
MOCCASIN: A method for correcting for known and unknown confounders in RNA
splicing analysis

Slaff et al.

1 Supplementary Information

1.1 RNA-Sequencing data processing steps
SRA files were converted to fastqs with fastq-dump (sratoolkit.2.9.2) using the following
commands: --split-3 –gzip. Sequencing adaptors and low quality base calls were trimmed from
fastqs using trim_galore (0.5.0) using the following commands: --stringency 5 --length 35 -q 20.
For gene expression analyses, transcript per million (TPMs) and effective length quantifications
were obtained using Salmon (0.11.3) in mapping-based mode with default settings. The Salmon
transcriptome indices were prepared with the GRCh38 annotation for human samples and the
Gencode M21 annotation for mouse samples. For alternative splicing analyses, trimmed fastqs
were aligned with STAR (2.5.2a) using the following commands: --outSAMattributes All --
alignSJoverhangMin 8 --readFilesCommand zcat --outSAMunmapped Within --outSAMtype
BAM Unsorted. The aligned bams were sorted with samtools (1.9). The sorted bam files were then
quantified for alternative splicing with MAJIQ (See ‘Splicing analysis’).

1.2 Toy data
The toy data was constructed to quantify the inaccuracies incurred by various models in a setting
where a bias term causes a known change in % TPM (i.e. a change that matches the synthetic batch
data generation process described above) such that the more used junction in a two-way LSV
changes by that % TPM while the other junction increases by the same amount of TPM to maintain
overall expression.

Given the above data we follow the MOCCASIN correction procedure for batch effects: First, we
scale the junction reads so the LSV has the same coverage over all samples. Then we apply the
transformation using numpy (identity, arcsinh, log), then fit the linear model and perform the read
rates adjustments accordingly, then apply the inverse transformation, then compute PSI from the
adjusted reads. The results of this analysis are plotted with matplotlib in Supplementary Figure S7
(see the Supplementary Files for the code to reproduce the toy data).

1.3 TARGET dataset
The TARGET data used in this paper comprises 579 patients, from which samples were taken
either at primary leukemia diagnosis or after relapse. Most of the patients’ samples were sequenced
in 2-3 technical duplicates, and as indicated in the sequencing meta data, samples were sequenced
either on an Illumina HiSeq 2000 or 2500. There was also information about sample release and
load date, but these dates were completely confounded with our biological variable of interest
(primary diagnosis vs relapse). We observed that the samples deriving from the Illumina HiSeq
2000 or 2500 exhibited batch effects (Fig1a-b). It is possible that the HiSeq 2000 and 2500 have
distinct biases, or it is possible that the sequencer label is a proxy for how the samples were
handled. For example, samples may have been frozen for a longer period of time prior to HiSeq
2500 vs 2000 sequencing. Or, perhaps different technicians processed the 2500 vs 2000 samples.

Without further information about how the samples were processed, handled, stored, etc., it is
difficult to determine the cause of 2000 vs 2500 sample batch effects we observed.

The clinical information associated with the 579 TARGET patients indicates their leukemias
break down as follows: 160 with a B cell of origin, 265 with a T cell of origin, and 154 with an
unknown cell of origin. We predicted the 154 patients’ leukemia cells of origin using UMAP of
splicing (PSI) and gene expression (TPM). The UMAP analysis is identical to Figure 1a-b, but
colored by cell of origin. Of the 154 patients with an unknown cell of origin, 90 cluster with B
cell of origin patients and 64 cluster with T cell of origin patients. Thus, we predicted that 250
leukemias have a B cell of origin and 329 leukemias have a T cell of origin.

1.4 ENCODE dataset
The ENCODE RNA-Sequencing data used in this paper were described in a preprint (Van
Nostrand et al. 2020) which used 1100 ENCODE RNA-Sequencing samples generated in 61
distinct experiments (batches), whereby each batch had a control and at least one knockdown
target. Every ENCODE sample, including the controls, had two biological replicates performed in
every batch. 29 (548 samples) and 32 (552 samples) batches used HepG2 cells or K562 cells,
respectively.

Van Nostrand et al. reported they identified batch effects in their data but did not quantify those.
To correct for those, Van Nostrand et al applied the ComBat batch correction algorithm directly
on sample read counts, and then averaged together the controls across batches to create two
“virtual” control replicates before quantifying differential expression and differential splicing.

