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Supplementary Figure 1. Experimental approach.  

(a) Schematic representation of the Hi-TransMet approach. A library of targeting 

plasmids each containing the same bacterial DNA fragment, (FR1) represented by a 

grey line, but a different motif (colored rectangles) and barcodes (dashed boxes) and 

flanked by LoxP sites (triangles) were transfected into ESCs containing the RMCE 

site together with a plasmid expressing CRE recombinase. This leads to the 

replacement of the selection cassette (Hygromycin/Thymidine Kinase) by the 

bacterial fragment. Ganciclovir treatment selects the cells that underwent 

recombination. Genomic DNA is extracted from successfully recombined cells and 

treated with sodium bisulfite. (b) Sequence of the bacterial fragment FR1 used in this 

study. Primer sequences for Bisulfite PCR and library preparation are indicated in 

green. US_Primer is the upstream primer pair, DS_Primer is the downstream primer 

pair (please refer to text for further details). Edits to the original sequence42 are 

indicated in dark blue (additions) and light blue (changes of position). The fragment 

was inserted into the RMCE donor plasmid by directional cloning using the restriction 

enzymes BamHI and HindIII (flags); motifs were later inserted by directional cloning 

with SphI and NheI (flags).  
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Supplementary Figure 2. Common endogenous PF-binding sites exhibit low 

methylation levels in ESCs.  

Heat map of methylation levels 3kb around the center of mouse aggregate 

cistromes, the peaks of routinely identified binding sites for different PFs in several 

cell types. 
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Supplementary Figure 3. In silico analysis of different restriction site-barcode-

motif combinations. 

Score of transcription factors predicted using HOMER tool for all restriction site-

barcode-motif combinations. Black and gray dots are all TFBS predicted for WT and 

Sc sequences, respectively. TFBSs assigned to WT sequences are represented by 

red (top strand) and orange (bottom strand) dots. 
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Supplementary Figure 4. Hi-TransMet library preparation and molecular 

barcoding.  

(a) Hi-TransMet library preparation. Step 1, UMI assignment. A target-specific 

reverse primer, including a UMI tag (colored Ns) and a library barcode (black) is 

annealed to the bisulfite-converted DNA and the target sequence is extended. Step 

2, non-barcoded amplification. A short PCR amplification is performed using forward 

target-specific primers and a reverse universal primer. Step 3, addition of 

sequencing adapters by PCR amplification. Unused primers and primer dimers are 

removed between each step. The region of interest surrounding the motifs is PCR 

amplified using two sets of universal primers, upstream and downstream of the 

motifs, covering about 500 bp flanking the binding sites. (b) Overview of the 

bioinformatic pipeline. 
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Supplementary Figure 5. Overall methylation levels on FR1 fragment in WT 

ESCs, NPs and TET TKO ESCs. 

(a) Mean ratio of CpG methylation in WT ESCs, NPs and TET TKO ESCs measured 

at FR1 fragments containing Sc motifs (n=26). P-values (two-tailed paired t-test, 

**p<0.01, ****p<0.0001): NPs/-SssI vs ESCs/-SssI: p=1.59E-07; NPs/+SssI vs 

ESCs/+SssI: p=0.0025; TET-TKO/+SssI vs ESCs/+SssI: p=1.01E-0.5; TET-

TKO/+SssI vs NPs/+SssI: p=0.1527. (b) Mean ratio of non CpG methylation 

(CHG+CHH) in WT ESCs, NPs and TET TKO ESCs measured at FR1 fragments 

containing Sc motifs (n=26). P-values (two-tailed paired t-test, ***p<0.001, 

****p<0.0001): NPs/-SssI vs ESCs/-SssI: p=0.0010; NPs/+SssI vs ESCs/+SssI: 

p=1E-07; TET-TKO/+SssI vs ESCs/+SssI: p=0.0002; TET-TKO/+SssI vs NPs/+SssI: 

p=2.65E-05. In both panels (a) and (b) data are represented as box plots where the 

middle line is the median, the lower and upper hinges correspond to the 25th and the 

75th percentiles, the lower whisker extends from the lower hinge to the smallest value 

and the upper whisker extends from the upper hinge to the biggest value not bigger 

than the 75th percentile plus 1.5 IQR (inter-quartile range). For all panels, source 

data are provided as a Source data file.  
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Supplementary Figure 6. siRNA knockdown of OCT4 and SOX2 in ESCs 

containing FR1 with WT OCT4SOX2 motif, +SssI condition.  

