3
4
5
5
6
7
, 0
8
9
10
11
11
12
13
1.5
14
15
16
10
17
18
10
19
20
21
22
22
23
24
25
25
26
27
27
28
29
30
50
31
32
22
22
34
35
26
30
37
38
20
39
40
41
12
42
43
44
15
43
46
47
10
40
49
50
51
21
52
53
E 4
54
55
56
-7
5/
58
50

1

STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies	

	Item No	Recommendation	Page No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	2
		(b) Provide in the abstract an informative and balanced summary of what	2
		was done and what was found	
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment exposure follow-up and data collection	5
Participants	6	(<i>a</i>) Give the eligibility criteria, and the sources and methods of selection of participants	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	6
		(b) Describe any methods used to examine subgroups and interactions	6
		(c) Explain how missing data were addressed	6
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling strategy	6
		(<u>e</u>) Describe any sensitivity analyses	6
Results			
Participants	13*	 (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed 	7
		(b) Give reasons for non-participation at each stage	7
		(c) Consider use of a flow diagram	7
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	6-7
		(b) Indicate number of participants with missing data for each variable of interest	7
Outcome data	15*	Report numbers of outcome events or summary measures	6
Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included 	8

		(<i>b</i>) Report category boundaries when continuous variables were categorized	7-8
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	8
Other analyses	17	Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses	8
Discussion			
Key results	18	Summarise key results with reference to study objectives	8-11
Limitations	19	Discuss limitations of the study, taking into account sources of potential	11
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	10-
		limitations, multiplicity of analyses, results from similar studies, and other	11
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	
		and, if applicable, for the original study on which the present article is	
		based 🚺	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

BMJ Open

Trends of injury mortality during the COVID-19 period in Guangdong, China: A population-based retrospective analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2020-045317.R2
Article Type:	Original research
Date Submitted by the Author:	18-Jan-2021
Complete List of Authors:	Zheng, Xue-yan; Guangdong provincial center for disease control and prevention Tang, Si-li; Southern Medical University, School of Public Health Ma, Shu-li; Guangdong Pharmaceutical University, Department of Epidemiology and Biostatistics Guan, Wei-jie; First Affiliated Hospital of Guangzhou Medical College, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease Xu, Xiaojun; Guangdong provincial center for disease control and prevention Xu, Haofeng; Guangdong provincial center for disease control and prevention Xu, Ying-shan; Guangdong provincial center for disease control and prevention Xu, Yan-jun; Guangdong provincial center for disease control and prevention Lin, Li-feng; Guangdong Center for Disease Control and Prevention
Primary Subject Heading :	Epidemiology
Secondary Subject Heading:	Public health
Keywords:	EPIDEMIOLOGY, PUBLIC HEALTH, Suicide & self-harm < PSYCHIATRY

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

Trends of injury mortality during the COVID-19 period in Guangdong,

China: A population-based retrospective analysis

Xue-yan Zheng^{1#}, Si-li Tang^{1,2#}, Shu-li Ma^{1,3#}, Wei-jie Guan^{4#}, Xiao-jun Xu¹, Hao-feng Xu¹, Ying-shan Xu¹, Yan-jun Xu^{1*}, Li-feng Lin^{1,2*}

1 Guangdong provincial center for disease control and prevention, Guangdong, China.

2 School of Public Health, Southern Medical University, Guangdong, China

3 Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.

4 State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.

Xue-yan Zheng, Si-li Tang, Shu-li Ma and Wei-jie Guan shared co-first authorship.

* **Correspondence author 1: Li-feng Lin.** Guangdong provincial center for disease control and prevention, Guangdong, China. Address: 160 Qunxian Road, Panyu district, Guangzhou, Guangdong, China. Fax: 020-31051821, Phone: 020-31051821, E-mail: 1396320174@qq.com.

Correspondence author 2: Yan-jun Xu. Guangdong provincial center for disease control and prevention, Guangdong, China. Address: 160 Qunxian Road, Panyu district, Guangzhou, Guangdong, China. Fax: 020-31051492, Phone: 020-31051353, E-mail: <u>759888406@qq.com</u>.

Word count, excluding title page, abstract, references, figures and tables: 2365

Abstract

Objective: We aimed to ascertain the trends of injury mortality during the COVID-19 period in southern China.

Methods: We conducted a population-based retrospective analysis to compare the mortality changes of all-cause injury and transport injuries, poisoning, falls, fire/heat/hot substances, drowning, self-harm and interpersonal violence, which were further stratified by sex and age. Comparisons were made between the COVID-19 period (between Jan 2020 and Jun 2020) and control period (between Jan 2019 and Jun 2019) in Guangdong province. We used the negative binomial models to explore the associations of deaths during the COVID-19 period, according to the different sex and age strata.

Results: The all-cause injury mortality in Guangdong province decreased significantly from 28.65 per 100,000 population during the control period to 23.24 per 100,000 population during COVID-19 pandemic period. Similar results were found in specific injury categories. Mortality of self-harm increased by 139.26% in the 10-14-year group during the COVID-19 period as compared with the control period. Although mortality changes in some groups were not statistically significant, some increases were noteworthy during the COVID-19 period (i.e. self-harm, transport injury and falls) in the 70-79-year group. The corresponding increase in mortality rate was 16.86%, 3.32% and 4.92%, respectively.

