Title:

Msn2/4 transcription factors positively regulate expression of Atg39 ER-phagy receptor

Authors:

Tomoaki Mizuno\* and Kenji Irie

Affiliation:

Department of Molecular Cell Biology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.

\*Correspondence and requests for materials should be addressed to T. M. (mizuno@md.tsukuba.ac.jp)

### Supplementary Figure 1.



Supplementary Figure 1. The  $P_{ATG39}$ -GFP reporter activity is upregulated by Snf1 activation. Wild-type (WT) and indicated mutant strains harboring the  $P_{ATG39}$ -GFP reporter were grown at 25 °C until exponential phase and then harvested. The GFP mRNA levels were quantified by qRT-PCR analysis, and relative mRNA levels were calculated using *ACT1* mRNA. The values are plotted as the fold change from wild-type cells. The data show mean  $\pm$  SEM (n = 3).



## **Supplementary Figure 2.**

#### Supplementary Figure 2. Msn2 and Msn4 redundantly regulate ATG39 expression.

(A, B) Wild-type (WT) and indicated mutant strains were grown at 25 °C until exponential phase and treated with 3 µg/ml tunicamycin (TM) (A) or incubated under nitrogen-starved conditions (B) for the indicated time. The *ATG39* mRNA levels were quantified by qRT-PCR analysis, and relative mRNA levels were calculated using *ACT1* mRNA. The values are plotted as the fold change from wild-type cells at the time of TM addition or nitrogen removal. The data show mean  $\pm$  SEM (n = 3). NS, not statistically significant (*P* > 0.05), as determined by Student's *t*-test.



# Supplementary Figure 3. The *ATG40* mRNA levels were unchanged in *msn2 msn4* mutants. (A, B) Wild-type (WT) and *msn2 msn4* mutant strains were grown at 25 °C until exponential phase and treated with 3 µg/ml tunicamycin (TM) (A) or incubated under nitrogen-starved conditions (B) for the indicated time. The *ATG40* mRNA levels were quantified by qRT-PCR analysis, and relative mRNA levels were calculated using *ACT1* mRNA. The values are plotted as the fold change from wild-type cells at the time of TM addition or nitrogen removal. The data show mean $\pm$ SEM (n = 3). NS, not statistically significant (*P* > 0.05), as determined by Student's *t*-test.



#### **Supplementary Figure 4.**

Supplementary Figure 4. The STRE elements redundantly regulate *ATG39* expression. (A, B) Wild-type (WT) cells harboring wild-type or mutated  $P_{ATG39}$ -*GFP* reporters were grown at 25 °C until exponential phase and treated with 3 µg/ml tunicamycin (TM) (A) or incubated under nitrogen-starved conditions (B) for the indicated time. The *GFP* mRNA levels were quantified by qRT-PCR analysis, and relative mRNA levels were calculated using *ACT1* mRNA. The values are plotted as the fold change from wild-type cells at the time of TM addition or nitrogen removal. The data show mean  $\pm$  SEM (n > 3). \**P* < 0.05 and \*\**P* < 0.01 as determined by Student's *t*-test. NS, not statistically significant (*P* > 0.05).



#### **Supplementary Figure 5.**

#### Supplementary Figure 5. Msn2/4 and Snf1 independently regulate ATG39 expression.

The *ATG39* mRNA levels in *msn2 msn4 snf1* mutant. Wild-type (WT) and indicated mutant strains were grown at 25 °C until exponential phase and treated with 3 µg/ml tunicamycin (TM) for the indicated time. The *ATG39* mRNA levels were quantified by qRT-PCR analysis, and relative mRNA levels were calculated using *ACT1* mRNA. The values are plotted as the fold change from wild-type cells at the time of TM addition. The data show mean  $\pm$  SEM (n = 4). \*\**P* < 0.01 as determined by Student's *t*-test.



# Supplementary Figure 6. The cAMP phosphodiesterases regulate *ATG39* expression and the activity of non-selective autophagy.

(A) Effects of *PDE2* overexpression on growth of cells harboring  $P_{ATG39}$ -*HIS3* reporter. Wild-type (WT) cells harboring the  $P_{ATG39}$ -*HIS3* reporter and the plasmids with or without the *PDE2* gene were spotted onto synthetic defined media lacking or containing histidine (His) and 3-amino-1H-1,2,4-triazole (AT), and incubated at 25 °C.

