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Supplementary Information for “The influence of decision-making in tree ring-based climate 

reconstructions” by Büntgen et al. (2021) Nature Communications 

 

Ensemble reconstructions R1–R15 

 

Group 1 reconstruction (R1). R1 did not apply any selection criteria to the nine raw TRW datasets, 

because it assumes that freely available TRW data are correctly cross-dated by their initial providers, 

and that cross-dating without metadata is generally much more challenging. For each of the nine 

individual TRW datasets, R1 developed 16 different TRW chronologies based on slightly varying 

Regional Curve Standardisation treatments (RCS)1-3. The different approaches include varying degrees 

of filtering of the regional curve (i.e., secondary smoothing of the RC), in combination with variance 

stabilization4, temporal data splitting and index calculation (i.e., ratios or residuals after power 

transformation)5. Moreover, R1 used both the Standard (STD) and Arstan (ARS) chronology versions 

from the latest generation of the ARSTAN software6, with the latter normally containing lower first-

order autocorrelation structures7. Each of these chronology development techniques was applied on all 

TRW series per site (all), and separately on the living and relict series per site (liv/rel). The resulting 

RCS chronologies of the split datasets were merged at equal weight when sample size exceeded 20 

series8. Hence, R1 developed 16 different TRW chronologies (1–16): 1) all_ptRCS-10_STD (using 

RCS on all data, calculating residuals after power transformation, smoothing the RC with a length-

adaptive -10y cubic spline, and taking the STD chronology values), 2) all_ptRCS-10_ARS (using RCS 

on all data, calculating residuals after power transformation, smoothing the RC with a length-adaptive 

-10y cubic spline, and taking the ARS chronology values), 3) all_RCS_STD (using RCS on all data, 

calculating ratios, and taking the STD chronology values), 4) all_RCS_ARS (using RCS on all data, 

calculating ratios, and taking the ARS chronology values), 5) all_RCS-10_STD (using RCS on all 

data, calculating ratios, smoothing the RC with a length-adaptive -10y cubic spline, and taking the 

STD chronology values), 6) all_RCS-10_ARS (using RCS on all data, calculating ratios, smoothing 
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the RC with a length-adaptive -10y cubic spline, and taking the RST chronology values), 7) 

all_sfptRCS10 (using signal-free RCS on all data, calculating residuals after power transformation, 

and smoothing the RC with a length-adaptive -10y cubic spline), 8) all_sfRCS10 (using signal-free 

RCS on all data, calculating ratios, and smoothing the RC with a length-adaptive -10y cubic spline), 

9) liv/rel_ptRCS-10_STD (using RCS separately on the living and relict data, calculating residuals 

after power transformation, smoothing the RC with a length-adaptive -10y cubic spline, and taking the 

STD chronology values), 10) liv/rel_ptRCS-10_ARS (using RCS separately on the living and relict 

data, calculating residuals after power transformation, smoothing the RC with a length-adaptive -10y 

cubic spline, and taking the ARS chronology values), 11) liv/rel_RCS_STD (using RCS separately on 

the living and relict data, calculating ratios, and taking the STD chronology values), 12) 

liv/rel_RCS_ARS (using RCS separately on the living and relict data, calculating ratios, and taking 

the RCS chronology values), 13) liv/rel_RCS-10_STD (using RCS separately on the living and relict 

data, calculating ratios, smoothing the RC with a length-adaptive -10y cubic spline, and taking the 

STD chronology values), 14) liv/rel_RCS-10_ARS (using RCS separately on the living and relict data, 

calculating ratios, smoothing the RC with a length-adaptive -10y cubic spline, and taking the ARS 

chronology values), 15) liv/rel_sfptRCS10 (using signal-free RCS separately on the living and relict 

data, calculating residuals after power transformation, and smoothing the RC with a length-adaptive -

10y cubic spline), and 16) liv/rel_sfRCS10 (using signal-free RCS separately on the living and relict 

data, calculating ratios, and smoothing the RC with a length-adaptive -10y cubic spline). Since R1 

could not agree on a universally accepted, objective criterion for selecting a single best chronology 

version, it calculated the median of the 16 chronologies, which further contributed to variance 

stabilization in the resulting regional time-series over the past two millennia. The minimum and 

maximum chronology values of each year were considered as methodological chronology error limits9. 

Since R1 could not decide on a single best climatological product and season, it correlated the nine 

regional chronology medians against current-year, average June, July or August instrumental 

temperatures averaged from the nearest 0.5° ´ 0.5° CRU TS4.03 and 1.0° ´ 1.0° Berkeley grid 
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cells10,11. R1 decided to restrict all growth-climate response analyses, and thus proxy-target 

correlations to the post-World War II period for which the gridded climate indices in all regions are 

based on a markedly expanded and improved network of climatological station readings12, and for 

which each of the individual TRW chronologies is composed of hundreds of TRW samples. R1 then 

averaged data from the latest CRU and Berkeley versions because they are nearly identical (r > 0.98), 

and there is neither a statistical nor methodological and conceptual justification to prioritize one over 

the other. R1 considers proxy-target correlation coefficients > 0.4 as highly significant after correction 

for first-order autocorrelation (p < 0.01). Since the two mid-latitude TRW chronology medians from 

the Great Basin (GTB)13 and the Southern Colorado Plateau (SCO)14 in the western United States do 

not contain a sufficiently strong temperature signal between 1950 and present, likely affected by 

unprecedented anthropogenic drought stress during the past decades15, these two datasets were 

excluded in any further steps. All of the remaining seven ensemble medians (QUL, NSC, ALP, YAM, 

TAI, ALT, NYA), however, reveal significant positive correlation coefficients (r > 0.4; p < 0.01) with 

current-year, average June, July or August temperatures over the 1950–2002 CE period of proxy-target 

overlap. R1 then scaled the seven TRW chronology medians that exhibit highly significant correlation 

coefficients with regional June, July or August temperatures against their best summer season 

temperature targets using the mean of the nearest CRU and Berkeley grid points10,11. R1 used scaling 

instead of regression to avoid artificial variance reduction16. After scaling at the regional-scale, the 

median of the seven regional medians was used to reconstruct large-scale summer (JJA) temperatures 

from 1–2010 CE, which is the common period of all remaining regional TRW medians. R1 restricted 

the NH reconstruction to the extra-tropics > 30°N between 180°W and 180°E, and used the 

accumulated error bars from the regional TRW chronologies (using the minimum and maximum values 

per year from each of the 16 chronology versions), as well as the Root Mean Squared Error (RMSE) 

from scaling against the gridded regional summer temperatures9. 
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Group 2 reconstruction (R2). R2 did not apply any selection criteria to the nine raw TRW datasets. 

With a primary aim of capturing as much secular scale variability from the data as possible, RCS was 

employed. All TRW data were power transformed prior to detrending (via subtraction), while 

chronology variance was stabilised as a function of changing sample size through time4. The TRW 

data for each site were combined and sub-sampled for RCS detrending using two different approaches: 

i) RCS3grp – the data were split into three groups of different growth rates – low, medium and high. 

RCS was performed (using signal free) separately on each group and the final detrended group data 

averaged to create a composite chronology. Detrending was performed using the CRUST software3; 

ii) in mRCS multiple RCS groups were created using ‘Growthv36beta’ by splitting the data into 12 

sub-groups with respect to different classes of growth rate and age. RCS was performed on each sub-

group (no signal free) and the resulting indices averaged to create the final composite chronology. 

