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Supplementary Figure 1. Experimental approach.

(a) Schematic representation of the Hi-TransMet approach. A library of targeting
plasmids each containing the same bacterial DNA fragment, (FR1) represented by a
grey line, but a different motif (colored rectangles) and barcodes (dashed boxes) and
flanked by LoxP sites (triangles) were transfected into ESCs containing the RMCE
site together with a plasmid expressing CRE recombinase. This leads to the
replacement of the selection cassette (Hygromycin/Thymidine Kinase) by the
bacterial fragment. Ganciclovir treatment selects the cells that underwent
recombination. Genomic DNA is extracted from successfully recombined cells and
treated with sodium bisulfite. (b) Sequence of the bacterial fragment FR1 used in this
study. Primer sequences for Bisulfite PCR and library preparation are indicated in
green. US_Primer is the upstream primer pair, DS_Primer is the downstream primer
pair (please refer to text for further details). Edits to the original sequence*? are
indicated in dark blue (additions) and light blue (changes of position). The fragment
was inserted into the RMCE donor plasmid by directional cloning using the restriction
enzymes BamHI and Hindlll (flags); motifs were later inserted by directional cloning

with Sphl and Nhel (flags).
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Supplementary Figure 2. Common endogenous PF-binding sites exhibit low

methylation levels in ESCs.

Heat map of methylation levels 3kb around the center of mouse aggregate
cistromes, the peaks of routinely identified binding sites for different PFs in several

cell types.
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Supplementary Figure 3. In silico analysis of different restriction site-barcode-

motif combinations.

Score of transcription factors predicted using HOMER tool for all restriction site-
barcode-motif combinations. Black and gray dots are all TFBS predicted for WT and
Sc sequences, respectively. TFBSs assigned to WT sequences are represented by

red (top strand) and orange (bottom strand) dots.
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Supplementary Figure 4. Hi-TransMet library preparation and molecular

barcoding.

(a) Hi-TransMet library preparation. Step 1, UMI assignment. A target-specific
reverse primer, including a UMI tag (colored Ns) and a library barcode (black) is
annealed to the bisulfite-converted DNA and the target sequence is extended. Step
2, non-barcoded amplification. A short PCR ampilification is performed using forward
target-specific primers and a reverse universal primer. Step 3, addition of
sequencing adapters by PCR amplification. Unused primers and primer dimers are
removed between each step. The region of interest surrounding the motifs is PCR
amplified using two sets of universal primers, upstream and downstream of the
motifs, covering about 500 bp flanking the binding sites. (b) Overview of the

bioinformatic pipeline.
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Supplementary Figure 5. Overall methylation levels on FR1 fragment in WT

ESCs, NPs and TET TKO ESCs.

(a) Mean ratio of CpG methylation in WT ESCs, NPs and TET TKO ESCs measured
at FR1 fragments containing Sc motifs (n=26). P-values (two-tailed paired t-test,
**p<0.01, ****p<0.0001): NPs/-Sssl vs ESCs/-Sssl: p=1.59E-07; NPs/+Sssl vs
ESCs/+Sssl: p=0.0025; TET-TKO/+Sssl vs ESCs/+Sssl: p=1.01E-0.5; TET-
TKO/+Sssl vs NPs/+Sssl: p=0.1527. (b) Mean ratio of non CpG methylation
(CHG+CHH) in WT ESCs, NPs and TET TKO ESCs measured at FR1 fragments
containing Sc motifs (n=26). P-values (two-tailed paired t-test, ***p<0.001,
****p<0.0001): NPs/-Sssl vs ESCs/-Sssl: p=0.0010; NPs/+Sssl vs ESCs/+Sssl:
p=1E-07; TET-TKO/+Sssl vs ESCs/+Sssl: p=0.0002; TET-TKO/+Sssl vs NPs/+Sssl:
p=2.65E-05. In both panels (a) and (b) data are represented as box plots where the
middle line is the median, the lower and upper hinges correspond to the 25" and the
75" percentiles, the lower whisker extends from the lower hinge to the smallest value
and the upper whisker extends from the upper hinge to the biggest value not bigger
than the 75" percentile plus 1.5 IQR (inter-quartile range). For all panels, source

data are provided as a Source data file.
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Supplementary Figure 6. siRNA knockdown of OCT4 and SOX2 in ESCs

containing FR1 with WT OCT4S0OX2 motif, +Sssl condition.