Similar to Van Nostrand et al, in this work HepG2 cells and K562 cells were considered separately
when modelling and quantifying batch effects. However, given the ENCODE experimental design
described above it was not clear what would be the optimal approach to model batch effects. After
testing a variety of strategies and measuring their effects using the metrics described in this paper
we converged to the following procedure.

First, batch effects in HepG2 and K562 samples were modelled and removed independently by
MOCCASIN. After batch-correction, controls across all batches were then considered altogether
in one group when quantifying differential splicing between control and knockdowns, separately
for HepG2 and K562 samples. Differential splicing was quantified with MAJIQ (see ‘Splicing
analysis’ for more details). For differential expression analysis, control replicate 1 samples and
control replicate 2 samples’ gene level TPMs across all the batches were averaged together to
create two “virtual” control replicates.

Overall, there were 1100 control vs target comparisons included in the analysis presented in the
various plots and heatmaps presented here. Specifically, for the heatmaps and clustering figures
LSVs were filtered to select at most one representative junction such that at least one knockdown
to controls comparison had a |dPSI|>=0.1 and Wilcoxon two-sided test p-value less than 0.05. Then
for each LSV, the junction with the greatest |dPSI| value kept, breaking ties randomly.

1.5 Peikoto et al dataset and analyzing batch effect associated with
different laboratories

RNA-Seq of mouse hippocampus from (Peixoto et al. 2015) were downloaded with fastq-dump
v2.9.2 from GEO (Wood lab, GSE44229; Abel lab, GSE63412). Reads were trimmed with
trimgalore v0.4.4_dev, aligned to Gencode M20 using STAR v2.6.1a, and analyzed for splicing
with MAJIQ v2.1-46f7268. Samples SRRs processed included: SRR707219-24, 6 samples, Wood
lab Object-Location Memory (OLM) treatment; SRR707225-30, 6 samples, Wood lab, control
treatment, SRR1656667-71, 5 samples, Abel lab, control treatment; SRR1656673-76, 4 samples,
Abel lab, Fear Conditioning (FC) treatment.

MOCCASIN model matrix included: intercept, Treatment_OLM, Treatment_FC. No explicit
confounder factor was included even though we know the Lab_Wood / Lab_Abel difference.
Instead, we used MOCCASIN -U (see methods above) with 2 hidden factors. For evaluation,
10,000 LSVs were selected uniformly at random from those originally quantified in all samples.
Principal component analysis (PCA) from scikit-learn was applied to PSI from the 10,000 LSVs,
and plots were generated with matplotlib. MAJIQ was used to quantify differences in splicing
between Wood vs Abel control samples and Wilcoxon two sided rank test applied to quantify p-
values.

See Supplementary Figure 1 for the results of this analysis.

1.6 Gene expression analysis
For gene expression level analysis of the TARGET and ENCODE datasets, transcript level TPM
quantifications were collapsed into gene level TPMs with tximport (bioconductor-tximport
1.12.0). For differential expression analysis of ENCODE, DESeq2 was used to quantify the log2
fold-change (shrunk with DESeq2::fcShrink using the apelgm method) and statistical significance
of differential expression between the two “virtual” control replicates and a given pair of
knockdown target replicates. The DESeq2 adjusted p-value of 0.05 was the threshold for
identifying a differentially expressed gene as statistically significant.

1.7 Splicing analysis
MAJIQ and VOILA (v2.1-46f7268) were used to quantify splicing from sorted bam files. MAJIQ
uses a Bayesian model for both PSI and dPSI, computing expected and posterior probabilities over
those. Thus, when point estimates for PSI or dPSI are described in the text they generally refer to
the expected values for PSI or dPSI with a slight abuse of notation to improve readability: For
example PSI > 0.1 instead of E[PSI] > 0.1, unless the posterior probability distribution is stated
explicitly (e.g. P(|dPSI| > C)). For defining differentially spliced events two MAJIQ based
methods were used. The first is MAJIQ’s Bayesian expected delta PSI (dPSI) mentioned above
and described in (Vaquero-Garcia et al. 2016), which is geared to produce a set of high confidence
splicing changes between groups of biological replicates. Briefly, MAJIQ dPSI quantifies the
probability that a difference in splice inclusion is above some threshold with a certain confidence
i.e. (P(|dPSI| >= C1) >= C2) for example . We used a threshold of C1 = 10% or 20% in the results

reported in the main and supplementary figures. Significant differences in splicing were those
identified as having a C2 = 95% probability of being greater than the given C1 threshold.