Each of the nine input TRW chronologies were truncated to exclude periods represented by less than 

ten series. To create the final NH composite reconstruction, each site chronology was standardised to 

z-scores with respect to the 1000–1850 period, and four different compositing approaches were used: 

i) A simple average (no spatial weighting) of the nine regional chronologies, adjusting variance in the 

final mean as a function of changing number of series through time. ii) Equal weighting of North 

America and Eurasian data, again adjusting variance in the continental and final NH mean series as a 

function of changing sample size. iii) A weighted average of the nine regional TRW chronologies 

using the data-specific running 30-year Expressed Population Signal (EPS)17 values as the weighting 

term. iv) Equal weighting of low and high latitude data; adjusting variance in the final mean as a 

function of changing sample size. Sites defined as lower latitude were: GTB, SCO, ALP and ALT. 

With the two RCS approaches and the four spatial averaging methods, R2 calculated an ensemble of 

eight slightly different NH composites were derived. Each NH composite series was scaled (same 

mean and variance) to CRUTEM JJA mean temperatures over the period 1880–1980 CE, and averaged 

together using the r-square (R2) relationship with CRUTEM as a weighting function. Two error terms 

were calculated and combined. Firstly, the RMSE was calculated over 1880–2009 (purposely 
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including the post-1980 period) for each NH variant. This portrays the calibration (plus validation for 

the post-1980 period) error. There is substantial divergence in the recent period so including the post-

1980 period increases the uncertainty range. R2 used the maximum RMSE values for each year to 

derive a calibration-based error for the final weighted NH composite. A further error term was 

generated by using the standard deviation between the eight scaled composite versions for each year 

to capture the detrending error related to the different variants. The calibration RMSE error and 

detrending error were then combined and doubled to give the final 2-sigma error for the weighted NH 

reconstruction. 

 

Group 3 reconstruction (R3). R3 did not apply any selection criteria to the nine raw TRW datasets. 

R3 used the RCS approach to develop TRW chronologies that have the potential to preserve low-

frequency information1,18-19. This method was supplemented by the signal-free approach and the 

calculation of multiple RC curves. The former was designed to mitigate possible limitations related to 

the trend-in-signal bias usually seen at the start and end of chronologies, whereas the latter approach 

was designed to mitigate limitations related to differing contemporaneous growth rates19,20. R3 

calculated all nine TRW chronologies based on all TRW series using the CRUST software3. For each 

chronology, R3 used four sub-RCS curves (divided as four different tree growth-rate classes) and the 

signal-free approach with a maximum number of iterations of ten. Furthermore, R3 used the age-

dependent smoothing approach to filter the RC curves, and stabilized the variance in the final 

chronologies4. The EPS and average correlation between series (Rbar) were also used to measure the 

strength of the ‘expressed’ chronology signal17. R3 only used the chronology interval with an EPS 

value larger than 0.85 to produce the final composite reconstruction. R3 then applied a nested principal 

component regression (PCR)21 approach to the nine TRW chronologies to conduct the warm-season 

(May–September, MJJAS) mean temperature reconstruction for the NH. R3 used the mean of the 

MJJAS 30–75°N temperature anomalies (with respect to 1961–90 CE) over land from the CRUTEM4 

dataset10 as reconstruction target. This approach created a suite of nests, considering that the number 
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of available TRW chronologies decreased before the earliest common year 208 CE and after the latest 

common year 2002 CE of the nine regional TRW chronologies. R3 used a sliding window approach 

for calibration (using 2/3 length of instrumental data over the 1880–2002 CE) and verification (using 

1/3 length of instrumental data over the 1880–2002 CE) to produce the final reconstruction22,23. In each 

nest, the initial calibration interval extends from 1880–1961 CE, and was incremented by one year 

until reaching the final interval 1921–2002 CE, creating an ensemble of 41 reconstruction members. 

The reduction of error (RE), coefficient of efficiency (CE), root mean square error (RMSE), and r-

square (R2) statistics were used to assess the skill of each nested model24. The temperature 

reconstruction, RE, CE, r-square (R2) and RMSE values were expressed as the ensemble median of 

the 41 members. Finally, the most replicated nest, i.e., the one from 208–2002 CE, was scaled to have 

the same mean and variance as the instrumental target over the period 1880–2002, and other nests were 

scaled to the most replicated one. The relevant time-series sections of each nest with no less than five 

chronologies were spliced together to derive the full-length reconstruction covering the period 1–2015 

CE. 

 

Group 4 reconstruction (R4). R4 applied a selection criterion based on the correlation between series, 

and removed those series that presented either negative correlations (including at least 30 years of 

data), or very low correlations (r < 0.2). R4 developed four different TRW chronologies based on 

slightly varying RCS treatments. The different approaches include varying degrees of filtering of the 

regional curve (i.e., secondary smoothing of the RC), in combination with variance stabilization4, 

temporal data splitting and index calculation, such as ratios or residuals after power transformation5. 

Moreover, R4 used both the Standard (STD) and Arstan (ARS) chronology outputs from the latest 

version of the ARSTAN software6, with the later generally containing less first-order autocorrelation7. 

Each of these chronology development techniques was applied on all TRW series per site (all). The 

resulting RCS chronology versions of the split datasets were merged at equal weight when sample size 

exceeded 20 series. Hence, R4 developed four different TRW chronologies (1–4): 1) all_ptRCS_STD 
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(using RCS on all data, calculating ratios after power transformation, and taking the STD chronology 

values), 2) all_ptRCS_ARS (using RCS on all data, calculating residuals after power transformation, 

and taking the ARS chronology values), 3) all_RCS_STD (using RCS on all data, calculating ratios, 

and taking the STD chronology values), 4) all_sfptRCS (using signal-free RCS on all data, calculating 

ratios after power transformation, and taking the STD chronology values. R4 correlated the regional 

chronologies against current-year, average June, July or August instrumental temperatures averaged 

from the nearest 0.5° ´ 0.5° CRU TS4.03 grid cells10. R4 decided to restrict the growth-climate 

response analysis, and thus proxy-target correlations to 1902-2014 period for which each of the 

individual TRW chronologies is composed of hundreds of TRW samples. R4 considered proxy-target 

correlation coefficients > 0.4 as highly significant after correction for first-order autocorrelation (p < 

0.01). Since the two TRW chronologies from northern Yakutia (NYA)25 and Taimyr (TAI)26, did not 

contain a sufficiently strong temperature signal between 1902 and present, or portray a stronger signal 

with other climatic variables (i.e., precipitation or drought indices), these two datasets were excluded 

in any further steps. All of the remaining seven chronologies (GTB, SCO, QUL, NSC, ALP, YAM, 

ALT), however, reveal significant positive correlation coefficients (r > 0.4; p < 0.01) with current-

year, average June, July or August temperatures over the 1904–2014 CE period of proxy-target 

overlap. R4 selected the chronology from each site with the best growth-climate correlation (in all 

cases the best performance was given after either ‘all_ptRCS_STD’ or ‘all_sfptRCS’), and then 

regressed the mean of the chronologies. R4 calculated the robust average that is less affected by 

outliers, between the individual detrended chronologies to compute one final chronology. R4 

reconstructed large-scale summer (JJA) temperatures from 1–2010 CE, which corresponds to the 

common period of all seven regional TRW chronologies finally used. R4 restricted the NH 

reconstruction to the extra-tropics > 30°N and between 180°W and 180°E, and used the Root Mean 

Squared Error (RMSE) from regressing against the gridded regional summer temperatures. 
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Group 5 reconstruction (R5). R5 noted a large number of very short TRW series for several sites, 

and dealt with those in two passes. First, very short series (< 40 years) were removed from all regional 

data files due to concerns about how very rapid growth might distort the final TRW chronology 

(despite standardization procedures). This was considered particularly relevant when, for some sites 

(most notably ALP), many of the very short series were from living trees that would form the modern 

end of the resultant chronologies. As R5 has previously found that available TRW data may still 

contain dating issues, cross-dating within each site file was (re)checked using the COFECHA software. 