(a) Reduction of OCT4 and SOX2 mRNA levels normalized to expression of the 

reference housekeeping gene Snrpd3, 72h post siRNA transfection. Results are 

presented as mean + SD of n=3 biologically independent replicates. P-values (2-way 

ANOVA, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001): Oct4mRNA_siOct4a+b 

p=1.79E-09, Sox2mRNA_siOct4a+b p=0.0228, Oct4mRNA_siSox2a+b p=0.0004, 

Sox2mRNA_siSox2a+b p=4.71E-06, Oct4mRNA_siAll p=9.49E-11, Sox2mRNA_siAll 

p=3.60E-05. (b) Reduction of OCT4 and SOX2 protein levels, 72h post siRNA 

transfection. Western blot was performed on one of the three biologically 

independent knockdown experiments. Actin housekeeping gene is used as a loading 

control “All”: siOCT4a+siOCT4b+siSOX2a+siSOX2b. N.T: non targeting siRNA. Ø: 

non-transfected. For both panels, source data and uncropped blots are provided as a 

Source Data file. 
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Supplementary Figure 7. Differentiation into neuronal progenitors. 

(a, b) Heatmaps representing methylation percentages around WT and Sc motifs in 

the FR1/-SssI condition (a) and FR1/+SssI (b). (c) qPCR validation of NP 

differentiation by analysis of ESC-specific (Oct4, Nanog and Sox2) and NP-specific 

markers (FoxA1, Pax6 and Sox9). Data are shown as mean+SEM or n=3 biologically 

independent experiments. Source data are provided as a Source data file. 
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Supplementary Figure 8. ATAC-Seq in ESCs at OCT4SOX2 and CTCF binding 

sites in FR1. 

(a,b) MA plots following analysis of differential ATAC-seq peaks using the DESeq2 

analysis software. As expected, there are very few changes in chromatin 

accessibility across the genome of the (a) FR1 OCT4SOX2 ESCs (WT and Sc, +/-

SssI) and (b) FR1 CTCF ESCs (WT and Sc, -SssI). Genome browser tracks (mean 

values across replicates) of the ATAC-seq data for all conditions at the Zfp345 locus. 
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Supplementary Figure 9. ChIP-Seq for OCT4 and SOX2 in ESCs. 

(a) PCA analysis of the Oct4 and Sox2 ChIPseq data from FR1 OCT4SOX2 ESCs. 

As shown, the third replicate of the Sox2 ChIP is of poor quality and was therefore 

not used for the subsequent analysis of TF binding at the FR1 locus. (b) 

Representative genome browser tracks (mean values across replicates) of the 

ChIPseq data across the Lefty1 locus. 
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Supplementary Figure 10. In vitro replication assay. 

(a-b) Schematic representation of the in vitro replication assay. FR1 or FR2 bacterial 

DNA fragments are cloned into the SV40 replication vector containing an origin of 

replication. The resulting plasmid is in vitro methylated using the SssI 

methyltransferase. Plasmid is then incubated with the TF of interest, then replication 

occurs in the presence of HeLa S240 cell extract, T-Antigen, biotin-dUTP, dNTPs, 

rNTPs, TF and 3H-SAM. Biotinylated, replicated DNA is purified by 

immunoprecipitation using streptavidin beads. (c) DpnI digestion of the non-

replicated plasmid is used to assess the completion of the replication reaction in all 

DNA replication experiments. (d) DNA methylation is maintained during in vitro DNA 

replication. –SssI and +SssI plasmids were incubated in HeLa extracts in the 

presence of SAM[3H] and in the presence or absence of T-Ag. DNA was purified and 

SAM[3H] measured by scintillation counting. Graph shows CPM - background. (e) 