(a) Reduction of OCT4 and SOX2 mRNA levels normalized to expression of the
reference housekeeping gene Snrpd3, 72h post siRNA transfection. Results are
presented as mean + SD of n=3 biologically independent replicates. P-values (2-way
ANOVA, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001): OctdmRNA_siOctda+b
p=1.79E-09, Sox2mRNA _siOct4a+b p=0.0228, Oct4mRNA_siSox2a+b p=0.0004,
Sox2mRNA_siSox2a+b p=4.71E-06, Oct4mRNA_siAll p=9.49E-11, Sox2mRNA_siAll
p=3.60E-05. (b) Reduction of OCT4 and SOX2 protein levels, 72h post siRNA
transfection. Western blot was performed on one of the three biologically
independent knockdown experiments. Actin housekeeping gene is used as a loading
control “All”: siOCT4a+siOCT4b+siSOX2a+siSOX2b. N.T: non targeting siRNA. &:
non-transfected. For both panels, source data and uncropped blots are provided as a

Source Data file.
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Supplementary Figure 7. Differentiation into neuronal progenitors.

(a, b) Heatmaps representing methylation percentages around WT and Sc motifs in
the FR1/-Sssl condition (a) and FR1/+Sssl (b). (¢) gPCR validation of NP
differentiation by analysis of ESC-specific (Oct4, Nanog and Sox2) and NP-specific
markers (FoxA1, Pax6 and Sox9). Data are shown as mean+SEM or n=3 biologically

independent experiments. Source data are provided as a Source data file.
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Supplementary Figure 8. ATAC-Seq in ESCs at OCT4SOX2 and CTCF binding

sites in FR1.

(a,b) MA plots following analysis of differential ATAC-seq peaks using the DESeq2
analysis software. As expected, there are very few changes in chromatin

accessibility across the genome of the (a) FR1 OCT4SOX2 ESCs (WT and Sc, +/-
Sssl) and (b) FR1 CTCF ESCs (WT and Sc, -Sssl). Genome browser tracks (mean

values across replicates) of the ATAC-seq data for all conditions at the Zfp345 locus.
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Supplementary Figure 9. ChIP-Seq for OCT4 and SOX2 in ESCs.

(a) PCA analysis of the Oct4 and Sox2 ChIPseq data from FR1 OCT4SOX2 ESCs.
As shown, the third replicate of the Sox2 ChIP is of poor quality and was therefore
not used for the subsequent analysis of TF binding at the FR1 locus. (b)
Representative genome browser tracks (mean values across replicates) of the

ChIPseq data across the Lefty1 locus.
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Supplementary Figure 10. In vitro replication assay.

(a-b) Schematic representation of the in vitro replication assay. FR1 or FR2 bacterial
DNA fragments are cloned into the SV40 replication vector containing an origin of
replication. The resulting plasmid is in vitro methylated using the Sssl
methyltransferase. Plasmid is then incubated with the TF of interest, then replication
occurs in the presence of HeLa S240 cell extract, T-Antigen, biotin-dUTP, dNTPs,
rNTPs, TF and 3H-SAM. Biotinylated, replicated DNA is purified by
immunoprecipitation using streptavidin beads. (¢) Dpnl digestion of the non-
replicated plasmid is used to assess the completion of the replication reaction in all
DNA replication experiments. (d) DNA methylation is maintained during in vitro DNA
replication. —Sssl and +Sssl plasmids were incubated in HeLa extracts in the
presence of SAM[3H] and in the presence or absence of T-Ag. DNA was purified and
SAM[3H] measured by scintillation counting. Graph shows CPM - background. (e)
5% of the reaction is used to assess TF binding by EMSA with titrations covering a
broad concentration range for all DNA replication experiments. In all cases, binding

was confirmed. For all panels, source data are provided as a Source data file.
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Supplementary Figure 11. SOX2 inhibits DNMT1-dependent maintenance of