The second method to detect differential splicing involved either a Student’s t test or a Wilcoxon
two sided rank test combined with an optional threshold on the observed difference between the
median over the expected PSI of samples from the two groups. This approach was aimed to
accommodate heterogeneous groups, as we observed in ENCODE’s CTRL samples (see
description in ENCODE data section).

1.8 Uniform manifold approximation and projection (UMAP)
UMAP (McInnes, Healy, and Melville 2018) was applied to gene expression (TPM and log2 fold-
change) data and splicing (PSI, dPSI, and difference in median PSI) data using the R package
umap (0.2.4.1) with method set to ‘umap-learn’, n_neighbors set to 25, and the random seed set to
924319452. UMAP projections were visualized with the R packages extrafont, ggplot2, and
patchwork.

1.9 Calculating percent variance explained by confounders
Percent variance explained by a confounder was calculated by the R^2 when fitting a linear
model with batch effect as a covariate.

1.10 Hierarchical clustering
For hierarchical clustering of gene expression (TPM and log2 fold-change) data and splicing (PSI,
dPSI, and difference in median PSI) data, the ward.D2 algorithm was applied to Euclidean
distances between columns and between rows. Clustering results were visualized with the R
packages extrafont, ComplexHeatmap, and Pheatmap.

1.11 Scatterplots and Venn Diagrams
Scatterplots with lines of best fit and Pearson correlations were generated using the base R lm()
method. Size-scaled Venn Diagrams were generated with R package eulerr (6.1.0).

1.12 Assessing MOCCASIN effect on differentially spliced events
LSVs were called changing if they met the thresholds (e.g. dPSI>=0.1) as specified for a given
analysis and matching plot in this work. Note that in this work we only aimed to assess
MOCCASIN’s correction effect. Thus, to avoid introducing other variables into the analysis we
used the same algorithm (MAJIQ) and the same settings as ground truth when these were applied
to the original simulated data without batch effects introduced. This comparison between the
analysis of the original data, perturbed data, and corrected data gave the true negative (TN), true
positive (TP), false positive (FP), and false negative (FN) estimates and their associated statistics
(FPR, FDR) used in the main text and figures.

1.13 Modeling unknown confounding factors
MOCCASIN’s model matrix input by the user includes filenames, variables of interest, and known
confounders. The user may optionally request that MOCCASIN identify additional factors of
unwanted variation, by setting the -U option to 1 or more.

In order to discover factors of variation in the data which are not explained by the factors in the
model matrix, MOCCASIN first computes for each LSV, the junction with the highest variance in
PSI over samples. Then, the top NUM_JUNCS (default: 10,000) such junctions by variance are
selected as the input data Y for the following procedure:

1. Perform OLS regression on the input data Y with this model matrix.
2. Compute the residuals Yr from this regression.
3. Compute the singular value decomposition: WSVT=Yr
4. Append the estimated factors W (up to the number specified by the -U argument) to the

original model matrix and retain them if the model remains full-rank.

In a nutshell, the above method for discovering unknown confounding factors is a variant of matrix
decomposition as are many of the previously published works on correcting confounders for
expression data. Specifically, the application of SVD on the most highly varying features was
previously suggested by Risso et al and included in the RUV package.

Compared to RUV, we made the following modifications: First, the RUVs procedure assumes that
only two kinds of effects exist, termed “main variables of interest” and “unwanted variation”; it
does not handle known confounders, and as currently implemented would rediscover known
confounders corresponding to a large proportion of the variation in the data. Hence, our input to
the SVD step used by RUV are the residuals Yr .We note that these residuals may be negative.
This means we were not able to simply apply RUV as a second processing step: RUVs expects
counts and tries to take their logarithm and was therefore unworkable for our purposes.

In addition, as discussed in the main text we utilize OLS regression over read rates instead of a
negative binomial GLM suggested by the RUV documentation. We also note that, like the RUVr
procedure as implemented currently in RUVSeq (July 2019), our derived factors correspond to
only the left singular vectors in the singular value decomposition; this implementation contrasts
with the method reported in the 2014 Nat Biotech paper, which states that the derived factors
should be the left singular vectors composed with the singular values.