Conclusion: The mortality of all-cause injury, transport injury and drowning during the COVID-19 pandemic was consistently decreased. However, the increase in mortality associated with falls, fire/heat/hot substance injury and self-harm in specific age populations warrant the targeted control and prevention measures for the population at risk.

Key Words: Injury; Mortality; COVID-19

Strengths and limitations of this study

1. This is the first study comparing the injury mortality between the COVID-19 period and the control period.

2. The completeness of death surveillance in Guangdong province was estimated using an empirical method to minimize under-reporting.

3. The causative effect of the COVID-19 epidemic on injury mortality could not be confirmed due to the limitation of the observational study design.

4. There was a lack of injury incidence, which should be regarded as another limitation of measuring the injury-associated burden.

Koerterien ont

Introduction

During the coronavirus disease 2019 (COVID-19) pandemic, strict quarantine measures have been introduced to curb the transmission of severe acute respiratory syndrome coronavirus-2 in mainland China, including the people who have not contracted the COVID-19 patients [1]. Guangdong is a major province which has suffered from one of the major massive epidemics of COVID-19 in mainland China. The government had enforced stringent quarantine and lockdown measures with an unprecedented effort to contain the COVID-19 outbreak. Except for those who were responsible for providing the daily necessities and emergency services, the workforce has ceased working since the Chinese Lunar Calendar New Year (January 24th, 2020) and were requested to return to work after February 10th, 2020. COVID-19 has also markedly dampened the global social orders and economy [2].

Recent studies have showed that the COVID-19 pandemic confers a profound effect on all aspects of the society which has been extended to the mental health. Significant decreases in the rate of acute coronary syndrome-related hospitalization and out-patient visits have been reported in Italy during the early COVID-19 outbreak [3-4]. The projected increases in suicide have also been linked to the COVID-19 outbreak in Canada [5]. The vicarious traumatization scores of the general public have recently been shown to be significantly higher than those of the front-line nurses [6]. Different levels of psychological impacts (including stress, anxiety and depression) might have accounted for the increase in the suicidal events. Multidisciplinary research priorities for the COVID-19 pandemic have called for an urgent action for mental health science [7].

Guangdong province has 108 million permanent residents that account for 8.03% of the population in mainland China. Twenty-one cities with 122 counties are located in Guangdong province. Compared with other provinces, Guangdong has achieved the highest gross domestic product and become the most developed province with the largest population in southern China. Currently, little is known about the mortality changes of injury (including suicide) in different age and sex strata during the COVID-19 period in southern China.

We hypothesized that there would be both physical and mental health issues caused by the lockdown and quarantine measures during the COVID-19 period. We sought to ascertain the injury mortality changes in Guangdong province. Our findings might help provide the evidence about the *status quo* of injury and metal health, as well as the guidance and actionable information for governments and public health authorities during the COVID-19 pandemic.

Methods and material

Study design and data source

We conducted a population-based retrospective analysis to compare the mortality changes of injury in different categories (including transport injuries, poisonings, falls, fire/heat/hot substances, drowning, self-harm and interpersonal violence, which were stratified by sex and age) between the study and control period. The study period was defined as the duration between the date of the identification of the first cases and the date when quarantine measures were implemented in Guangdong province (January 1st 2020) and the data cut-off (June 30th 2020). The control period was defined as a corresponding period during the previous year (from January 1st 2019 to June 30th 2019). Death registration is an all-cause of death surveillance which covers the whole population residing in Guangdong province. Mortality data were derived from the Chinese Center for Disease Control and Prevention (CDC) Cause of Death Reporting System [8].

Definition of major injury category

Injury deaths were identified according to the ICD-10 codes as recommended by the US CDC [9-10], based on the diagnostic codes of V01-Y89. Based on published studies and the ICD-10 codes of injury, we selected several categories of injury: transport injuries (V01-V04,V06,V09-V80,V87,V89,V99), poisonings (X40-X49), falls (W00-W19), fire, heat, and hot substances (X00-X09), drowning (W65-W74), self-harm (X60-X84,Y87.0), and interpersonal violence (X85-Y09,Y87.1).

Statistical analyses

The registered population number in different age and sex strata in both 2019 and

BMJ Open

2020 that corresponded to different cities in Guangdong province were obtained from the Population Basic Information System, which served as the denominators for mortality calculation. The percentage changes were calculated with the following formula:

$\frac{\text{Mortality in COVID - 19 period - Mortality in control period in 2019}}{\text{Mortality in control period in 2019}} \times 100\%$

The completeness of death surveillance in Guangdong province was estimated empirically [11]. Briefly, the following equation was applied to predict the completeness for both sexes:

 $logit(C^{All}) = (RegCDR_{sq} \times -0.0238) + (RegCDR \times 0.8419) + (\%65 \times -19.6118) + (ln(5q0) \times -1.5135) + (Year \times -0.0251) + 44.3755 + \gamma$

where C^{AII} was the completeness of the registration of all ages, $\log it(C^{AII})$ equaled

to
$$\ln\left(\frac{C^{All}}{1-C^{All}}\right)$$
, $RegCDR$ was the registered crude death rate (CDR), $RegCDR_{sq}$

was the square of *RegCDR*, %65 was the fraction of the population aged 65 years or greater, $\ln(5q0)$ was the natural log of the under-5 mortality rate, *Year* was calendar year, γ was a random effect. The predicted completeness was converted by using the

inverse logit:
$$\frac{e^{\operatorname{logit}(C^{All})}}{e^{\operatorname{logit}(C^{All})}+1}$$

Because of the overdispersion of injury deaths, we used negative binomial models to explore the associations of deaths within the COVID-19 period in different sex and age strata [12-13]. All statistical analyses were conducted using Stata statistical software version 12.1. Differences were considered statistically significant in the 2tailed tests if the p-values were less than 0.05.