Any TRW series with a correlation of < 0.3 with the site master chronology was examined in more 

detail. A number of TRW series were discarded due to very poor correlations with the master 

chronology for periods with reasonable sample depth (≥ 25). However, if individual TRW series had 

low correlations due to only one very poorly correlated segment, they were not removed from the 

regional files. Although the sheer numbers of samples for each site meant that these were unlikely to 

have impacts on the final series, R5 preferred to use ‘clean’ files in any further step. A total of three 

series across all sites displayed very obvious dating errors across the whole sample and these were 

corrected by shifting the whole series. A typographical error in the GTB series was also corrected. At 

this point, R5 conducted a second pass for short series. The definition of ‘short’ was now related to the 

typical lengths of series at each site. SCO and GTB typically consisted of very long TRW series, so 

only series of < 100 years were removed; for ALT, series of < 70 years were removed; for QUL and 

YAM, series of < 40 years were removed. For the remaining sites, series of < 50 years were removed. 

However, short individual TRW series covering periods of very low sample depth (< 25) were retained 

in each dataset. The final chronologies therefore included the following number of series: ALP = 1788, 

ALT = 736, GTB = 721, NYA = 1799, QUL = 2594, SCA = 1126, SCO = 224, TAI = 349, and YAM 

= 655. In deciding how to standardize series, R5 first visually examined the TRW series of each site, 

finding that many, across all sites, exhibited declining growth with age. Some studies have identified 

RCS as being unsuitable for Bristlecone pine (GTB and SCO) due to distorted growth patterns as well 

as issues around estimating pith offset14. Therefore, negative exponential curves were used to 
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standardize series from these two sites. Indices were computed using power transformed residuals5. 

For other sites, R5 used multiple RCS curves. Several studies for several sites commented on, or 

alluded to, the ability to estimate pith offset or careful sampling to capture pith27-29. Data were split 

into groups based on the age spread at a site, and growth rate. The number of series per class was also 

a consideration. All indices produced were based on power transformed residuals rather than ratios5. 

Signal-free detrending aims to maintain middle frequency variance related to climate variability and 

has been shown to reduce end-series distortions in many cases4. All TRW series were processed in the 

signal-free framework. However, distortion of the ends of series has been reported in some cases, so 

the standardized version of series was compared with those subjected to signal-free processing. The 

ALP data had obvious end distortion effects the standard chronology was utilized for this site. Signal-

free chronologies for all other sites were produced. In order to select a target season for reconstruction, 

R5 examined the local seasonal signal of the different chronologies across small regions around the 

sites. For this purpose, R5 used the 1° ´ 1° gridded Berkeley Earth anomaly data11. Average monthly 

correlations across surrounding grid squares (number varying depending on site extent) were 

calculated, and from these, several potential reconstruction seasons for the warmer months were 

identified. These seasons included June–August, July–August, June–July and July (JJA, JA, JJ and 

July). The relationship across each grid square in a slightly larger area surrounding the site was then 

examined to obtain an idea of signal fidelity of each potential season on this regional scale. Based on 

results for both an ‘early’ (1900–1950 or 1900–1940 (YAM) and a ‘late’ (1951–2000 CE, varying 

slightly due to divergence issues – see below), the JJ season was considered optimal across sites. R5 

then plotted the averaged JJ temperature series across the relevant region against the chronology (from 

1900 to end of the chronology) to visually check for any obvious signs of divergence. Several sites 

showed a clear divergence at the modern end of series (most notably in TAI and ALT). Data after 2000 

were therefore not included in the calibration or verification periods in the subsequent reconstruction 

in an effort to avoid any distortions this might introduce. To test the ability of the 9 chronologies to 

capture variability in NH temperature, R5 opted to use the CRUTEM4.0 NH data10 averaged anomaly 
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series for JJ as the target (0–90°N and 180° W to 180°E), noting that the chronologies are all located 

in the mid- and high-northern latitudes, and hence that signal strength is likely compromised. Further, 

R5 used a simple principal component regression approach for reconstruction in which all 

chronologies, and lag-1 chronologies were forced into the analysis.  Lag-1 chronologies were used 

because preliminary analyses indicated statistically significant associations with summer temperature 

in the prior season (ALP, NYA, QUL, TAI, SCO, and YAM) Autoregression was modelled for both 

the climate and TRW series. No weighting applied to predictors, and this, along with their all being 

forced into the analysis, may present a further challenge to signal strength. Variance in the 

reconstruction was stabilized through the use of a 400-year spline. A split calibration-verification 

period scheme was used in which the 1901–2000 CE period was used for calibration to try to capture 

as much variability in the model calibration period as possible. The 1850–1900 CE period was set 

aside for verification, even though there is less data available for this period; yet another potential 

challenge for this reconstruction. The resulting reconstruction covered the 1–2000 CE period. Error 

estimates were calculated in two ways; first using 300 bootstrapped reconstructions, and second, 

through making use of the bootstrapped RMSE values. R5 considered this reconstruction to be 

minimalist in its sophistication. 

 

Group 6 reconstruction (R6). R6 excluded all data from the two sites GTB and SCO, since those did 

not reveal a sufficiently strong temperature signal. R6 therefore included only seven regional TRW 

chronologies in the final large-scale NH reconstruction (QUL, NSC, ALP, YAM, TAI, ALT and 

NYA). For standardisation, R6 used the RCS SSF approach2,30 via the open access software 

(RCSigFree_2018_Win) with the following settings: indices by ratios, power transformation, age-

dependent spline smoothing, robust Tukey bi-weight mean, and no pith offset estimates. R6 then 

normalized the individual site chronologies over their common period (1–2010 CE), and combined 

them to provide an overview of variations in tree growth. For further reconstruction purposes, R6 

simply averaged the seven normalized TRW chronologies, because all of them expressed positive 
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correlations between each other. On the basis of site and mean growth-climate response analyses, R6 

used JJA mean temperatures as the target season for climate reconstruction. Since it was difficult to 

test if the climate signal in the seven TRW chronologies was constant over time, R6 decided to not use 

multiple regression or weighted averaging, but conclude that the simple average of the seven 

normalised TRW chronologies invokes the fewest assumptions though still provides a reasonable 

correlation with the target season. R6 averaged gridded CRU TS4.04 data over the sevven regions, 

where spatial correlation coefficients of the site TRW chronologies against gridded JJA temperatures 

were significant at p = 0.1. The final target grid boxes varied between 0.5–10° latitude and 2.5–10° 

longitude, and the arithmetic mean of all grid boxes (from the seven regions) was calculated as 

anomalies with respect to the 1961–90 reference period. R6 used the +/- 2 standard error as 

reconstruction uncertainty, which is probably an underestimation of the ‘true’ error range. 