DNA methylation during replication

(a) In vitro replication assay to assess the effect of SOX2 binding to FR1 containing
SOX2-only motif on the DNMT1-dependent maintenance of DNA methylation during
replication. Methylation levels following replication are measured based on the
integration of radioactively labeled methyl group during replication. Results are
presented as mean + SD of n=5biological replicates and analyzed as radioactive
signal in the presence of SOX2 relative to the signal in absence of SOX2. P values
(one sample t-test, *p<0.05, **p<0.001): SOX2_WT 370nM p=0.1026, 555nM
p=0.0004; SOX2_Sc 370nM p=0.4521, 555nM=0.0491, two-tailed unpaired t-test. (b)
Bisulfite Sanger sequencing analysis of the FR1 containing SOX2, CTCF, FOXA1 or
NFY motif in absence or presence of replication (+/- T-Ag) and the PF (+/- PF,
555nM). Vertical bars correspond to CpG positions, and the color code corresponds
to the percentage of methylation calculated for each CpG with a minimum coverage
of 10 bisulfite reads. (c¢) Replication efficiency of FR1 and FR2 probes containing
OCT4S0OX2 motif as measured by the ratio of replicated DNA (biotin) to total DNA
extracted from the reaction (EtBr). Results are presented as mean + SD of n=5
(hSOX2 samples) or n=3biologically independent replicates (hOCT4 and
hOCT4+hSOX2 samples). The small decrease in DNA replication with high
concentrations of TFs was not statistically significant. Because we calculate the ratio
of incorporated SAM[3H] (DNA methylation) to incorporated biotin-dUTP (DNA
replication), these differences will not affect the interpretation (figure 7) P-values
(two-tailed unpaired t-test, **p<0.01, *p<0.05): FR1_OCT4+S0OX2 600nM: 0.0063,
FR2_OCT4+S0OX2 600nM: 0.0179. For all panels, source data are provided as a

Source data file.
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Supplementary Figure 12. ChlIP validation of PF binding

(a-f) Chromatin immunoprecipitation (ChIP) to validate CREB (a), NANOG (b), NFY
(c), NRF1 (d), SOX2 (e) and REST (f) binding in ESCs and NPs. ESCs containing
FR1 and individual motifs were isolated from the pool of transfected cells. When
indicated, ESCs were differentiated into NPs. Results are shown as mean + SEM of
n=4 (CREB_NP_WT/+Sssl, CREB_NP_Sc/-Sssl) or n=3 (all other conditions)
biologically independent replicates. Binding of selected TFs at their motifs in the FR1
fragment is indicated as % input, that is, the enrichment of IP signal (normalized over
input signal) at a selected locus. Enrichment at WT sites is estimated relative to their
corresponding Sc site. In most cases, enrichment at WT motif is higher than at Sc
ones. Moreover, enrichment at CREB WT motif is higher in NPs than is ESCs. P-
values (two-tailed unpaired t-test): CREB_WT_NPs/-Sssl vs Sc_NPs/-Sssl p=0.013;
CREB_WT ESCs/-Sssl vs WT_NPs/-Sssl p=0.01; CREB_WT_ESCs/+Sssl vs
WT_NPs/+Sssl p=0.013; SOX2_WT/-Sssl vs SOX2_Sc/-Sssl p=0.026;

REST WT_ESCs/-Sssl vs Sc_ESCs /-Sssl p=0.012; REST_WT_ESCs/+Sssl vs
Sc_ESCs/+Sssl p=0.008. (g-h) SOX2 (g) and OCT4 (h) ChIP in ESCs and NPs
containing the OCT4S0OX2 motif. Results are shown as mean + SEM of n=4
(SOX2_ESCs_OCT4SOX2_WT/+Sssl and SOX2_ESCs_OCT4S0OX2_Sc/+Sssl) or
n=3 (all other conditions) biologically independent replicates. Binding of selected TFs
at their motifs in the FR1 fragment is indicated as % input, that is, the enrichment of
IP signal (normalized over input signal) at a selected locus. Enrichment at WT sites
is estimated relative to their corresponding Sc site, and enrichment in ESCs is
estimated relative to enrichment in NPs. For all panels, source data are provided as

a Source data file.