Patient and Public Involvement

No patient involved

Results

The completeness was 97.03% and 98.53% based on the empirical estimation,

respectively. The all-cause injury mortality in Guangdong province decreased from 28.65 per 100,000 population in the control period to 23.24 per 100,000 people in the COVID-19 pandemic (P<0.05). Furthermore, the mortality of specific injury categories including transport injuries (5.06 per 100,000 population vs. 7.11 per 100,000 population), poisonings (1.04 per 100,000 population vs. 1.18 per 100,000 population), falls (8.45 per 100,000 population vs. 9.31 per 100,000 population), fire, heat, and hot substances (0.17 per 100,000 population vs. 0.24 per 100,000 population), drowning (1.23 per 100,000 population vs. 1.87 per 100,000 population), self-harm (3.04 per 100,000 population vs. 3.73 per 100,000 population), interpersonal violence (0.16 per 100,000 population vs. 0.29 per 100,000 population) decreased significantly during the COVID-19 pandemic as compared with the control period. (All P<0.05, **Table 1, Figure 1)**

Injury subtypes	Study period (1/100000)	Control period (1/100000)	Changes (%)	Р
All cause of injury	23.24	28.65	-18.86	< 0.0001
Transport injuries	5.06	7.11	-28.80	< 0.0001
Poisonings	1.04	1.18	-11.71	0.028
Falls	8.45	9.31	-9.30	< 0.0001
Fire, heat, and hot substances	0.17	0.24	-28.41	0.012
Drowning	1.23	1.87	-34.51	< 0.0001
Self-harm	3.04	3.73	-18.46	< 0.0001
Interpersonal violence	0.16	0.29	-43.19	< 0.0001

Table 1. Comparison of mortality for injury causes between the onset of the Covid-19 Outbreak and the control period in Guangdong province

The mortality from all-cause and specific category injuries (including transport injuries, falls, fire/heat/hot substances, drowning, self-harm and interpersonal violence) decreased significantly in the total population and in both males and females, with exception of heat and hot substances in females (**Table 2, Figure 2**). Stratification of the study population into different age strata revealed a significantly increased

mortality. The self-harm mortality in the 10-14-year group significantly increased in males, females and the general population. Although the increased mortality of self-harm, transport injury, falls and interpersonal violence in the 70-79-year group did not reach statistical significance, the increase in mortality in this age group was noteworthy. Moreover, there was an insignificant increase in mortality from fire, heat, and hot substances in the 80+-year group in both sexes as well as from falls in the 80+-year group among males. (Table 2, Figure 3)

The number of deaths due to all-cause injuries and specific types of injuries in different age groups and cities are provided in the online supplementary material. (E-Table 1-3)

Table 2. Mortality changes (%) in injury causes between the Covid-19 Outbreak and Control Period in different age groups of males and females in Guangdong.

28						Fire, heat,				All-
29	Sex	Age	Transpor	Poisonin	Falls	and hot	Drown	Solfbarm	Interperson	cause
31	strata	group	t injuries	gs	Falls	substance	ing	Sell-fiarm	al violence	of
32						S				injury
33						· ·		151.49*		
34 25	Male	0-14	-32.25*	-39.30	-13.19	-69.83*	-19.32	(10-14	56.90	-
36								vears)		22.50*
37							_	yearsy		_
38		15-59	-31.56*	-10.15	-16.89*	-48.01* 🧹	22.84*	-24.25*	-55.36*	25 00*
39							52.64			23.99
40 41		60-69	-35.86*	3.30	-27.63*	-42.45	-	-19.98	-35.54	-
41							45.88*			29.49*
43		70-79	7.44	-0.94	6.75	-40.91	-	21.41	87.11	2.71
44							41.31*			
45		80+	-13.68	-6.54	5.45	32.16	-15.04	-43.68*	3.84	0.53
46 47		Total	27 06*	0 16	0 70*	20.00*	-	20 10*	10 E1*	-
47		TOLAT	-27.00	-9.10	-0.72	-59.99	30.90*	-20.19	-40.54	19.56*
49								127.00*		
50	Female	0-14	-36.34*	-35.24	-8.50	-6.46	-	(10-14	-48.98	-
51							55.27*	vears)		37.04*
52							_	,,		_
55 54		15-59	-36.42*	-20.97	-10.48	-36.32	11 00*	-19.51*	-47.01*	26 12 *
55							41.90			20.15
56		60-69	-43.33*	-14.22	-21.81	51.38	-	-35.40*	-52.69	-
57							50.51*			35.63*
58		70-79	-2.53	-22.83	3.49	49.58	-0.44	12.40	-28.77	2.51
59 60 ·		80+	-33.09*	101.69	-6.87*	31.10	-	0.85	0.85	-6.86*
2 3			-				42.37*			
-------------------	----------------------	-------	---------	---------	---------	---------	-------------	-----------------------------	---------	-------------
4 5 6		Total	-32.78*	-16.62	-9.93*	-1.21	- 40.67*	-15.17*	-46.06*	- 17.58*
7 8 9 10	General populatio	0-14	-34.07*	-36.68*	-11.18	-52.00	- 31.89*	139.26* (10-14 years)	-16.00	- 28.87*
11 12 13	n	15-59	-32.71*	-13.13*	-15.56*	-44.10*	- 35.25*	-22.67*	-51.68*	- 25.99*
14 15		60-69	-38.81*	-3.04	-27.01*	-31.62	- 48.12*	-27.24*	-45.90	- 32.22*
16 17		70-79	3.32	-12.44	4.92	-22.48	-20.40	16.83	27.69	2.12
18 19		80+	-21.92	29.26	-2.45	31.20	- 33.03*	-22.78	2.05	-4.04
20 21 22		Total	-28.80*	-11.71*	-9.30*	-28.41*	- 34.51*	-18.46*	-43.19*	- 18.86*