5% of the reaction is used to assess TF binding by EMSA with titrations covering a 

broad concentration range for all DNA replication experiments. In all cases, binding 

was confirmed.  For all panels, source data are provided as a Source data file. 
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Supplementary Figure 11. SOX2 inhibits DNMT1-dependent maintenance of 

DNA methylation during replication 

(a) In vitro replication assay to assess the effect of SOX2 binding to FR1 containing 

SOX2-only motif on the DNMT1-dependent maintenance of DNA methylation during 

replication. Methylation levels following replication are measured based on the 

integration of radioactively labeled methyl group during replication. Results are 

presented as mean + SD of n=5biological replicates and analyzed as radioactive 

signal in the presence of SOX2 relative to the signal in absence of SOX2. P values 

(one sample t-test, *p<0.05, **p<0.001): SOX2_WT 370nM p=0.1026, 555nM 

p=0.0004; SOX2_Sc 370nM p=0.4521, 555nM=0.0491, two-tailed unpaired t-test. (b) 

Bisulfite Sanger sequencing analysis of the FR1 containing SOX2, CTCF, FOXA1 or 

NFY motif in absence or presence of replication (+/- T-Ag) and the PF (+/- PF, 

555nM). Vertical bars correspond to CpG positions, and the color code corresponds 

to the percentage of methylation calculated for each CpG with a minimum coverage 

of 10 bisulfite reads. (c) Replication efficiency of FR1 and FR2 probes containing 

OCT4SOX2 motif as measured by the ratio of replicated DNA (biotin) to total DNA 

extracted from the reaction (EtBr). Results are presented as mean + SD of n=5 

(hSOX2 samples) or n=3biologically independent replicates (hOCT4 and 

hOCT4+hSOX2 samples). The small decrease in DNA replication with high 

concentrations of TFs was not statistically significant. Because we calculate the ratio 

of incorporated SAM[3H] (DNA methylation) to incorporated biotin-dUTP (DNA 

replication), these differences will not affect the interpretation (figure 7) P-values 

(two-tailed unpaired t-test, **p<0.01, *p<0.05): FR1_OCT4+SOX2 600nM: 0.0063,  

FR2_OCT4+SOX2 600nM: 0.0179. For all panels, source data are provided as a 

Source data file. 
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Supplementary Figure 12. ChIP validation of PF binding 

(a-f) Chromatin immunoprecipitation (ChIP) to validate CREB (a), NANOG (b), NFY 

(c), NRF1 (d), SOX2 (e) and REST (f) binding in ESCs and NPs. ESCs containing 

FR1 and individual motifs were isolated from the pool of transfected cells. When 

indicated, ESCs were differentiated into NPs. Results are shown as mean + SEM of 

n=4 (CREB_NP_WT/±SssI, CREB_NP_Sc/-SssI) or n=3 (all other conditions) 

biologically independent replicates. Binding of selected TFs at their motifs in the FR1 

fragment is indicated as % input, that is, the enrichment of IP signal (normalized over 

input signal) at a selected locus. Enrichment at WT sites is estimated relative to their 

corresponding Sc site. In most cases, enrichment at WT motif is higher than at Sc 

ones. Moreover, enrichment at CREB WT motif is higher in NPs than is ESCs. P-

values (two-tailed unpaired t-test): CREB_WT_NPs/-SssI vs Sc_NPs/-SssI p=0.013; 

CREB_WT_ESCs/-SssI vs WT_NPs/-SssI p=0.01; CREB_WT_ESCs/+SssI vs 

WT_NPs/+SssI p=0.013; SOX2_WT/-SssI vs SOX2_Sc/-SssI p=0.026; 

REST_WT_ESCs/-SssI vs Sc_ESCs /-SssI p=0.012; REST_WT_ESCs/+SssI vs 

Sc_ESCs/+SssI p=0.008. (g-h) SOX2 (g) and OCT4 (h) ChIP in ESCs and NPs 

containing the OCT4SOX2 motif. Results are shown as mean + SEM of n=4 

(SOX2_ESCs_OCT4SOX2_WT/+SssI and SOX2_ESCs_OCT4SOX2_Sc/+SssI) or 

n=3 (all other conditions) biologically independent replicates. Binding of selected TFs 

at their motifs in the FR1 fragment is indicated as % input, that is, the enrichment of 

IP signal (normalized over input signal) at a selected locus. Enrichment at WT sites 

is estimated relative to their corresponding Sc site, and enrichment in ESCs is 

estimated relative to enrichment in NPs. For all panels, source data are provided as 

a Source data file.  