1.14 Speed and memory optimizations
In contrast to gene or transcript expression studies, which typically utilize tens or at most a few
hundred thousand tags, MOCCASIN must model and adjust counts for possibly millions of splice
junctions in a single run. The need to handle that many inference tasks motivated MOCCASIN’s
simple model performing linear regression on junction read rates. However, the size of the data
necessitates additional speed and memory optimizations.

MOCCASIN partitions LSVs into “chunks” for processing in order to limit peak memory usage.
This is possible because LSVs are modeled and adjusted independently of one another in the
MOCCASIN framework. The user can set the max chunk size in terms of the max number of

coverage table cells to be loaded at once into memory (-M). However, the peak memory use
currently is lower-bounded by the size of the coverage table in the largest input .majiq file.

MOCCASIN allows the user to specify the number of processes to use (-J) as a speed optimization.
This governs the number of spawned processes which will process each chunk of LSVs in parallel
during the modeling and adjustment steps.

In practice, when running MOCCASIN on our simulated datasets we found MOCCASIN (-J 8)
took 13 seconds to run on 4 samples and 34 seconds to run on 16 samples, with roughly linear
increase in time, and used less than 1G of RAM (Supplementary Fig 8).

For large (i.e. >500 samples) datasets, I/O becomes a rate-limiting process since we try to keep
memory use low (see above) by writing and reading temporary files to a user-specified tmp
location. The temporary files would not be necessary if we made use of shared memory across
processes. Python3.8 does include shared memory capabilities but python3.8 is not yet as widely
used as python3.6 and python 3.6 lacks shared memory capabilities. To facilitate MOCCASIN
usability, we chose to use python3.6, and to make up for lack of shared memory in python3.6, we
suggest users point the MOCCASIN tmp directory to the fastest disk available (e.g. a RAM drive
at /dev/shm). At the end of the MOCCASIN execution, the tmp subdirectory is automatically
deleted (unless the -K flag is supplied). For example, on the TARGET dataset (885 samples), using
a RAM drive and -J 40, MOCCASIN took 2.8 days to finish and used a maximum of 26G of RAM.
We note that especially for large datasets the main bottleneck for execution time is I/O and not the
algorithm itself.

2 Supplementary Figures

2.1 Supplementary Figure 1: MOCCASIN removes batch effects associated with
different laboratories

PCA of PSI from 10,000 LSVs shows samples cluster by batch before MOCCASIN in the leftmost
plot of a (12 Lab Wood batch samples in blue and 9 Abel batch samples in orange). The right plot
in a shows the same PCA colored by treatment (11 controls in orange, 6 OLM in blue, and 4 FC
in green). After batch-correcting the data with MOCCASIN modeling for 2 hidden factors (-U 2,
see methods), as shown in b, the samples cluster by treatment (same colors as in a). c, the number
of LSVs (Y-axis) detected as differential (|E(dPSI)|>0.2) between Wood (N=6) versus Abel (N=4)
control samples before (blue) vs after (orange) MOCCASIN across a range of increasingly
significant p-values (X-axis, two-sided Wilcoxon rank sum test, -log10 scale). d, PSI of 10,000
LSVs from Wood (N=6) batch control samples before MOCCASIN (X-axis, original) vs Abel
(N=4) batch control samples after MOCCASIN (Y-axis, adjusted). OLM, Object-oriented
learning; FC, Fear Conditioning.

2.2 Supplementary Figure 2: MOCCASIN removes batch effects from
experimental designs of varying size

This analysis repeats Figure 2b-c, but with decreasing sample sizes. Shown are the number of
LSVs (Y-axis) detected as differential (|E(dPSI)|>0.2) for the aorta vs cerebellum signal (top row)
and the batch 1 versus batch 2 signal (bottom row) across a range of increasingly significant p-
values (X-axis, Student’s t test, -log10 scale). Total number of samples used for each plot were 4,
3, or 2 times the number of tissue/batch combinations (2 tissues x 2 batches = 4). The green
points (“Ground Truth”) are from the simulated data with no with batch signal injection and the
blue points (“Before MOCCASIN”) are from the same data after batch signal injection (G=20%,
C=60%). Both blue and green points serve as reference points for MOCCASIN correction of the
batch signal and blue (no batch signal injection) points are from the simulated data without
MOCCASIN correction and serve as a reference. Orange and grey represent respectively the
results after MOCCASIN correction when the batches are known or unknown.

