Expanded View Figures

Figure EV1. Generation and characterization of chd7 mutants.

- A Translation following genome editing resulted in a premature stop codon (*) in $chd7^{-/-}$ fish.
- B qPCR analysis of RNAs from 3dpf larvae shows a significant reduction of *chd7* mRNA expression in both *chd7*^{+/-} and *chd7*^{-/-} compared with wild-type (N = 5). ****P < 0.0001, one-way ANOVA.
- C Examination of brain tissues in *chd7*^{+/+} (left images) and *chd7*^{-/-} (right images) by H&E staining at 5 dpf. Zebrafish brains were sectioned at telencephalic (1,1), diencephalic (2, 2), mesencephalic (3,3) and rhombencephalic levels (4,4). Levels of sections are indicated in the sketch of a sagittal view of a 5 dpf zebrafish brain (top image). The scale bar is 0.12 mm. P: pallium, S: subpallium, Po:preoptic region, Tel: Telencephalon; TeO: tectum opticum (or OT: optic tectum), m: medial tectal proliferating zone, DT: dorsal thalamus, PTd: dorsal part of posterior tuberculum, PTv: ventral part of posterior tuberculum, MO: medulla oblongata, Hyp: hypothalamus, CeP: cerebellar plate.
- D $chd7^{-/-}$ mutant fish displayed features of CS such as heart defects (red arrow) at a low penetrance (N = 3). ****P < 0.0001; Student's t-test.
- E Alcian blue staining of 6dpf larvae showing craniofacial defects at Meckel's cartilage (red arrow).

С

Figure EV1.

Е

Figure EV2. Proliferation and apoptosis analyses in wild-type and chd7 mutant zebrafish.

- A Analysis of GABAergic neurons network development between 1 dpf and 5 dpf between control (top row) and chd7 mutants (bottom row) (N = 3).
- B Proliferation analysis by pH3 staining at 2 dpf in control and chd7 mutants.
- C Bar graph showing no difference in pH3-positive cells in zebrafish brain at 2 dpf between control and mutants (*n* = 11; ns, *P* = 0.1816; Student's t-test).
- D Cell death analysis by TUNEL assay in $chd7^{-/-}$ and $chd7^{+/+}$ brains shows no change in apoptotic cells at 2 dpf (N = 3, n = 8; ns, P = 0.464; Student's t-test).
- E Transverse sections of 2 dpf larvae after immunostaining with pH3 (red) and NeuroD1 (green). Bar graph showing no difference in pH3 and NeuroD1 double-positive cells (arrows) in zebrafish brain at 2 dpf between control and mutants (N = 3, n = 5; ns, P = 0.124; Student's t-test). P: pallium, S: subpallium, TeO: tectum opticum, m: medial tectal proliferating zone, DT: dorsal thalamus R: retina.
- F Proliferation analysis by pH3 staining at 5 dpf in control and chd7 mutants.
- G An increase in pH3-positive cells was noted in brains of mutant fish compared with controls at 5 dpf (N = 4, n = 10; ****P < 0.0001; Student's t-test).
- H Transverse sections of 5 dpf larvae after immunostaining with pH3 (red) and HuC/D (green). pH3-positive cells (arrows) were observed at 5 dpf in the medial tectal proliferating zone of mutant fish brains but none in controls (N = 3). *P*: pallium, S: subpallium, TeO: tectum opticum, m: medial tectal proliferating zone, DT: dorsal thalamus.

Data information: Data are presented as mean \pm SEM. Scale bar = 50 μ m and 10 μ m for 2 dpf NeuroD1 and pH3 co-stain.

Α

Е

2 dpf brain section

chd7*/* chd7*/*

Н

5 dpf brain section

Figure EV2.

Figure EV3. Aberrant GABAergic neuronal differentiation in chd7 mutant zebrafish.