Supplementary Tables 

Supplementary Table 1. List of PFs selected for RMCE screening. DNA binding 

domains are reported as indicated in the Human TFs database 

(http://humantfs.ccbr.utoronto.ca/)103. For each factor, the main references for: 

pioneering activity; sensitivity or binding to methylated DNA; suspected DNA 

demethylation capacity and/or suspected or proven interactions with TETs and 

DNMTs are indicated. 

	 	



PF DNA Binding Domain 
Pioneering 
Activity 

DNA methylation 
sensitivity 

Suspected DNA 
demethylation 
capacity 

CTCF C%H% Zinc Finger 104 Binds 1mC14,51,105 Yes51,105 
Interacts with TET47 
Interacts with DNMT=46 

KAISO C%H% Zinc Finger 104 Binds 1mC11,33,106  

KLFC C%H% Zinc Finger 12,28,40,44,73 Binds 1mC10,11,33 Yes44 

KLFD C%H% Zinc Finger 104   

REST C%H% Zinc Finger  Binds 1mC14 Yes14,18 
Interacts with TETF107 

ZBTB=C C%H% Zinc Finger 104 Binds C106  

ER 
Zinc Finger (NHR 

type) 
108 Binds 1mC11 Yes109 

GR 
Zinc Finger (NHR 

type) 
108  Yes110 

GATA 
Zinc Finger (GATA 

type) 
4,111,112 Binds 1mC10,113 Yes113,114 

NANOG Homeodomain 20,115  Yes20 
No114 
Interacts with TET45 

OTX% Homeodomain 20,116  Yes20  

OCTC Homeodomain + POU 12,28,40,73 Binds 1mC11 No114 

PAXD 
Homeodomain + 

Paired box 
77,117,118 Binds 1mC11 Yes77 

SOX% HMG/SOX 12,28,40,73,119  No114 

SOXT HMG/SOX 120   

SOX=D HMG/SOX   Yes20 

ETS ETS 104 Binds C11,113,121  

FOXA= 
Forkhead (helix-turn-

helix) 
3,4,122 Binds 1mC106 Yes60,123 

Interacts with TET=58 

FOXDF 
Forkhead (helix-turn-

helix) 
61,124  Yes61 

CREB Other (bZip) 104 Binds C11,33,66,67  

E%F= Other (E%F_TDP) 104 Binds C11,106,125,126 
Binds 1mC10 

Interacts with DNMT=127 



NFY Other (CBF/NF-Y) 104 Binds C11  

NMYC Other (bHLH)  Binds C18,128 No113 

NRF= Other (unknown) 104 Binds C18,33  
Binds 1mC10,33 

No18 

 

 

 

 

  



Supplementary Table 2. List of WT and Sc PF motifs and barcodes. 