 

Group 7 reconstruction (R7). R7 detrended all individual series of all nine TRW datasets using the 

RCS method at a chronology-specific scale. R7 applied a spline with a 50% cut-off to the RCS curve 

in the R dplR package31. Due to a lack of pith offset data, R7 arbitrarily set the pith offset data for each 

series as (cambial) year 1. R7 selected a subsample sample strength (SSS) threshold of ≥ 0.85 to 

truncate each chronology32. No individual TRW series was removed from any of the originally 

published regional chronologies. To select a temperature target for reconstruction, R7 used monthly 

temperature anomaly (relative to 1961–90 CE) data of the gridded (5° ´ 5°) CRUTEM.4.6.0.0 (1900–

2017 CE) data set. Based on the field correlation and climate response in the original publications, as 

well as the geographical distribution of the chronologies, R7 used temperature data for the extratropical 

NH (NH; 30–90°N) as potential reconstruction target. R7 averaged monthly temperature anomalies 

over the NH domain to obtain potential monthly temperature targets. R7 then calibrated each TRW 

chronology against the monthly and seasonal NH temperature anomaly time-series (1900–2017 CE). 

Based on the most common of these climate responses, R7 selected May through September as the 

seasonal target for reconstruction. R7 also examined the coherent variability among the nine 
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chronologies using Pearson correlation analysis over three periods (1–2016; 1000–2016; and 1800–

2016 CE). Of the nine regional chronologies, R7 selected five chronologies to include in our NH 

temperature reconstruction based on three criteria: 1) statistically significantly positively correlated 

with summer (May–September) NH temperature anomalies (excluding TAI); 2) showed significant 

correlation with the other chronologies (eliminating NYA and QUL), and 3) equal weight in 

geographical distribution, meaning only one chronology, with the stronger temperature signal and the 

longest reliable period, was included in the final reconstruction per region, even if two or more 

chronologies were available (eliminating SCO). Five temperature-sensitive regional TRW 

chronologies (ALP, ALT, GTB, SCA and YAM) were selected in our final reconstruction. R7 used a 

nested principal component analysis (PCA) approach33 to reconstruct NH summer temperature. The 

PCA method can reduce the input data matrix to a few component scores and can address the common 

coherent variability in the proxies33 without a large loss of signal and has been used in large-scale 

reconstructions33,34. R7 applied the PCA analysis based on variance maximize rotation using the R 

package ‘psych’ for three nesting periods (at least four chronologies in each nest)35, which were 

determined by the length of the common period among chronologies with SSS ≥ 0.85. To produce 

each PC nest, R7 selected the first principal component (PC1), which accounted for more than 40% of 

the total variance for each of the three nests. R7 examined the strength of the temperature signal in 

each PC nest using Pearson’s correlation coefficients between PC nest and potential monthly and 

seasonal temperature targets and selected the May–September temperature anomaly as our 

reconstruction target because it was the most strongly correlated with each of the PC nests. Finally, R7 

applied backward nest and forward nest PCA reconstruction procedures to merge the three nests. R7 

used split-period calibration and verification tests to determine the reconstruction skill of each PC nest 

against two sub-period of the CRU NH May-September temperature target (1900–1955 and 1956–

2010 CE). R7 assessed reconstruction skill using the statistical parameters of the reduction of error 

(RE) and coefficient of efficiency (CE)36. R7 estimated the uncertainty of the reconstruction based on 

the calibration uncertainty37, which R7 expressed as root mean square error (1 RMSE) derived from 
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the linear regression of each PC nest against the temperature target. The range of 1 RMSE was added 

to the reconstruction as uncertainty intervals for each PC nest. 

 

Group 8 reconstruction (R8). R8 applied no selection on the individual TRW chronologies, except 

one based on the length. The TRW series of length less than 100 years are removed. For each of the 

nine sites, the ARGC method38 is applied to standardize the individual TRW series and to calculate a 

master TRW series. The standardisation is based on the biological growth trend, which tries to remove 

the trend linked to the age of the tree. The process is adaptive in that way that for each tree, the trend 

is based on the regional curve approach but modified according to the initial and the maximum growth 

rates (measured by the TRW increments) of each tree. R8 used an artificial neural network to estimate 

a common relationship between each TRW and three predictors: the age of the ring, the initial (mean 

of the first 10 rings) and the maximum growth calculated on the juvenile period set here on 50 years. 

When the squared-R of the so calculated trend explains a variance inferior to the mean growth (on the 

whole series), the standardization is done by smooth curve (loess function from R-package MASS). 

The indices are defined as the ratio between the TRW and its corresponding trend. For the temperature 

data, R8 used the land temperature dataset CRUTEM.4.6.0.0.anomalies.nc provided by the Climate 

Research Unit10. It contains time-series from 1850–2019 by grid points spaced by 5° of longitude and 

latitude. The NH data from 30–90°N are selected. Only the time-series larger than 50 years are kept, 

such as 452 series from a total of 864. The missing data are imputed using the fill.SVDimpute function 

of the filling R-package. The JJA mean temperature is chosen as this variable is the most commonly 

used in the nine initial papers describing the TRW data. A principal component analysis of the 452 

retained gridded JJA series show that the first principal component explains 6% of the total variance 

and is closely correlated with the NH mean. R8 used the mean NH (> 30°N) JJA temperature as 

variable to be reconstructed, denoted T_JJA_NH. It covers the 1850-2019 period. As a first check, a 

regression between T_JJA_NH and the nine TRW chronologies is calculated. The squared-R is 0.23. 

R8 used the analogue method based on a decomposition of the series in low and high frequencies39 to 
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perform the final climate reconstruction. The proxies and climate series are decomposed into two 

frequency bands by using two complementary filters: high frequency (HF, with frequencies f > 0.2), 

and low frequency (LF, f < 0.2). The reconstruction of T_JJA_NH in each frequency band is based on 

the analogues defined respectively on the HF and LF proxy series, respectively. The AM is applied to 

extrapolate the temperature series on the common era in both frequency band. R8 used a block 

Jackknife method to verify the reconstruction. It simulates 50 subsets of data by randomly taking 

observations in the common time-period (1850–2002 CE). For each of the 50 simulations and for the 

common period: 1) An observation is randomly drawn for independent verification and the three (one) 

neighbour(s) for LF (HF) respectively, on each side, are excluded as potential analogues, to avoid 

overestimation due to autocorrelation. 2) Also, to avoid autocorrelation problems in the LF band, one 

observation is randomly taken by blocks of three for the possible analogues, for the HF band, all the 

not drawn observation may be used for analogues. 3) the climate of all the observations is estimated 

using the closest one from the possible analogues (Euclidian distance). Points 1 to 3 are repeated 50 

times. At the end, R8 obtained 50 observations for independent verification (prediction statistics) and 

statistics calculated on the other observations are calibration statistics. The two frequency bands are 

recombined by summation and provide estimates of full spectrum of T_JJA_NH. Temperature 

estimates from the randomly taken years are considered for an independent validation. Comparisons 

of these 50 estimates with the observed temperature from the included years provide calibration 

statistics. The reconstructions are then summarized into median and 95th percentile confidence 

intervals. On the LF band, the squared-R (calibration) and the RE (verification) are respectively 0.76 

and 0.71 and on the HF band, they are respectively 0.55 and 0.75. The final squared-R (HF and LF 

recombined) is 0.72 and the RMSE is 0.17°C 

 

Group 9 reconstruction (R9). R9 applied no selection criteria on the nine raw TRW datasets. It 

assumes that freely available TRW data are correctly cross-dated by their providers, and that cross-

dating without metadata is not possible. For each of the nine individual TRW datasets, R9 developed 



 

 15 

nine detrended TRW chronologies by fitting a modified negative exponential curve (hereafter referred 

to as NegExp) representing a classic nonlinear model of biological growth to individual series of tree 

measurements. If that nonlinear model cannot be fitted, then a standard linear model was fitted. 