Supplementary Tables

Supplementary Table 1. List of PFs selected for RMCE screening. DNA binding
domains are reported as indicated in the Human TFs database

(http://humantfs.ccbr.utoronto.ca/)'°3. For each factor, the main references for:

pioneering activity; sensitivity or binding to methylated DNA; suspected DNA
demethylation capacity and/or suspected or proven interactions with TETs and

DNMTs are indicated.



Suspected DNA

Pioneering DNA methylation
PF DNA Binding Domain demethylation
Activity sensitivity .
capacity
TCF 2H2 Zinc Fi 104 Bi 14,51,105 Yes®'10°
CTC C inc Finger inds 5mC'*>" Interacts with TET*"
Interacts with DNMT14¢
KAISO | C2H2 Zinc Finger 104 Binds 5mC*1:33.106
KLF4 C2H2 Zinc Finger 12,28,40,44,73 Binds 5mC10:11:33 Yes*
KLF7 C2H2 Zinc Finger 104
REST | C2H2 Zinc Finger Binds 5mC™ Yes'418
Interacts with TET3"%7
ZBTB14 | C2H2 Zinc Finger 104 Binds C'%
Zinc Finger (NHR
ER 108 Binds 5mC"! Yes'®
type)
Zinc Finger (NHR
GR 108 Yes'10
type)
Zinc Finger (GATA
GATA 4,111,112 Binds 5mc10,113 Yes113,114
type)
20
NANOG | Homeodomain 20115 Ye?M
No
Interacts with TET*
OTX2 Homeodomain 20.116 Yes?®
OCT4 Homeodomain + POU | 12:2840.73 Binds 5mC"! No'4
Homeodomain +
PAX7 _ 717,118 Binds 5mC"! Yes’’
Paired box
SOX2 HMG/SOX 12,28,40,73,119 N0114
SOX9 HMG/SOX 120
SOX17 | HMG/SOX Yes?®
ETS ETS 104 Binds C'"113.121
Forkhead (helix-turn- ]
FOXA1 . 34.122 Binds 5mC'°¢ Yest0.123
helix) Interacts with TET1%
Forkhead (helix-turn-
FOXD3 . 61,124 Yes®!
helix)
CREB | Other (bZip) o4 Binds C11-338667
E2F1 Other (E2F_TDP) 104 Binds C'1106.125126 | |nteracts with DNMT1'%”

Binds 5mC1°




NFY Other (CBF/NF-Y) 104 Binds C'"
NMYC Other (bHLH) Binds C'8128 No'"3
NRF1 Other (unknown) 104 Binds C'833 No'®

Binds 5m(C10-33




Supplementary Table 2. List of WT and Sc PF motifs and barcodes.