PF Database ID 
Experimen
tal binding 
evidence 

Main 
publications WT motif WT 

barcode Sc motif Sc 
barcode 

CREB MA0018_CREB1 
HT-SELEX; 
compiled 

11,67 TGACGTCA tagaga AATCGGTC aatgta 

CTCF_1 MA0139.1_CTCF_rev 

ChIP-Seq 14,129 

ATAGCGCCCCCTA
GTGGCCA tgagga CCCACGGGTGGCC

AACCATT tgatga 

CTCF_2 MA0139.1_CTCF 
TGGCCACCAGGGG
GCGCTA tgagga GGCAGGGAGGACC

CCGTTC tgatga 

E2F1 
MA0024.1_E2F1 + Chen 
2008 

ChIP-Seq 24 TTTCGCGC atgtga TCGCTTCG aaggag 

ER MA0112_ESR1 
ChIP-Seq, HT-
SELEX 

11,130 AAGGTCACGGTGA
CCTG agaagt GTAACTCCGAGTG

AGGC aataga 

ETS MA0098.3_ETS1 
HT-SELEX, 
protein binding 
microarrays 

131,132 ACCGGAAGTG atgggg GCCGAAAGTG atggtt 

FOXA1 MA0148.3_FOXA1 
ChIP-Seq, HT-
SELEX 

11,133 TCCATGTTTACTT
TG aaagtg TATTGGTCTCTAT

TC ttgtga 

FOXD3 MA0041.1_Foxd3 
ChIP-Seq 
(partially), 
SELEX 

131,134 GAATGTTTGTTT tgagaa ATTAGTTTGTGT aagtgt 

GATA MA0482.1_Gata4 
ChIP-Seq, HT-
SELEX 

11,135 TCTTATCTCCC agtagg CTTCACTTCCT tgggat 

GR MA0113.3_NR3C1 SELEX 131 GGGTACATAATGT
TCCC atgtta CACCTAGAAGTGT

GCTT atgtgg 

KAISO MA0527.1_ZBTB33 ChIP-Seq 136 CTCTCGCGAGATC
TG aatatg GTTTCGCGGACTC

AC agaggg 

KLF4 MA0039.2_Klf4 ChIP-Seq 24 TGGGCGGGGC tgggag GGTCCGGGGG tatgtg 

KLF7 UniProbe ID UP00093 HT-SELEX 11 ACGCCC tagtgt CCGCAC tttgaa 

NANOG TRANSFAC M01123 ChIP-Seq   GGGCCCATTTCC ttaagg CCTAGGTCCCTG tataga 

NFY MA0060.2_NFYA ChIP-Seq  60 AGAGTGCTGATTG
GTCCA aaaaga TTGGGAGTACTGG

TACAC tgtggg 

NMYC MA0104.3_Mycn ChIP-Seq 51 GCCACGTG aaaaaa CATGCGGC tagtat 

NRF1 MA0506.1_NRF1 ChIP-Seq 17 GCGCCTGCGCA agatat TCGAGCCCGGC tgtatt 

OCT4-
SOX2 

MA0142.1_Pou5f1:Sox2 ChIP-Seq 51 CTTTGTTATGCAA
AT aagagt ATACTGTGAATCT

TT tgaaag 

OTX2 UniProbe ID UP00267 
PBM, HT-
SELEX, ChIP-
Seq 

8,61,62 TTAATCCC ttttaa ATATCCCT tgaaga 



POU5F1 
(OCT4) 

MA1115.1_POU5F1 ChIP-Seq 15 ATTTGCAT aatggt TTTAACTG tgtgag 

PAX7 MA0680.1_PAX7 HT-SELEX 53 TAATCGATTA atagga TATACGATAT tggata 

REST MA0138.2_REST ChIP-Seq 55,63 TTCAGCACCATGG
ACAGCGCC aaaagt CAGTTACAGCCCC

CAGTCGGA tgggaa 

SOX17 MA0078.1_Sox17 EMSA 64 TTCATTGTC tattat TTTCAGTCT ttgggt 

SOX2 MA0143.3_Sox2 ChIP-Seq 15 CCTTTGTT ttagtg TCTGTCTT tagaag 

SOX9 Liu 2015 ChIP-Seq 65 ACAAAGGGCCCTT
TGT ttgtta GGCTAGTCTCATG

CAA tagata 

ZBTB14 UniProbe ID UP00065 PBM 66 GCGCGCG atttaa CCGGGCG tttggt 

 

 

  



Supplementary Table 3. Table summarizing identified PPFs and SPFs in ESCs 

and NPs. 

 ESCs NPs 

PPFs 

CTCF 

REST  

KLF4 

KLF7 

SOX2 

SOX9 

NRF1 

OTX2 

E2F1 

CTCF 

REST 

KLF4 

SOX2 

SOX9 

N-MYC 

 

SPFs 

CTCF 

REST 

KLF4 

SOX2 

SOX9 

SOX17 

E2F1 

N-MYC 

GR 

 

CTCF 

REST 

SOX2 

SOX17 

CREB 

FOXA1 

FOXD3 

 

  



 
Supplementary Table 4. List of primers used in this study. 