Dimensionless indices were obtained by dividing the observed TRW data by the value predicted by 

the NegExp or the linear model. Growth indices were averaged for each TRW dataset by year using a 

Tukey’s biweight robust mean which minimizes the influence of outliers using the DPLR package in 

R 4.0.2. R9 used a principal component regression (PCR) approach to transfer TRW data into NH 

summer (JJA) temperature units, expressed as anomalies with respect to the 1961–90 CE reference 

period. A reduced space signal of the proxy records was then extracted using principal component 

analysis (PCA), resulting in a set of principal components (PC) and PC loading patterns. The first n 

PCs with eigenvalues > 1.0 were retained as predictors to develop a multiple linear regression model. 

A multiple cross validation using random calibration sets (bootstrapping) was applied to the PCR to 

estimate the skill of the reconstruction and confidence intervals around the reconstructed anomalies. 

Because each chronology length differs, an iterative nesting method was used to develop the 

temperature reconstruction. This procedure entails the sub-setting of the original dataset into complete 

data matrices without missing values, so-called nests. In total, six nests have been adjusted to the 

common period of all series. The nested PCR was computed schematically following a three-step 

procedure. In each nest, firstly, the number of predictor variables was reduced using a principal 

component analysis; secondly, the PCs with eigenvalues >1 were retained as independent variables 

within Ordinary Least Square (OLS) multiple regression models while a mean NH JJA temperature 

series (40–90°N), obtained from the Berkeley Earth Surface Temperature (BEST) gridded (1° ´ 1° 

latitude/longitude) dataset11 over the period 1801–2002 CE, was used as a target. The robustness of 

each model was tested based on a traditional split calibration/verification procedure bootstrapped 1000 

times and the final reconstruction of each nest was computed as the median of the 1000 realizations, 

given with their 2.5–97.5 percentiles. The skill of each reconstruction has been evaluated based on (i) 

the coefficient of determination (r2 for the calibration and R2 for the verification periods), (ii) reduction 
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of error (RE) and (iii) coefficient of efficiency (CE) statistics. The final reconstruction (0–2016 CE) 

was achieved by splicing all the nested time-series after the mean and variance of each nested 

reconstruction segment had been adjusted to the best replicated nest (0–2002 CE).  

 

Group 10 reconstruction (R10). R10 was motived by a concern for how uncertainty in the mean 

value of individual series accumulates backwards in time, as necessitated by the fact that individual 

series span a small fraction of the total interval of the reconstruction. In the most extreme case (YAM), 

the total record period is more than twenty times as long as the average core length and more than 

eight times as long as the longest individual core record. Thus, no common calibration period exists. 

Simulations indicate that the uncertainty in aligning overlapping sections leads to accumulated 

uncertainty in the mean value of subsequent sections that can come to dominate the low-frequency 

variability of the inferred climate history. To better control uncertainty in overlapping segments, R10 

developed an iterative method to minimize the least-squared difference between pairs of estimates for 

each year across all overlaps between a series of cores by adjusting the unknown mean value of each 

series. The computational cost of our implementation grows rapidly with number of records. In 

practice, R10 used 200 cores per site, which requires approximately an hour of computation per site. 

The 200 cores are selected both according to number of data points and evenness of coverage. For each 

site, R10 first selected the longest single record and next that record with the most years not sampled 

by the first core, continuing on in this manner until all years are sampled at least once. R10 then picked 

cores that had the most record years not yet sampled twice and so on until a total of 200 cores are 

selected. All further analysis involves only this subset of 200 cores per site. A more efficient procedure 

for determining optimal mean values is likely possible and would permit for selecting more cores. Our 

approach to pre-processing each of the 200 cores is simple and standard. Each core is detrended by 

first power transforming and then fitting and subtracting a spline curve with a rigidity such that 50% 

of the signal passes at a length equal to 2/3 of the core record length. R10 recognized that methods 

have been designed to preserve more low-frequency signal than spline detrending, but R10 was 
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concerned that such methods may be prone to larger error variance in the very early portion of the 

record, and that such error may then lead to inflated low-frequency variability when many records are 

daisy-chained across an interval much longer than the length of individual cores. After detrending, 

R10 scaled each series to unit variance and calculate the mean value for each series that minimizes the 

global-squared error between each pair of common estimates, as described in the foregoing paragraph. 

A single chronology is obtained at each site by averaging across all cores for each year between 1 and 

1970 CE. Each chronology is variance-scaled to match JJA average temperatures from the closest 

time-series in the Gridded Berkeley Earth Surface Temperature Anomaly Field (version 16-Jan-2020), 

with the mean of the TRW chronology set to zero over the common calibration period. A statistically 

significant correspondence (p < 0.01) between the chronology and nearest instrumental temperature 

record is found at all nine sites. Therefore, all sites are retained in computing a large-scale average. A 

large-scale reconstruction was obtained simply by averaging the individual reconstructions from each 

of the nine sites. For purposes of comparing against the trees-only reconstruction, a thermometers-only 

reconstruction was also obtained by setting the mean of nine thermometer time-series (taken from 

closest grid boxes to sites) to zero over a common calibration period and averaging. The combined-

reconstruction represents the average of the trees-only reconstruction and the thermometers-only 

reconstruction over their period of mutual overlap. 

 

Group 11 reconstruction (R11). R11 applied no selection criteria to the raw TRW series, as it was 

assumed that the datasets were properly cross-dated and quality checked by the data providers. 

However, a handful of duplicate measurements (< 10 series) were removed prior to analyses. The 

standardization was performed site-by-site in MATLAB Version: 9.5.0.1033004 (R2018b), adopting 

a multiple (2-curves) RCS method19. The TRW data were first aligned by ring age. The alignment was 

based on the earliest date of each tree core, as no pith-offset estimates were available for the material. 

A simple average was calculated on the aligned series. Note however that where the age-aligned 

replication dropped below 20 series, the data average was replaced with a mean of the previous 50 
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years to the drop below 20 samples. A 100-year cubic smoothing spline was then fit to the resulting 

mean curve. Subsequently, data were separated into two cohorts based on the RCS curve: a fast-

growing cohort, a mean of the TRW measurement > mean of the RCS curve (for the period of overlap 

between the RC and each measurement) and a slow-growing cohort (mean of the TRW measurement 

< mean of the RCS curve (for the period of overlap between the RC and each measurement). The 

procedure was then repeated for the two cohorts separately, where separate RC’s were created for the 

faster- and slower-growing samples. Individual TRW measurements were then divided by the 

corresponding RC to produce TRW indices. The final chronology was produced as an arithmetic mean 

of all indices from both cohorts. The variance adjusted CRUTEM4v data40 surface temperature was 

utilized for growth-climate response analysis. To assess the characteristics and strength of the site 

temperature response of the individual predictor series, R11 first performed calibration experiments 

between individual TRW records and local/regional temperatures (mean of all 5° ´ 5° longitude-

latitude grid points within each sampling region). The calibration was conducted over a number of 

periods (e.g., post-1950, post-1900, post-1850), using both the original as well as first-differenced 

data. After exploring the local temperature response, R11 also evaluated the sensitivity of the TRW 

records to large-scale temperature variability. All nine chronologies were determined to possess useful 

information, and were therefore normalized (z-scored) over their common period and then averaged, 

given equal weight to each individual series, into a composite chronology spanning the 1–2010 CE 

period. The composite chronology was then calibrated against area-weighted, extratropical NH 