Experimen |\ in WT Sc
PF Database ID tal binding .. WT motif Sc motif
evidence publications barcode barcode
CREB MA0018_CREB1 ?OTmSpﬁ;fX 11,67 TGACGTCA tagaga AATCGGTC aatgta
ATAGCGCCCCCTA CCCACGGGTGGCC
CTCF_1 | MA0139.1_CTCF_rev GTGGCCA tgagga ARCCATT tgatga
ChIP-Seq 14,129
TGGCCACCAGGGG GGCAGGGAGGACC
CTCF_2 | MA0139.1_CTCF GeGeTA tgagga CCGTTC tgatga
E2F1 ;A&%024'1—E2F1 + Chen ChIP-Seq 24 TTTCGCGC atgtga TCGCTTCG aaggag
ChIP-Seq, HT- | 11.130 AAGGTCACGGTGA GTAACTCCGAGTG
ER MAO0112_ESR1 SELEX CCTG agaagt AGGC aataga
HT-SELEX,
ETS MA0098.3_ETS1 protein binding | 131,132 ACCGGAAGTG atgggg GCCGARAGTG atggtt
microarrays
ChIP-Seq, HT- | 14 133 TCCATGTTTACTT TATTGGTCTCTAT
FOXA1 MA0148.3_FOXA1 SELEX TG aaagtg oC ttgtga
ChIP-Seq
FOXD3 | MA0041.1_Foxd3 (partially), 131,134 GAATGTTTGTTT tgagaa ATTAGTTTGTGT aagtgt
SELEX
GATA MA0482.1_Gata4 SEILPE-)S(eq, HT- | 11,135 TCTTATCTCCC agtagg CTTCACTTCCT tgggat
131 GGGTACATAATGT CACCTAGAAGTGT
GR MA0113.3_NR3C1 SELEX recc atgtta GeTT atgtgg
KAISO | MA0527.1_zBTB33 ChiP-Seq 136 ;zCTCGCGAGATC aatatg EETTCGCGGACTC agaggg
KLF4 MA0039.2_KIf4 ChIP-Seq 24 TGGGCGGGGC tgggag GGTCCGGGGG tatgtg
KLF7 UniProbe ID UP00093 HT-SELEX " ACGCCC tagtgt CCGCAC tttgaa
NANOG | TRANSFAC M01123 ChIP-Seq GGGCCCATTTCC ttaagg CCTAGGTCCCTG tataga
i 60 AGAGTGCTGATTG TTGGGAGTACTGG
NFY MA0060.2_NFYA ChIP-Seq GTCCA aaaaga TACAC tgtggg
NMYC MAO0104.3_Mycn ChlP-Seq 51 GCCACGTG aaaaaa CATGCGGC tagtat
NRF1 MA0506.1_NRF1 ChIP-Seq 17 GCGCCTGCGCA agatat TCGAGCCCGGC tgtatt
OCT4- MAO0142.1 Pou5H-Sox2 ChIP-S 51 CTTTGTTATGCAA N ATACTGTGAATCT N
SOX2 .1_Pou5f1:Sox -Seq AT aagag . gaaag
PBM, HT-
OTX2 UniProbe ID UP00267 SELEX, Chip- | 861,62 TTAATCCC ttttaa ATATCCCT tgaaga

Seq




POUSF1

(OCT4) MA1115.1_POUS5F1 ChlP-Seq 15 ATTTGCAT aatggt TTTAACTG tgtgag
PAX7 MA0680.1_PAX7 HT-SELEX 53 TAATCGATTA atagga TATACGATAT tggata
i 55,63 TTCAGCACCATGG CAGTTACAGCCCC

REST MA0138.2_REST ChIP-Seq ACAGCGCC aaaagt CAGTCGGA tgggaa

SOX17 | MA0078.1_Sox17 EMSA 64 TTCATTGTC tattat TTTCAGTCT ttgggt

SOX2 MA0143.3_Sox2 ChIP-Seq 15 CCTTTGTT ttagtg TCTGTCTT tagaag
ACAAA TT

SOX9 | Liu2015 ChIP-Seq 65 CARRGGGCCC ttgtta GGCTAGICICATG | | jata
TGT CAA

ZBTB14 | UniProbe ID UP00065 PBM 66 GCGCGCG atttaa CCGGGCG tttggt




Supplementary Table 3. Table summarizing identified PPFs and SPFs in ESCs

and NPs.
ESCs NPs
CTCF CTCF
REST REST
KLF4 KLF4
KLF7 SOX2
PPFs | sox2 SOX9
SOX9 N-MYC
NRF1
OTX2
E2F1
CTCF CTCF
REST REST
KLF4 SOX2
SOX2 SOX17
SPEs SOX9 CREB
SOX17 FOXA1
E2F1 FOXD3
N-MYC
GR




Supplementary Table 4. List of primers used in this study.