*: statistical significance using negative binomial model for comparison of COVID-19 period and control period in 2019 (P< 0.05)

Discussion

Our study revealed that the mortality from all-cause injury and specific categories of injury (including transport injuries, poisonings, falls, fire/heat/hot substances, drowning, self-harm and interpersonal violence) has decreased dramatically, which might have resulted from the COVID-19 pandemic. However, stratification of the study population into different city, age and sex strata has unraveled a significantly increased mortality in certain types of injury. Despite that the mortality changes in some strata did not reach statistical significance, there has been a notably increased mortality during the COVID-19 period (i.e. self-harm, transport injury, falls, interpersonal violence in the 70-79 year group). This has shed light on the priorities and longer-term strategies for injury and mental health scientific research, control and prevention. To our knowledge, this is the first study that demonstrated the injury mortality at different age and sex strata at the provincial level in mainland China. Our findings have added new insights by providing comparisons between the COVID-19 pandemic period and the control period in 2019.

Because our study was conducted during the COVID-19 pandemic when stringent lockdown and quarantine measures were enforced in mainland China, the most

prominent impact of COVID-19 on injury could not be fully captured. During the COVID-19 outbreak, most people avoided outdoor activities to minimize the use of healthcare services and avoid the contract of SARS-CoV-2 infection. Consequently, there has been a notable decrease in the mortality from transport injury and drowning at all age strata. Similar results have been documented in the UK [14] and India [15]. Degenerative spine and traumatic brain injuries also decreased significantly during the COVID-19 pandemic in UK [14]. The lockdown has grossly decreased the disability-adjusted life years caused by road traffic injury [15].

It remains unclear why the mortality of fire, heat, and hot substances in the general population decreased during the COVID-19 period based on the existing data and literature reports. In line with our study, some researchers have demonstrated a higher mortality in the elderly [16-17]. In the UK, scalds accounted for 60% of the deaths of fire, heat, and hot substances in the >75-year group [18]. By contrast to the findings from the previous study, fire or smoke inhalation caused by fire are the main causes of the increased mortality among the elderly during the COVID-19 period in our study. People who died from fire, heat and hot substances were reported from the rural areas, where the elderly living alone were more likely to use biomass fuel (i.e., wood, coal, animal dung, crop residues) for cooking and heating. A comprehensive strategy that integrates public education, distribution of firefighting equipment, adequate supervision for the vulnerable adults while heating and cooking and the use of aging electric appliance in the elderly would be indispensable to improve public health.

The causes of death from interpersonal violence have been multifactorial. Theoretically, unemployment and fear of acquiring COVID-19 would have predisposed to an increased incidence of household interpersonal violence that has been non-fatal. By contrast, both the incidence and mortality of social interpersonal violence would sharply decrease because of the stringent lockdown and quarantine measures which might have been fatal. The decrease in the mortality associated with social interpersonal violence might have largely been offset by the non-fatal incidence of household interpersonal violence.

The death rate of falls has been declining despite a notable increase in the elderly, which is probably due to the increased life expectancy in the past two decades. A greater proportion of the elderly living with chronic diseases were at risk of falls [19]. This tended to be aggravated during the COVID-19 period because the elderly remain exposed to trauma due to domestic falls with a reduced number of health care services [20]. In this scenario, the elderly suffered from a increased risk of having disability or death due to the delayed care and treatment for fall-related injuries [21-22]. Given the relatively high burden of falls among the elderly, a systematic implementation to reduce the incidence of injuries from falls would be urgently needed. These measures include a sufficient medical and occupational therapy [23], professional environment hazard assessment and modification [24], vitamin D and calcium supplementation, hip protectors, reduction of many of the predisposing risk factors [25].