- A, B Immunostaining with BrdU and HuC/D in brain sections of the zebrafish tectal region in chd7^{+/+} (A) and chd7^{-/-} (B). Level of the sections is indicated in the sketch of a 5 dpf zebrafish brain (top right image in (A)). The scale bar is 10 μm. Tel: Telencephalon; TeO: tectum opticum, m: medial tectal proliferating zone, DT: dorsal thalamus, PTd: dorsal part of posterior tuberculum, PTv: ventral part of posterior tuberculum, l: lateral tectal proliferation zone. Asterisks (*) marks early migrated region of pretectum and proglomerular.
- C The number of BrdU-positive cells in transverse sections of the zebrafish brain in $chd7^{+/+}$ and $chd7^{-/-}$ (N = 3, $chd7^{+/+}$: n = 8; $chd7^{-/-}$: n = 4; **P < 0.05; Student's *t*-test).
- D Immunostaining with BrdU and HuC/D in brain sections of the zebrafish medial tectal region. Scale bar = 10 µm. m: medial tectal.
- E The percentage of BrdU and HuC/D-double positive cells among the BrdU-positive cells in the medial tectal zone (N = 3, n = 4; **P < 0.05; Student's t-test).
- F Immunostaining with BrdU and GFP (to label dlx5a/6a-GFP + GABAergic neurons) in brain sections of the zebrafish medial tectal region. Scale bar = 10 μ m. m: medial tectal.
- G The percentage of BrdU and dlx5a/6a-GFP-double positive cells among the BrdU-positive cells in the medial tectal zone (N = 3, n = 3; **P < 0.05; Student's t-test).

Figure EV4. Impaired neurogenesis in chd7 mutant zebrafish.

- A, B Immunostaining with BrdU and NeuroD1 in brain sections of the zebrafish tectal region in chd7^{+/+} (A) and chd7^{-/-} (B). The scale bar is 10 μm. Tel: Telencephalon; TeO: tectum opticum, m: medial tectal, DT: dorsal thalamus, PTd: dorsal part of posterior tuberculum, PTv: ventral part of posterior tuberculum, l: lateral tectal proliferation zone.
- C Immunostaining with BrdU and NeuroD1 in brain sections of the zebrafish medial tectal region. Scale bar = 10 μ m. m: medial tectal.
- D The percentage of BrdU and NeuroD1-double positive cells among BrdU-positive cells in the medial tectal zone (N = 3, $chd7^{+/+}$: n = 6; $chd7^{-/-}$: n = 6; $\star^*P < 0.05$; Student's t-test).
- E Expression level of scl1a3 mRNA in $chd7^{-/-}$ relative to $chd7^{+/+}$ (N = 4). ns, not significant; Student's t-test.

Figure EV5. Expression of *paqr3b* in wild-type and *chd7* mutant zebrafish.

- A, B Expression profile of paqr3b in whole-mount zebrafish by in situ hybridization (A) and in tissues by qRT–PCR (B). N = 4.
- C qRT–PCR validation of the downregulation of *paqr3b* (N = 4; ****P < 0.0001, Student's *t*-test).
- D Images of gross morphology of 2 dpf zebrafish embryos with or without overexpression of *paqr3b* mRNA. Of note, neither abnormalities nor death were observed in zebrafish embryos upon overexpression of *paqr3b* mRNA.

Figure EV6. Pharmacological responses of chd7 mutants and amelioration of neuronal network development by ephedrine.

A PCR proof of a 700 bp deletion in the chd-7 gene in chd-7(gk290) mutant worms.

- B Lifespan analyses of *chd-7(gk290) Caenorhabditis elegans* mutants treated with ephedrine (green) compared with control DMSO (black). Log-rank test was performed for statistical analyses. (N = 3, n = 50; *P < 0.05).
- C Survival rate of $chd7^{-/-}$ zebrafish mutants treated with ephedrine (blue) compared with untreated mutants (red). N = 3, n = 60.
- D Acetylated tubulin staining in non-treated and ephedrine-treated $chd7^{-/-}$ zebrafish mutants showing rescue of the severely affected outbranching structure of Vth cranial nerves. Graphs showing quantitative analyses of percentage and mean total length of peripheral projections per zebrafish in controls and mutants without and with ephedrine treatment (n = 5; ***P < 0.001; **P < 0.005; one-way ANOVA).

Data information: Data are presented as mean \pm SEM. Scale bar = 50 μ m. *n* is the number of fish or worms used. *N* is the number of experimental repeats.