(bounded by coordinates 30–70°N and 180°W to 180°E) average JJA temperature. Collectively, these 

assessments identified mean JJA average temperature as the most optimal instrumental target for 

reconstruction. This selection was based on a trade-off between the length of the season and the median 

correlation coefficient between the temperature and all the predictor time-series. The composite 

chronology revealed a significant positive correlation with JJA NH temperatures over the 1850–2010 

period, both based on original (r = ~ 0.6; p < 0.05) and first-differenced (r = ~ 0.3; p < 0.05) TRW and 

temperature series. For the final reconstruction, R11 therefore utilized the composite chronology 
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derived from all nine sites as the predictor series, and the area-weighted extratropical NH JJA 

temperature averages as the reconstruction target (predictand). A split period (1850–1930, 1931–2010) 

calibration/verification procedure was used to assess the skill of the reconstruction, whereas the final 

model was built over the entire 1850–2010 period. Statistics that were used to evaluate the quality of 

the estimates included R2, R2 adjusted, RE and CE statistics. The final reconstruction, covering the 

period 1–2010 CE, was scaled to the instrumental data over the 1850–2010 period. The reconstruction 

uncertainty was estimated by RMSE, based on the residuals between actual temperature and scaled 

estimates.      

 

Group 12 reconstruction (R12). R12 started from the standardization of the individual TRW series. 

Age band decomposition (ABD)41 was explored in removing the age-dependent growth variability 

from the TRW data representing the nine preselected chronologies/sub-regions. This method (ABD) 

was used since it removes the effect of tree age from the original (raw) TRW series but preserves the 

other (presumably climatic) long-term, low-frequency variability in the resulting chronologies as 

originally demonstrated for a NH collection of TRW-chronologies41. The North American, European 

and Asian chronologies were considered representing three regions used for building the regional ABD 

series. A 10-year banding for tree rings up to 100 years old (ring count was used for estimating the 

biological tree age since no information of pith offset was available) was used to account for the faster 

rate of declining TRW in younger trees, and a wider banding of 50-years was used for tree rings 

representing older trees. The TRW series derived from rings within their bands were averaged within 

the sub-region they represent and the mean series were converted to z-scores. The z-score records were 

regionally averaged, the resulting mean series being converted to z-scores. The base period 1701–2000 

CE was used for all the foregoing z-score calculations. Mean chronologies were calculated over the 

period when they contained at least eight series corresponding to intermittent minimum over the 

common period which accordingly represents the years 72–2002 CE. The minimum number of eight 

series was decided based on the fact that one of the chronologies contained less than ten series over 
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several pre-instrumental intervals with a transient eleventh century minimum of eight series. The target 

data for the reconstruction was the instrumental CRUTEM3v temperature dataset42, expressed as 

temperature anomalies from the base period 1961–90 CE on a 5° ´ 5° grid-box basis43. A subset of 

data representing latitudinal band between 15–65°N and JJA season was used. This was the latitudinal 

band with strongest temperature correlations constantly over the sub-periods (1901–1951 and 1952–

2002 CE). Calibration period was the 20th century (here, 1901–2002 CE). Linear regression (R2 = 0.43) 

was used for substituting the proxy data with reconstructed temperature values. The reduction or error 

and the coefficient of efficiency were positive from the early (1901–1951) and late calibration (1952–

2002) trials over the late (1952–2002) and early verification (1901–1951) data withheld from the 

respective calibrations, which is commonly taken to indicate that the reconstruction has some skill in 

reproducing the instrumental observations. 

 

Group 13 reconstruction (R13). R13 applied no preselection to the raw TRW data. Whenever 

possible, R13 used existing detrended and standardized chronologies, following a philosophy that the 

collectors and developers of individual sites have the most direct knowledge of and experience with 

detrending and standardization of those species and locations. Publicly available and published 

chronologies were used for ALP, ALT, QUL, and SCO. This was particularly important for ALP and 

QUL, as both in the detrending procedure applied by the original authors was complex, and in the case 

of QUL more standard approaches can yield substantially different low frequency behaviour in the 

final chronology. The Tornetrask chronology30 was used for SCA and the Yamal chronology44. R13 

applied the same detrending to the GTB TRW data as used by13: Negative exponential, linear, or 

negative slope with power transform, residuals chronology calculation5, and variance stabilization4 

and used the ARSTAN chronology. R13 used a single curve RCS with spline to develop the 

chronology for NYA and TAI. R13 tested the two-curve approach for TAI used by26, but there was not 

sufficient metadata available and experiments yielded inconsistent and highly sensitive results. R13 

evaluated the potential seasonal temperature signal at each individual site against the CRUTEM4.6 



 

 21 

land-only dataset45 and the kriged HadCRUT 4 temperature field46 on monthly time steps applying 

both raw and first differenced data.  Sites have varying seasonal responses.  For instance, ALP appears 

to be unambiguously a JJA signal (r > 0.40), with the strongest signal in July and August, while the 

ALT is dominated by a June signal (r = 0.57). TAI and YAM are largely July (r = 0.57 and r = 0.66, 

respectively). Unsurprisingly, given considerable autocorrelation in the North American five needle 

pines47,48, the interannual variability at GTB and SCO is not associated strongly with any individual 

month and the temperature signal appears to be stronger at lower frequencies13. R13 selected a JJA 

reconstruction target although also tested JJ, JA, and July alone as alternatives targets. All the European 

and Asian chronologies and QUL have local correlations with the JJA temperature field of r > 0.40, 

while GTB and SCO both have weak local interannual correlations which confounds high resolution 

reconstruction and skill over western North America. The final reconstruction target was the 40–75°N 

zonal mean between 180°W and 180°E from the CRUTEM4.6 land-only dataset45,49. R13 used a nested 

Composite-Plus-Scale (CPS) approach49,50 to scale the average of the available TRW chronologies to 

the mean and variance of the zonal mean JJA temperature target and confined the period of the 

reconstruction to 1–2019 CE. R13 used a calibration period of 1930–1996 (the period of complete 

coverage of all chronologies) and validated against 1880–1929. R13 used an ensemble method where 

up to three of the nine available TRW chronologies were removed from the predictor pool to generate 

a 130-member ensemble reconstruction with varying predictor datasets and to observe the effect of 

including individual or groups of records, especially the low frequency dominated GTB and SCO. R13 

identified reconstruction ensemble members that had RE > 0.0 for at least the last millennium and used 

these as a subset of the most skilful reconstructions (five of the 130). R13 also correlated the median 

of these reconstructions back against the HadCRUT4 field to evaluate the spatial patterns of 

reconstruction skill across the hemisphere. In addition to RE, uncertainties were quantified using the 

full spread of the 130-member ensemble and the Root Mean Square Error (RMSE) calculated for the 

calibration and validation periods.  
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Group 14 reconstruction (R14). R14 did not conduct any screening based on the length of individual 

TRW series, though excluded those series that had an inner date earlier than BCE 500. Site-level 

composite chronologies were generated via the signal-free implementation of Regional Curve 

Standardisation using the RCSigFree software (version 45v26)3. TRW measurements were converted 

to indices by computing residuals from the estimated growth curve and then power transformed5. The 

estimate of the RCS curves for each chronology was made using an age-dependent spline (with its 

initial stiffness set to ten years). The robust Tukey bi-weight robust mean was used to compute the 

mean chronologies, and its variance was stabilized by applying an age-dependent spline4. 