Self-harm is becoming a more pressing concern as the pandemic is spreading rapidly and has the longer-term effects on the general population, the economy, and the vulnerable population. The infectious disease epidemics seemed to serve as a catalyst to trigger the suicidal attempt of people with mental health disorders [26-27]. Our results revealed an increased death rate for self-harm in the 10-14-year and 70-79-year group in both sexes. The likely adverse effects of the pandemic on children's mental health might be exacerbated by fear of being infected by SARS-CoV-2, selfisolation and physical distancing because of school closure [28]. These contributed to an increase in the prevalence of post-traumatic stress disorder symptoms, depression, anxiety and stress [29]. In conjunction with a higher risk of being exposed to the family conflicts, the household physical violence, academic stress and economic damage which were caused by the COVID-19 crisis might have collectively led to an increased rate of suicide among children [30]. A loss of employment, financial stressors and alcohol consumption, which have also been the well-recognized risk factors causing family conflict [31], might have aggravated during the lockdown. Despite of the mental health disorders and the family conflict, the elderly might be increasingly concerned because of the extraordinarily high case-fatality rate [32]. This might have also

BMJ Open

contributed to the increased risk of self-harm in the elderly. Selective and universal interventions are required for the targeted individuals at risk of suicide, including sharing the evidence-based interventions online, increasing volunteer workforce for crisis hot lines, providing financial safety nets for unemployment support [33]. Public health responses must ensure that those facing interpersonal violence are supported and that safe drinking messages are communicated, particularly for the bereaved individuals. Accessible health education and promotion for COVID-19 is recommended, because a study has reported that people who were proactively engaged in hand hygiene could have a decreased likelihood that the workforce experience psychiatric symptoms [29,34].

Some limitations should be addressed. There was a lack of reliable injury incidence data. Therefore, the comparability of mortality data and incidence data due to the death registration completeness and coverage should be interpreted with caution. Although we have used an empirical method to minimize the underestimation in the death surveillance, the magnitude of completeness of the mortality data varied considerably for children and adult deaths based on the GBD 2010 study's finding [35]. The completeness of data in children was usually lower than that in adults in Latin America and Asia. Second, caution should also be exercised regarding the causative effect of the COVID-19 epidemic on injury mortality because of the limitation of the observational study design.

Despite these limitations, our findings remained robust. The death registration is an all-cause death surveillance which covered all the population residing in Guangdong province. Data from the registration system in the recent years have been aligning well with the vital registration data that achieved a large increase in the coverage over the past decade [36].

In conclusion, the COVID-19 pandemic was associated with a decreased mortality of all injury, transport injury and drowning. However, the increase in the mortality of falls, fire, heat, and hot substances injury, self-harm in specific age populations during the COVID-19 period still warrant the targeted and universal interventions for the mass public.

Acknowledgement: None.

Contributors: Xue-yan Zheng^{1#}, Si-li Tang^{1,2#}, Shu-li Ma^{1,3#}, Xiao-jun Xu¹, Hao-feng Xu, Ying-shan Xu¹, Yan-jun Xu^{1*}, Li-feng Lin

Xiao-jun Xu, Hao-feng Xu, Ying-shan Xu, Yan-jun Xu and Li-feng Lin conceived of the study and provided overall guidance. Xue-yan Zheng, Si-li Tang, Shu-li Ma, Wei-jie Guan and Li-feng Lin prepared the first draft and finalized the manuscript based on comments from all other authors and reviewer feedback. Xue-yan Zheng, Wei-jie Guan, Yan-jun Xu and Li-feng Lin played a key role in formulating the analysis. All other authors contributed to the analysis and reviewed the manuscript.

Funding: This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests:

We declare no competing interests.

Data availability statement

All data relevant to the study are included in the article or uploaded as supplementary information

Reference:

1. Hao F, Tan W, Jiang L, et al. Do psychiatric patients experience more psychiatric symptoms during COVID-19 pandemic and lockdown? A case-control study with service and research implications for immunopsychiatry. Brain Behav Immun. 2020;87:100-106.

2. Gautam R, Sharma M. 2019-nCoV pandemic: A disruptive and stressful atmosphere for Indian academic fraternity. Brain Behav Immun. 2020;88:948-949. doi:10.1016/j.bbi.2020.04.025.

3. Baldi E, Sechi GM, Mare C, et al. Out-of-Hospital Cardiac Arrest during the Covid-19 Outbreak in Italy. *N Engl J Med*. 2020;383(5):496-498.

BMJ Open

4. De Filippo O, D'Ascenzo F, Angelini F, et al. Reduced Rate of Hospital Admissions for ACS during Covid-19 Outbreak in Northern Italy. *N Engl J Med*. 2020;383(1):88-89.

5. McIntyre RS, Lee Y. Projected increases in suicide in Canada as a consequence of COVID-19. Psychiatry Res. 2020;290:113104.

 Li Z, Ge J, Yang M, et al. Vicarious traumatization in the general public, members, and non-members of medical teams aiding in COVID-19 control. Brain Behav Immun. 2020;88:916-919.

7. Holmes EA, O'Connor RC, Perry VH, et al. Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. Lancet Psychiatry. 2020;7(6):547-560.

8. Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, et al. Cause-specific mortality for 240 causes in China during 1990-2013: a systematic subnational analysis for the Global Burden of Disease Study 2013. Lancet. 2016 Jan 16;387(10015):251-72.

9. Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. Atlanta: US Centers for Disease Control and Prevention; 2010.

10. Thurman DJ, Sniezek JE, Johnson D, Greenspan A, Smith SM. Guidelines for surveillance of central nervous system injury. Washington (DC): US Department of Health and Human Services; 1995.

11. Adair T, Lopez AD. Estimating the completeness of death registration: An empirical method. PLoS One. 2018; 13(5):e0197047.

12. Adams RS, Larson MJ, Corrigan JD, Ritter GA, Williams TV. Traumatic brain injury among U.S. active duty military personnel and negative drinking-related consequences. Subst Use Misuse. 2013; 48:821-36.