Target Purpose Forward Reverse

FR1 upstream RMCE exchange CCTCTGGGTAAATTTGGAACA GCAGAACGCCTGAAAAACTC
FR1 downstream RMCE exchange CACCGAAAGCAGACAAACCT AACGCCTGAAAAACTCAGGA
RMCE cassette RMCE cassette AGCAAAGGTGTTCTCATATGTCA CAAGTGGGCAGTTTACCGTA

insertion upstream

RMCE cassette

RMCE cassette insertion TGCACGTCTTTATCCTGGATT GGTTTAGTCTTCTCTGTGCCT
downstream

FR1_ChIP gPCR ACCATGAAAGTATCAGTTCCAGGC GTGTAAGCTCTCAACCTTAAGCA
Snrpd3 gPCR TCTCGCCTTCGCCTTCTAAC GGACTCTTCCCGGGCAATTA
OCT4 gPCR ATGCCGTGAAGTTGGAGAAG GCTTGGCAAACTGTTCTAGCT
Nanog gPCR TTGCTTACAAGGGTCTGCTACT ACTGGTAGAAGAATCAGGGCT
Foxa1 gPCR GCATGAGAGCAACGACTGG CAGGCCGGAGTTCATGTTG
Sox9 gPCR CAGACCAGTACCCGCATCTG AAGGGTCTCTTCTCGCTCTC
Trkb gPCR GGCATTCCCGAGGTTGGA CTGGTTTGCAATGAGAATTTCCG
Pax6 gPCR CACCAGACTCACCTGACACC TCACTCCGCTGTGACTGTTC
Sox2 gPCR TAGAGCTAGACTCCGGGCGATGA TTGCCTTAAACAAGACCACGAAA
FR1 upstream Bisulfite PCR AAAATTTAGGAGGTAGATAATGAGGATA CCCCTTTAATAACAACCCAATTC
FR1 downstream Bisulfite PCR ATTTGAAGGGAAAGGATTAGTATGT ACCATTAAAAAAATTTTTAAACTCTTATAC
Mm_Snrpd3 gRT-PCR TCTCGCCTTCGCCTTCTAAC GGACTCTTCCCGGGCAATTA
Mm_SOX2 (Chen et al,
PNAS, 2006) gRT-PCR GGCAGCTACAGCATGATGCAGGAGC CTGGTCATGGAGTTGTACTGCAGG
Mm_OCT4 gRT-PCR ATGCCGTGAAGTTGGAGAAG GCTTGGCAAACTGTTCTAGCT

GGACAGACATCTGCCAAGGT ATGCCCCTCAGCTATCACAC
Intergenic ATAC-qPCR

CACCGAAAGCAGACAAACCTG TGTATGAGCGCACAATAGCCA
FR1 ATAC-gqPCR




Supplementary Table 5. Hi-TransMet library preparation primers. UMI-primers in
step 1, where is N is random nucleotide and X indicates the barcode sequence.

Reverse with
Adapter

Step | Target Sequence
1 FR1 AATGTACAGTATTGCGTTTTXXXXXXNNNNNNNNCCCCTTTAATAACAACCCAATTC
Upstream
TTCTTAGCGTATTGGAGTCCAAAATTTAGGAGGTAGATAATGAGGATA
Forward
2 Downstream
TTCTTAGCGTATTGGAGTCCATTTGAAGGGAAAGGATTAGTATGT
Forward
Reverse AATGTACAGTATTGCGTTTTG
Forward with
adapter CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNTTCTTAGCGTATTGGAGTCC
AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGAATGTACAGTATTGCGTTTTG
3

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTGAATGTACAGTATTGCGTTTTG

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGAATGTACAGTATTGCGTTTTG

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTAATGTACAGTATTGCGTTTTG
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