2.3 Supplementary Figure 3: Batch difference FPR and tissue difference FDR
with MOCCASIN discovering 1-3 unknown confounders

This figure is related to figure 2b-e in the main text, where we used MAJIQ dPSI to quantify batch
differences (batch 1 vs 2) and tissue differences (aorta vs cerebellum) from the simulated data.
Recall that LSVs were called changing if they met the threshold Probability(|dPSI|>=0.2)>=0.95.
See Section 1.12 above regarding how false positive rate (FPR) and false discovery rate (FDR)
were calculated. Shown here on the left are Batch 1 (N=4) vs batch 2 (N=4) FPR and on the right
aorta (N=4) vs cerebellum (N=4) FDR from the batch-effected simulated data (blue, before
MOCCASIN) versus the corrected data (orange or grey, after MOCCASIN). Included in those
plots are MOCCASIN runs in three different configurations: 1 known confounding factor provided
to MOCCASIN (orange), or 1, 2, or 3 (gradient of light-to-dark greys) hidden confounding factors
identified and removed by MOCCASIN. FPR, false positive rate; FDR, false discovery rate; TPM,
transcripts per million; dPSI, delta percent splice included.

2.4 Supplementary Figure 4: Unsupervised clustering of splicing simulated data
with batch effect when using MOCCASIN to discover an unknown
confounder

This figure is related to figure 2e in the main text where the same analysis is shown but when using
a known confounder to specify the batches. Heatmaps of PSI from simulated data without batch
effect (ground truth, left), with simulated batch effect (G=20%, C=60%) without correction
(middle), and after applying MOCCASIN with 1 unknown confounding factor (right). Each
column is a sample (N=16), and each row is an LSV (N=7368). The colored bars above the samples
denote the sample’s tissue (8 aorta samples in purple, 8 cerebellum samples in green) and (8 batch
1 samples in red, 8 batch 2 samples in blue). On top, the dendrogram lines represents the Euclidean
distances. Dendrogram lines are colored red to highlight the Euclidean distance between batches
is greater before MOCCASIN than after MOCCASIN.

2.5 Supplementary Figure 5: Clustering of ENCODE dPSI before vs after
MOCCASIN

This supplementary figure is related to figure 3a in the main text. Shown here are clustergrams of
dPSI from 1100 ENCODE control vs target KD comparisons and 43081 LSVs. These LSVs were
those exhibiting a splicing change with a Wilcoxon two-sided test P-value less than 0.05 and
|dPSI|>0.1 in at least one comparison. Each comparison consists of 2 KD experiments of one target
versus 58 HepG2 or 64 K562 matched cell type control samples. Clustergram bars on the left
indicate Euclidean distances between KD experiments. Each colored bar provides information
about the given experiment: the sequencing platform (HiSeq 2000, black; HiSeq 2500, grey), the
batch identifier (1:61, rainbow-colored), the type of KD experiment (shRNA, black; CRISPR
knockout, red), and the cell type (HepG2, yellow; K562, pink). The left figure is before

MOCCASIN, and right is after MOCCASIN. Note that after MOCCASIN, Batch IDs colors no
longer segregate together, rather, the colors are dispersed randomly. KD, knockdown.

2.6 Supplementary Figure 6: The smoothed toward zero log (STZL) function

Illustration of the STZL (blue) function compared to Log (green) and Asinh (red). Top, evaluation
of the functions from 0 < x <= 100. Bottom, evaluation of the functions from 0 < x <= 10. Dotted
line drawn at x=2. STZL, smoothed toward zero log; ASINH, inverse hyperbolic sine.