13. Statistical Consulting Group. Negative binomial regression: Stata annotated output.Availablefrom: https://stats.idre.ucla.edu/stata/output/negative-binomial-regression/. Accessed 2017 Jun 1.

14. Jayakumar N, Kennion O, Villabona AR, Paranathala M, Holliman D. Neurosurgical Referral Patterns During the Coronavirus Disease 2019 Pandemic: A United Kingdom Experience. World Neurosurg. 2020; 144:e414-e420. 15. Jain A, Goyal V, Varma C. Reflection of Epidemiological Impact on Burden of Injury in Tertiary Care Centre, Pre-COVID and COVID Era: "Lockdown, a Good Fortune for Saving Life and Limb". Indian J Surg. 2020; 24:1-5.

16. Sadeghian F, Saeedi Moghaddam S, Saadat S, et al. The trend of burn mortality inIran - A study of fire, heat and hot substance-related fatal injuries from 1990 to 2015.Burns. 2019;45(1):228-240.

17. Tang K, Jian L, Qin Z, Zhenjiang L, Gomez M, Beveridge M. Characteristics of burn patients at a major burn center in Shanghai. Burns 2006;32: 1037-43.

18. Hussain A, Dunn K. Burn related mortality in Greater Manchester: 11-year review of Regional Coronial Department Data. Burns. 2015;41(2):225-234.

19 Centers for Disease Control and Prevention. Fatalities and injuries from falls among older adults, United States, 1993–2003 and 2001–2005. MMWR Morb Mortal Wkly Rep 2006; 55: 1221–24.

20. Gumina S, Proietti R, Polizzotti G, Carbone S, Candela V. The impact of COVID-19 on shoulder and elbow trauma: an Italian survey [published online ahead of print, 2020 May 20]. J Shoulder Elbow Surg. 2020; S1058-2746(20)30401-8.

21. Tong HJ, Huang CY. Changes of family structure and their social influence in contemporary China. Xi Bei Ren Kou Za Zhi 2015; 6: 81–84 (in Chinese).

22. Gao M, Li Y, Zhang S, et al. Does an empty nest affect elders' health? Empirical evidence from China. Int J Environ Res Public Health 2017; 14: E463.

23. Close J, Ellis M, Hooper R, Glucksman E, Jackson S, Swift C. Prevention of falls in the elderly trial (PROFET): a randomised controlled trial. Lancet. 1999; 353(9147):93-97.

24. Keall MD, Pierse N, Howden-Chapman P, et al. Home modifications to reduce injuries from falls in the home injury prevention intervention (HIPI) study: a cluster-randomised controlled trial. Lancet. 2015;385(9964):231-238.

25. Kannus P, Sievänen H, Palvanen M, Järvinen T, Parkkari J. Prevention of falls and consequent injuries in elderly people. Lancet. 2005; 366(9500):1885-1893.

26. Wasserman IM. The impact of epidemic, war, prohibition and media on suicide: United States, 1910–1920. Suicide Life Threat Behav 1992; 22: 240–54.

BMJ Open

2	
2	
3	
4	
5	
6	
0	
7	
8	
0	
9	
10	
11	
12	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
20	
21	
22	
25	
20	
24	
25	
26	
27	
27	
28	
29	
30	
50	
31	
32	
33	
24	
34	
35	
36	
22	
37	
38	
39	
40	
40	
41	
42	
43	
11	
44	
45	
46	
47	
т/ 40	
48	
49	
50	
51	
21	
52	
53	
54	
54	
55	
56	
57	
50	
20	
59	
60	

27. Cheung YT, Chau PH, Yip PS. A revisit on older adults suicides and severe acute respiratory syndrome (SARS) epidemic in Hong Kong. Int J Geriatr Psychiatry 2008; 23: 1231–38.

28. Yao H, Chen JH, Xu YF. Patients with mental health disorders in the COVID-19 epidemic. Lancet Psychiatry 2020; 7: e21

29. Wang C, Pan R, Wan X, et al. A longitudinal study on the mental health of general population during the COVID-19 epidemic in China. Brain Behav Immun. 2020;87:40-48.

30. Hoekstra PJ. Suicidality in children and adolescents: lessons to be learned from the COVID-19 crisis. Eur Child Adolesc Psychiatry. 2020;29(6):737-738.

31. Stuckler D, Basu S, Suhrcke M, Coutts A, McKee M. The public health effect of economic crises and alternative policy responses in Europe: an empirical analysis. Lancet 2009; 374: 315-23.

32. Guan WJ, Liang WH, Zhao Y, et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J. 2020;55(5):2000547.

33. Gunnell D, Appleby L, Arensman E, et al. Suicide risk and prevention during the COVID-19 pandemic. Lancet Psychiatry. 2020;7(6):468-471.

34. Tan W, Hao F, McIntyre RS, et al. Is returning to work during the COVID-19 pandemic stressful? A study on immediate mental health status and psychoneuroimmunity prevention measures of Chinese workforce. Brain Behav Immun. 2020;87:84-92.

35. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2095–128.

36. GBD 2017 Mortality Collaborators. Global, regional, and national age- and sex-specifc mortality and life expectancy for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018;392: 1684–735.