Chronologies were truncated to exclude the portion of the record when the Expressed Population 

Signal fell below the 0.85 threshold17. R14 identified the seasonal climate signal in each regional TRW 

chronology using the Seascorr program. For each site, the chronology was compared against local 

monthly temperature and precipitation values from Version 4.01 of the Climatic Research Unit’s 

gridded climate dataset51. Most TRW chronologies (seven of nine) had highest correlations with mean 

temperatures from JJA or July–September. The two chronologies that did not exhibit a significant 

correlation with summer temperatures (SCO and NYA) were excluded from further analysis. The 

spatial correlation between each of the remaining seven TRW chronologies and mean JJA temperature 

was mapped across the NH, and based on the geographic patterns from those tests, R14 identified 35–

90ºN as a reasonable domain for the reconstruction target. The final large-scale reconstruction was 

generated using a Gaussian process regression52 and an autoregressive term53 estimated from the 

observed temperature data (after they were transformed to logarithms). Error estimates (the 90% 

bounds) were produced by a Bayesian bootstrap algorithm54, which generated 2000 emulations of the 

Gaussian process. 

 

Group 15 reconstruction (R15). R15 applied no selection criteria on the nine raw TRW datasets, the 

correct cross-dating done by their providers was verified with some randomly chosen samples. Before 

detrending, TRW series of less than 50 rings were excluded from the dataset to avoid a potential 
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adverse influence on the calculation of the regional curve in the RCS process, since pith offset 

information was not available. R15 developed nine individual TRW chronologies for the different 

regional datasets. First, a data-adaptive power transformation was applied on the raw data to reduce 

the influence of outliers. To avoid potential bias in applying any kind of RC curve with negative slope, 

TRW data showing no significant slope or an even positive long-term trend (assuming that a positive 

slope cannot be related to an age-related signal) with increasing tree age, R15 separated all those 

individual series and detrended them by subtracting the mean of the original values in ARSTAN V44h3 

software version6. If a positive juvenile growth trend was present only during the first 20 years of 

growth, R15 removed this juvenile phase from the data. In doing so, the developed RCs showed a 

monotonic decline, which helped to avoid possible artefacts by detrending with RCs with complex 

shapes.  Subsequently, R15 applied a signal-free RCS on all datasets, residuals were calculated from 

the RC after power transformation, and the RC was smoothed with a length-adaptive -10y cubic spline 

using the software RCSigFree V45_v2b. In doing so, R15 did not differentiate between series from 

living and relict trees. In case that the RC showed a turning point with increasing trend in the younger 

section, R15 cut this increasing part of the RC off and used a straight by elongating the RC with the 

lowest value before the turning point. This turning point was reached at different tree ages in the 

different datasets (varying from 300–600 years), depending on the mean segment length of the 

included series. Before calculating the chronologies by calculating bi-weight robust means, R15 again 

merged the RCS-detrended and straight-line detrended series of each dataset in dplR package55. Since 

R15 had no local or regional climate data at hand, it correlated the nine regional chronologies against 

0.5° ´ 0.5° CRU TS4.04 grid cells51. For each regional chronology, R15 computed regional means of 

climate data for the same spatial realm represented by the TRW data. This grid points included in these 

spatial windows varied from 1 (chronology SCO) to 1600 (chronology NYA). TRW data were 

correlated against monthly means of temperature and precipitation using a time window including all 

months of the growth year and the year prior to growth. Beside monthly data, also different 

combinations of seasonal averages were tested. To be able to calculate a north-hemispheric mean 
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temperature reconstruction, R15 selected a seasonal window as reconstruction target that showed high 

correlations between TRW data and temperature over all sites. Although highest mean correlations 

were found for the short summer season July–August (r = 0.41), R15 decided to reconstruct the June–

October season, which showed only slightly lower mean correlations (r = 0.38), but represented a 

considerably longer period. R15 was well aware that in doing so, R15 lost some percent of explained 

variance in the regional climate reconstructions, since for some chronologies this was not the season 

showing the highest correlation with temperature data. After trying different time windows, R15 

decided to compute proxy-target correlations over the period 1901 to the last year of the individual 

regional chronology. The chronology error was estimated as the bootstrapped standard error (± 2 SE) 

of the interannual TRI variation and the calibration error is calculated as the RMSE of the validation 

(± 2 RMSE). Afterwards, the uncertainty values of the chronology and calibration error were combined 

as the RMSE for the reconstruction56. Since the Siberian TRW chronology from Taimyr (TAI, Larix 

gmelinii)26 showed a negative trend of TRW during the mid-20th century, which might be related to 

site-specific factors or divergence, it showed no significant correlation with growing season 

temperatures. The same was applied for the NYA chronology25. Since R15 did not have relevant 

metadata about the TRW material to be able to explain the weak temperature signal in the chronologies, 

R15 decided to exclude these two datasets from any further analytical steps. All of the remaining seven 

ensemble medians (GTB, SCO, QUL, NSC, ALP, YAM, ALT), however, reveal significant positive 

correlation coefficients ranging from r = 0.23 (p < 0.05) to 0.61 (p < 0.01) with current-year June to 

October temperatures over the 1901–2002 CE period of proxy-target overlap. The resulting seven 

regional temperature reconstructions were computed using linear regression between the z-scored 

chronologies and the target temperature data, the robustness of the obtained reconstructions was 

validated by calculating the K-folded cross validation using the caret-package for the statistical 

language R. Finally, the regional reconstructions were scaled as temperature deviations relative to the 

1961–90 CE June–October temperature mean of the respective grid window. To generate a NH 

temperature reconstruction for the past 2000 years, the seven regional chronologies were divided into 
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four latitudinal NH sectors over the band 35–70°N, similar to previous studies that used eight sectors 

(also four longitudinal sectors, but split into two latitudinal bands together covering 40–75°N)49. The 

regional sectors corresponding to western north America, Europe, and Asia were represented by two 

regional temperature reconstructions (GTB+SCO, NSC+ALP, YAM+ALT), while the eastern north 

American sector was only represented by QUL, respectively. The NH mean for a belt stretching from 

35–70°N was calculated by weighting the four regional sectors equally, meaning that all individual 

reconstructions had a weight of 0.125 to the final NH reconstruction, except QUL having a weight of 

0.25, since it represented one of the four regional sectors alone. Since the last year of Southern 

Colorado Plateau chronology (SCO)13 in the western United States ended in CE 2002, R15 computed 

the composite hemispheric reconstruction for the period CE 1–2002. The error band of the 

reconstruction was calculated by the merging the RMSEs of the individual reconstructions with the 

same weights as their contribution to the hemispheric mean. 
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Supplementary Table 1. Reconstruction characteristics. Key information about the 15 ensemble 

reconstructions, which used different selection criteria and detrending methods and programmes of the 

raw TRW measurement series, different choices of dendro sites and climatological target seasons and 

datasets, as well as different calibration and verification methods (see main text and Methods for details 

and abbreviations). 
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Supplementary Table 2. Calibration/verification statistics. Full and split period, linear model 

calibration (Cal) and verification (Ver) statistics of the ensemble reconstruction mean as predictor of 

large-scale NH summer temperature variability. All statistics are performed on the un-differenced and 

first-differenced (1Diff) transform of both the proxy and target data. In each experiment verification 

is performed over the data not used in the calibration. Statistics present the degree to which the 

calibrated models (again on un-differenced and first differenced data) are robust in estimating 

temperature as expressed by the performance of their associated Reduction of Error (RE) and 

Coefficient of Efficiency (CE). Positive values of RE and CE suggest the models have predictive skill. 