2.7 Supplementary Figure 7: Comparing MOCCASIN model accuracy for
clipped and non-clipped LSVs

A CDF of the absolute difference in PSI (X-axis) between ground truth (PSI computed by MAJIQ
over unperturbed samples, see Section 1.5 above) and PSI computed by MAJIQ after MOCCASIN
correction. Results shown here are from all samples used with the simulated batch effect set to be
the strongest (G=20%, C=60%, see main text). The plots includes only those LSVs that exhibited
a batch-affected, defined as ([PSI Ground Truth] - [PSI After Batch Perturbation]) > 0.01. For each
such batch-effected LSV, the most batch-effected junction was selected to represent that LSV. An
LSV is identified as “clipped” if more than half of the 30 bootstraps from one junction were clipped
by MOCCASIN. An LSV is identified as “non-clipped” if no bootstraps from any junction in the
LSV were clipped. The red line shows accuracy of MOCCASIN on clipped and the green line
shows MOCCASIN accuracy for the majority of the LSVs which were not clipped. Overall, we
find across all samples 503-607 LSVs are clipped compared to 6048-7133 which are not, i.e. only
~7% are clipped. The relation between the green and red line vary between sample, with a possible
small advantage in overall accuracy for the non-clipped (green) line. In the most extreme case
(sample SRR 1158525) we find that to achieve the same fraction of events (y-axis at 0.8) “costs”
an increase of accepted dPSI (x-axis) by 0.04.

2.8 Supplementary Figure 8: Runtime and memory usage of MOCCASIN

Computational cost of MOCCASIN run with 8 threads was evaluated with 4, 8, 12, or 16 input
files (simulated data, see main text methods) on a Dell C6420 Quad node system with 100 GB/s
FDR InfiniBand connection to an HPC filesystem.

2.9 Supplementary Figure 9: MOCCASIN correction inaccuracies for toy data
with a multiplicative bias factor

The procedure to create the toy data shown in the figure is described in Section 1.2. The 1-bias
factor (x-axis) varies from 0.9 which corresponds to a 10% change in TPM for the more used LSV
junction, to 0.1 which corresponds to a 90% change in TPM. Inaccuracies incurred by the
MOCCASIN bias correction procedure are shown for linear read rates (blue), arcsinh transformed
read rates (orange) and a log linear model (green). Notice that for significant batch effects of 20%
a maximum of 2% dPSI inaccuracy is observed for the linear model compared to 7% by the other
two models. Even for severe switch effects of 60% change in TPM which were modeled in the toy
data, a maximum of 6% dPSI inaccuracy is observed for the linear model compared to ~9.5% by
the other two models.

2.10 Supplementary Figure 10: Comparing performance of MOCCASIN linear and
STZL models on synthetic data

Shown are CDF of samples’ absolute differences in PSI (X-axis) between ground truth minus the
batch effect (blue line, G=20%, C=60%), or after the sample was corrected by MOCCASIN with
the default linear model (red line) or the optional STZL model (green line). In other words, the
CDF shows the effectiveness of MOCCASIN to correct PSI back towards ground truth whereby a
smaller difference in PSI can be interpreted as a more effective correction toward ground truth.

The top plots show the full scope of the CDF (Y-axis from 0 to 1) and the bottom plots are a subset
of the top CDFs, highlighting performance of MOCCASIN on the top 10% of the most batch
effected LSVs (out of a total of 21566).

3 Supplementary Files
In order to facilitate reproducibility of our analysis and supply figures that capture additional
results we created several dedicated .zip files, the content of each is described in the following
Zenodo repository: http://doi.org/10.5281/zenodo.4294189.

4 Supplementary References
Peixoto, Lucia, Davide Risso, Shane G. Poplawski, Mathieu E. Wimmer, Terence P. Speed,

Marcelo A. Wood, and Ted Abel. 2015. “How Data Analysis Affects Power,
Reproducibility and Biological Insight of RNA-Seq Studies in Complex Datasets.”
Nucleic Acids Research 43 (16): 7664–74. https://doi.org/10.1093/nar/gkv736.

Van Nostrand, Eric L., Peter Freese, Gabriel A. Pratt, Xiaofeng Wang, Xintao Wei, Rui Xiao,
Steven M. Blue, et al. 2020. “A Large-Scale Binding and Functional Map of Human
RNA-Binding Proteins.” Nature 583 (7818): 711–19. https://doi.org/10.1038/s41586-
020-2077-3.

Vaquero-Garcia, Jorge, Alejandro Barrera, Matthew R. Gazzara, Juan González-Vallinas,
Nicholas F. Lahens, John B. Hogenesch, Kristen W. Lynch, and Yoseph Barash. 2016.
“A New View of Transcriptome Complexity and Regulation through the Lens of Local
Splicing Variations.” ELife 5 (February): e11752. https://doi.org/10.7554/eLife.11752.