Figure legends:

Figure 1. All injury, transport injuries, falls and self-harm mortality changes between the Covid-19 pandemic period and control period in 21 cities in Guangdong province, China.

GZ: Guangzhou; SG: Shaoguan; SZ: Shenzhen; ZH: Zhuhai; ST: Shantou; FS: Foshan; JM: Jiangmen; ZJ: Zhanjiang; MM: Maoming; ZQ: Zhaoqing; HZ: Huizhou; MZ: Meizhou; SW: Shanwei; HY: Heyuan; YJ: Yangjiang; QY: Qingyuan; DG: Dongguan; ZS: Zhongshan; CZ: Chaozhou; JY: Jieyang; YF: Yunfu.

Figure 2. All injury, transport injuries, falls and self-harm in different sex groups between the Covid-19 pandemic period and control period in Guangdong province, China.

Figure 3. All injury, transport injuries, falls and self-harm mortality changes in different age and sex groups between the Covid-19 pandemic period and control period in Guangdong province, China.

160x119mm (300 x 300 DPI)

Figure 2. All injury, transport injuries, falls and self-harm in different sex groups between the Covid-19 pandemic period and control period in Guangdong province, China.

191x181mm (300 x 300 DPI)

Figure 3. All injury, transport injuries, falls and self-harm mortality changes in different age and sex groups between the Covid-19 pandemic period and control period in Guangdong province, China.

198x216mm (300 x 300 DPI)

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
72	
4U	
41	
42	
43	
44	
45	
46	

		_			Fire, heat,				
Sex group	Age group	Transport injuries	Poisonings	Falls	and hot substances	Drowning	Self-harm	Interpersonal violence	All-cause of injury
				Control	Period in 2019				
Male	0-14	2.12	0.41	1.18	0.25	2.72	0.53 (10-14 years)	0.1	9.57
	15-59	8.7	1.69	3.75	0.17	1.82	4.89	0.33	25.35
	60-69	31.36	2.42	20.74	0.87	4.16	9	0.31	79.04
	70-79	25.61	1.56	41.12	1.74	4.04	7.89	0.28	98.13
	80+	37.36	4.67	225.8	2.57	7.71	13.78	0.7	359.13
	Total	9.87	1.54	9.02	0.32	2.29	4.51	0.29	33.33
Female	0-14	1.74	0.63	1.11	0.12	1.66	0.76 (10-14 years)	0.27	8.71
	15-59	3.08	0.72	1.02	0.09	0.73	2.63	0.28	9.57
	60-69	12.77	1	8.09	0.13	3.48	7.75	0.53	38.9
	70-79	10.13	1.6	31.11	0.44	3.91	6.84	0.27	65.77
	80+	16.73	1.61	285.89	1.61	10.14	8.37	0.16	418.94
	Total	4.06	0.78	9.64	0.15	1.41	2.87	0.29	23.47
General	0-14	1.95	0.5	1.15	0.19	2.25	0.63 (10-14 years)	0.17	9.19
μομαιατιστί	15-59	6.02	1.23	2.45	0.13	1.3	3.81	0.31	17.82
	60-69	22.41	1.74	14.65	0.52	3.83	8.4	0.42	59.71
	70-79	17.75	1.58	36.03	1.08	3.97	7.36	0.27	81.69
	80+	25.15	2.86	261.38	2	9.14	10.57	0.38	394.54

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

 BMJ Open

	Total	7.11	1.18	9.31	0.24	1.87	3.73	0.29	28.65
				Covid-19 C	utbreak perio	d			
Male	0-14	1.44	0.25	1.02	0.08	2.2	1.32 (10-14 years)	0.15	7.42
	15-59	5.96	1.52	3.12	0.09	1.22	3.7	0.15	18.76
	60-69	20.11	2.5	15.01	0.5	2.25	7.2	0.2	55.74
	70-79	27.52	1.55	43.9	1.03	2.37	9.58	0.52	100.79
	80+	32.25	4.36	238.11	3.39	6.55	7.76	0.73	361.04
	Total	7.2	1.4	8.23	0.19	1.58	3.6	0.17	26.81
Female	0-14	1.11	0.41	1.02	0.11	0.74	1.73 (10-14 years)	0.14	5.48
	15-59	1.96	0.57	0.92	0.06	0.42	2.12	0.15	7.07
	60-69	7.24	0.86	6.32	0.2	1.72	5.01	0.25	25.05
	70-79	9.88	1.23	32.19	0.66	3.89	7.69	0.19	67.42
	80+	11.19	3.24	266.24	2.11	5.84	8.44	0.16	390.2
	Total	2.73	0.65	8.68	0.15	0.83	2.43	0.16	19.35
General population	0-14	1.29	0.32	1.02	0.09	1.53	1.50 (10-14 years)	0.14	6.54
	15-59	4.05	1.07	2.07	0.07	0.84	2.95	0.15	13.19
	60-69	13.71	1.69	10.69	0.35	1.99	6.11	0.23	40.48
	70-79	18.34	1.38	37.81	0.84	3.16	8.6	0.35	83.42
	80+	19.63	3.69	254.96	2.62	6.12	8.17	0.39	378.6
	Total	5.06	1.04	8.45	0.17	1.23	3.04	0.16	23.24

E-Table 2. Numbers for injury causes in Gua	angdong, China between the Onset of the COVI	D-19 outbreak and c	control Period in 2019.
	Study period	Control period	