Target Purpose Forward Reverse 

FR1 upstream RMCE exchange CCTCTGGGTAAATTTGGAACA GCAGAACGCCTGAAAAACTC 

FR1 downstream RMCE exchange CACCGAAAGCAGACAAACCT AACGCCTGAAAAACTCAGGA 

RMCE cassette 
RMCE cassette 
insertion upstream 

AGCAAAGGTGTTCTCATATGTCA CAAGTGGGCAGTTTACCGTA 

RMCE cassette 
RMCE cassette 
insertion 
downstream 

TGCACGTCTTTATCCTGGATT GGTTTAGTCTTCTCTGTGCCT 

FR1_ChIP qPCR ACCATGAAAGTATCAGTTCCAGGC GTGTAAGCTCTCAACCTTAAGCA 

Snrpd3 qPCR TCTCGCCTTCGCCTTCTAAC GGACTCTTCCCGGGCAATTA 

OCT4 qPCR ATGCCGTGAAGTTGGAGAAG GCTTGGCAAACTGTTCTAGCT 

Nanog qPCR TTGCTTACAAGGGTCTGCTACT ACTGGTAGAAGAATCAGGGCT 

Foxa1 qPCR GCATGAGAGCAACGACTGG CAGGCCGGAGTTCATGTTG 

Sox9 qPCR CAGACCAGTACCCGCATCTG AAGGGTCTCTTCTCGCTCTC 

Trkb qPCR GGCATTCCCGAGGTTGGA CTGGTTTGCAATGAGAATTTCCG 

Pax6 qPCR CACCAGACTCACCTGACACC TCACTCCGCTGTGACTGTTC 

Sox2 qPCR TAGAGCTAGACTCCGGGCGATGA TTGCCTTAAACAAGACCACGAAA 

FR1 upstream Bisulfite PCR AAAATTTAGGAGGTAGATAATGAGGATA CCCCTTTAATAACAACCCAATTC 

FR1 downstream Bisulfite PCR ATTTGAAGGGAAAGGATTAGTATGT ACCATTAAAAAAATTTTTAAACTCTTATAC 

Mm_Snrpd3 qRT-PCR TCTCGCCTTCGCCTTCTAAC GGACTCTTCCCGGGCAATTA 

Mm_SOX2 (Chen et al, 
PNAS, 2006) 

qRT-PCR GGCAGCTACAGCATGATGCAGGAGC CTGGTCATGGAGTTGTACTGCAGG 

Mm_OCT4 qRT-PCR ATGCCGTGAAGTTGGAGAAG GCTTGGCAAACTGTTCTAGCT 

Intergenic  ATAC-qPCR 
GGACAGACATCTGCCAAGGT 

 

ATGCCCCTCAGCTATCACAC 

 

FR1 ATAC-qPCR 
CACCGAAAGCAGACAAACCTG 

 

TGTATGAGCGCACAATAGCCA 

 

 

 



 

Supplementary Table 5. Hi-TransMet library preparation primers. UMI-primers in 
step 1, where is N is random nucleotide and X indicates the barcode sequence. 

Step Target Sequence 

1 FR1 AATGTACAGTATTGCGTTTTXXXXXXNNNNNNNNCCCCTTTAATAACAACCCAATTC 

2 

Upstream 
Forward 

TTCTTAGCGTATTGGAGTCCAAAATTTAGGAGGTAGATAATGAGGATA 

Downstream 
Forward 

TTCTTAGCGTATTGGAGTCCATTTGAAGGGAAAGGATTAGTATGT 

Reverse AATGTACAGTATTGCGTTTTG 

3 

Forward with 
adapter 

CAAGCAGAAGACGGCATACGAGATACATCGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNNNTTCTTAGCGTATTGGAGTCC 

Reverse with 
Adapter 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTGAATGTACAGTATTGCGTTTTG 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTGAATGTACAGTATTGCGTTTTG 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGAATGTACAGTATTGCGTTTTG 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTAATGTACAGTATTGCGTTTTG 
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