Each column represents a different measure of interaction between the climate target and proxy 

variable along with, where appropriate, the probability (Pct) of obtaining that value by chance alone, 

the exceptions being RE, and CE. The four measures are, the Pearson, Robust Pearson, and Spearman 

correlations, and the statistical significance of the Cross Product (Xprod) between X and Y (Corr = 

correlation, Med = Median, tstat = t-statistic).  
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Supplementary Table 3. Summer temperature extremes. The five warmest and coldest 

reconstructed temperature anomalies in °C. 
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Supplementary Figure 1. Scaling bias. (a) The individual ensemble reconstructions (grey lines) and 

their mean and median (orange and red), scaled over 1961–1990 CE. (b) The individual ensemble 

reconstructions (grey lines) and their mean and median (orange and red), scaled over 536–565 CE. (c) 

The annual standard deviation values between all 15 ensemble reconstructions.  
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Supplementary Figure 2. Post-volcanic cooling. Behaviour of the 15 ensemble reconstructions (grey 

lines), together with their mean and median (orange and red) during the three most pronounced cold 

spells following volcanic eruptions. 
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Supplementary Figure 3. Superposed Epoch Analysis. (a) Average response of the 15 ensemble 

reconstructions (grey), as well as their mean and median (orange and red) to the 24 strongest volcanic 

eruptions of the Common Era. (b) Post-volcanic cooling relative to 10-year periods before all 24 

eruptions (full), as well as after splitting into two early/late sub-periods of 12 eruptions each (</> 1170 

CE). All eruptions exceed the Stratospheric Sulfur Injection (SSI) of 1991 Pinatubo event and occurred 

in 169, 266, 304, 433, 536, 574, 626, 682, 817, 939, 1108, 1171, 1191, 1230, 1257, 1286, 1345, 1458, 

1600, 1640, 1695, 1815, 1835, and 1883 CE. 
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Supplementary Figure 4. Parameter comparison. (a) The mean and median ensemble 

reconstructions (orange and red), together with the MXD-based JJA large-scale NH reconstruction57, 

which contains a substantially lower first-order autocorrelation coefficient (600–2002 CE). (b) Moving 

31-year standard deviations of the mean and median ensemble reconstructions (orange and red), as 

well as the MXD-based reconstruction (green), with the dashed lines showing a long-term logarithmic 

variance decline in the MXD back in time. (c) Moving 31-year correlation coefficients between the 

ensemble mean and the MXD-based reconstruction, with the dashed line showing a long-term 

logarithmic coherency decline back in time. (d) Number of MXD site chronologies that are declining 

from 15 to three back in time. 
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Supplementary Figure 5. Parameter response. Average response of the MXD-based JJA large-scale 

NH reconstruction (green)57, as well as the 15 ensemble reconstructions (grey), and their mean and 

median (orange and red) to the 18 strongest volcanic eruptions back to 600 CE (expressed as anomalies 

with respect to the 10-year periods before the eruptions). All eruptions exceed the Stratospheric Sulfur 

Injection (SSI) of 1991 Pinatubo event and occurred in 626, 682, 817, 939, 1108, 1171, 1191, 1230, 

1257, 1286, 1345, 1458, 1600, 1640, 1695, 1815, 1835, and 1883 CE. 
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Supplementary Figure 6. Autocorrelation function. Correlation coefficients of the ensemble 

reconstructions (grey), as well as their mean and median (orange and red) against the same time-series 

after lagging by 1–100 years. 
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Supplementary Figure 7. Power spectra. Periodogram of the ensemble reconstructions (grey), as 

well as their mean and median (orange and red) computed over the individual time-series length 

between 1 and 2016 CE.  
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Supplementary Figure 8. Power spectra. Multi-Taper Method58 of the ensemble reconstructions 

(grey), as well as their mean and median (orange and red) computed over the individual time-series 

length between 1 and 2016 CE (using 4-year resolution and seven tapers). Dashed lines are the 95% 

significance levels relative to estimated (AR1) background noise. 
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Supplementary Figure 9. Long-term persistence. DFA2 and WT2 fluctuation functions of the 15 

ensemble reconstructions, their mean and median, and the most appropriate power-law (lines in the 

double logarithmic representation) fits to the data. The fluctuation functions of R1, R2, R3, R6, R7, 

R11, R12, R13, R15, Rmean and Rmedian can be well described by power-laws with Hurst exponents 

(H) between 0.90 and 1.06. These reconstructions posse a higher long-term persistence than one would 

expect based on observational records. The reconstruction R4, R5, R8, R9, R10 and R14 deviate from 

a single power-law behaviour. R5 shows a clear long-term persistent behaviour for the DFA2 and WT2 

fluctuation functions with H = 0.63 on time scales > 8 years, though behaves different on shorter time 

scales. The long-term persistence of this reconstruction is lower than expected from the observational 

data. The WT2 fluctuation function of R8 shows a power-law behaviour with H = 0.73 over the full 

range, i.e., from 1–100 years. This Hurst exponent (H) is close to the observationally expected value. 

The DFA2 analysis of R8 shows H = 0.67 on time scales greater than 20 years, indicating a little less 

long-term persistence on longer time scales than the WT2 analysis suggests. R14 shows a long-term 

persistent behaviour with H = 0.90 (DFA2) and H = 0.83 (WT2) on time scales greater than about 40 
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years. On medium time scales between six and about 40 years the Hurst exponents are 1.42 (DFA2) 

and 1.44 (WT2). This is interesting because Hurst exponents as high as 1.42 or 1.44 are indicative of 

very strong persistence, and do not occur in any observational climate data, be it air or sea surface 

temperatures, precipitation totals, river run-off rates or sea ice extent. A Hurst exponent of 1.5 can be 

obtained if white noise data (H = 0.5) are summed up.  
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Supplementary Figure 10. Reconstruction characteristics. Visual comparison between the JJA 

summer temperature signal (r) and the first-order autocorrelation structure AC1 (r) of the 15 

reconstructions and their mean and median. Reconstructions with a strong temperature signal and a 

low AC1 are considered more suitable (upper left), compared to those with low temperature sensitivity 

and high autocorrelation (bottom right). It should be noted that the exceptionally high temperature 

signal in R10 results from the splicing of instrumental data, i.e. the proxy is not independent from its 

target.    
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Supplementary Figure 11. Multi-proxy comparison. (a) The 15 ensemble reconstructions (grey 

lines), together with their mean and median (orange and red). (b) The eight PAGES19 products 

(following different reconstruction methods)59, together with the 2.5th and 97.5th percentile confidence 

intervals from all ensemble reconstruction members between 1 and 2000 CE. (c) The mean and median 

(orange and red) of our 15 reconstructions, as well as the PAGES19 full ensemble median after 50-

year low-pass filtering. All PAGES19 data59 were rescaled against mean 30–70°N extra-tropical 

landmass JJA temperature anomalies relative to the 1961–90 CE. 
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