Injury subtypes	Study period (No.)	Control period (No.)
All cause of injury	12858	15988
Transport injuries	2871	3978
Poisonings	591	667
Falls	4792	5209
Fire, heat, and hot substances	97	134
Drowning	695	1053
Self-harm	1725	2093
Interpersonal violence	93	162

Sex group	Age group	Transport injuries	Poisonings	Falls	Fire, heat, and hot substances	Drowning	Self-harm	Interpersonal violence	All-caus of injury
				Control	Period in 2019				
Male	0-14	113	22	63	13	145	9 (10-14 years)	5	511
	15-59	1806	351	778	35	378	1014	68	5260
	60-69	520	40	344	14	69	149	5	1312
	70-79	288	18	462	20	45	89	3	1102
	80+	165	21	997	11	34	61	3	1585
	Total	2892	451	2644	94	672	1322	85	9770
Female	0-14	74	27	47	5	71	10 (10-14 years)	11	372
	15-59	582	136	194	18	138	498	54	1810
	60-69	197	15	125	2	54	120	8	600
	70-79	117	19	361	5	45	79	3	763
	80+	107	10	1831	10	65	54	1	2684
	Total	1078	207	2558	40	373	761	77	6228
General	0-14	188	48	110	19	216	20 (10-14 years)	16	883
population	15-59	2388	487	972	53	516	1512	122	7070
	60-69	717	56	469	16	123	269	13	1912
	70-79	405	36	822	25	91	168	6	1864
	80+	272	31	2828	22	99	114	4	4269

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1	
2	
2	
1	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
10	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
72	
4U	
41	
42	
43	
44	
45	
46	

	Total	3970	659	5201	134	1045	2083	162	15998
				Covid-19 O	utbreak perio	d			
Male	0-14	77	13	55	4	118	22 (10-14 years)	8	398
	15-59	1239	317	649	18	255	770	30	3904
	60-69	408	51	304	10	46	146	4	1131
	70-79	271	15	432	10	23	94	5	993
	80+	135	18	997	14	27	32	3	1511
	Total	2130	414	2437	57	469	1066	51	7937
Female	0-14	50	18	46	5	33	23 (10-14 years)	6	247
	15-59	370	108	174	11	80	401	28	1338
	60-69	145	17	127	4	35	100	5	502
	70-79	106	13	344	7	42	82	2	721
	80+	70	20	1665	13	37	53	1	2441
	Total	741	177	2356	41	226	660	43	5248
General population	0-14	127	31	100	9	151	46 (10-14 years)	14	644
	15-59	1610	424	822	29	335	1171	59	5242
	60-69	553	68	431	14	80	247	9	1633
	70-79	377	28	776	17	65	177	7	1713
	80+	205	39	2662	27	64	85	4	3953
	Total	2871	591	4792	97	695	1725	93	13186

	No	Recommendation	
Title and abstract	1	(a) Indicate the study's design with a commonly used term in the title or	
		the abstract	
		(b) Provide in the abstract an informative and balanced summary of what	
Introduction		was done and what was found	
Background/rationale	2	Explain the scientific background and rationale for the investigation being	Τ
		reported	
Objectives	3	State specific objectives, including any prespecified hypotheses	
Methods			
Study design	4	Present key elements of study design early in the paper	
Setting	5	Describe the setting, locations, and relevant dates, including periods of	
		recruitment, exposure, follow-up, and data collection	
Participants	6	(a) Give the eligibility criteria, and the sources and methods of selection	
		of participants	_
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders,	
Dete server /	0*	and effect modifiers. Give diagnostic criteria, if applicable	_
Data sources/	8*	For each variable of interest, give sources of data and details of methods	
measurement		methods if there is more than one group	
Bias	9	Describe any efforts to address potential sources of bias	
Study size	10	Explain how the study size was arrived at	
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If	
		applicable, describe which groupings were chosen and why	
Statistical methods	12	(a) Describe all statistical methods, including those used to control for	
		confounding	
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(<i>d</i>) If applicable, describe analytical methods taking account of sampling	
		strategy	
		(e) Describe any sensitivity analyses	
Results	10-		Τ
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers	
		in the study, completing follow, up, and analyzed	
		(b) Give reasons for non-participation at each stage	+
		(c) Consider use of a flow diagram	┥
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic clinical	+
		social) and information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of	╡
		interest	
Outcome data	15*	Report numbers of outcome events or summary measures	
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted	T
		estimates and their precision (eg, 95% confidence interval). Make clear	
		which confounders were adjusted for and why they were included	

3
4
5
6
7
8
9
10
11
10
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
37
32
31
25
22
30
3/
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
50
50
ンプ

1 2

		(<i>b</i>) Report category boundaries when continuous variables were categorized	7-8
		(<i>c</i>) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period	8
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions,	8
		and sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	8-11
Limitations	19	Discuss limitations of the study, taking into account sources of potential	11
		bias or imprecision. Discuss both direction and magnitude of any potential	
		bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives,	10-
		limitations, multiplicity of analyses, results from similar studies, and other	11
		relevant evidence	
Generalisability	21	Discuss the generalisability (external validity) of the study results	11
Other information			
Funding	22	Give the source of funding and the role of the funders for the present study	
		and, if applicable, for the original study on which the present article is	
		based	

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.