(B) Effects of *PDE2* overexpression on *ATG39* expression. Wild-type strains harboring the plasmids with or without the *PDE2* genes were grown at 25 °C until exponential phase and then harvested. The *ATG39* mRNA levels were quantified by qRT-PCR analysis, and relative mRNA levels were calculated using *ACT1* mRNA. The values are plotted as the fold change from wild-type cells harboring the empty plasmids. The data show mean  $\pm$  SEM (n = 4). \*\**P* < 0.01 as determined by Student's *t*-test.

(C) Cellular localization of Msn2. Wild-type (WT) and *pde1 pde2* mutant strains harboring GFPtagged *MSN2* were grown at 25 °C until exponential phase, incubated under nitrogen-starved conditions for 3 hr, and subjected to microscopy. The fluorescence intensities were measured, and then the ratios (N/C) of the fluorescence intensity per unit area in the nucleus/that in the cytoplasm were calculated. The graphs show mean  $\pm$  SEM (n = 30). \*\**P* < 0.01 as determined by Student's *t*test. NS, not statistically significant (*P* > 0.05). Scale bar, 10 µm.

(D) Pgk1-GFP degradation in ER-stressed *pde1 pde2* mutant. Wild-type (WT) and *pde1 pde2* mutant strains harboring GFP-tagged *PGK1* were grown at 25 °C until exponential phase and treated with 3 µg/ml tunicamycin (TM) for 18 hr. Extracts prepared from each cell were immunoblotted with anti-GFP antibodies. The intensities of free GFP were measured and normalized to the Pgk1-GFP level. The values are plotted as the fold change from wild-type cells. The data show mean  $\pm$  SEM (n = 3). NS, not statistically significant (*P* > 0.05), as determined by Student's *t*-test.

# Supplementary Figure 7 (Original data for Fig. 4A)



Supplementary Figure 9 (Original data for Fig. 4C)

|     | • |   |
|-----|---|---|
|     |   |   |
|     |   |   |
|     |   | - |
|     |   |   |
| 100 |   |   |
|     |   |   |
|     |   |   |
|     |   |   |
|     | • |   |
|     |   |   |
|     |   |   |
| -   |   |   |
|     |   |   |
|     |   |   |
|     |   |   |

# Supplementary Figure 11 (Original data for Fig. 4E)



Supplementary Figure 13 (Original data for Supplementary Figure 6D)



# Supplementary Figure 8 (Original data for Fig. 4B)



# Supplementary Figure 10 (Original data for Fig. 4D)



# Supplementary Figure 12 (Original data for Fig. 5F)



#### Supplementary Table 1

| Group | Plasmid | Included genes                                   |
|-------|---------|--------------------------------------------------|
| Ι     | 1       | NAB6, YML116W-A, ATR1, VAN1, TAF8                |
| Ι     | 2       | NAB6, YML116W-A, ATR1, VAN1, TAF8                |
| I     | 3       | NAB6, YML116W-A, ATR1, VAN1, TAF8                |
| Ι     | 4       | ATR1, VAN1                                       |
| Ι     | 5       | ATR1, VAN1                                       |
| Ι     | 6       | ATR1, VAN1                                       |
| Ι     | 7       | NDI1, YML119W, NGL3, NAB6, YML116W-A, ATR1, VAN1 |
| Ι     | 8       | ATR1, VAN1, TAF8                                 |
| I     | 9       | MIH1, MSN2, CCS1                                 |
| Ш     | 10      | MIH1, MSN2, CCS1                                 |
| Ш     | 11      | MIH1, MSN2, CCS1                                 |
| Ш     | 12      | MIH1, MSN2, CCS1                                 |
| Ш     | 13      | SNX3, HAP5, VTS1, PDE2                           |
| Ш     | 14      | SNX3, HAP5, VTS1, PDE2                           |
| Ш     | 15      | PDE2, PRT1, PRE10                                |
| IV    | 16      | MRS6, GPB1                                       |

Supplementary Table 1. Plasmids isolated by the genetic screen in this study.

| Plasmids                                            | Relevant markers                        | Source                            |
|-----------------------------------------------------|-----------------------------------------|-----------------------------------|
| pCgLEU2                                             | <i>C. glabrata LEU</i> 2 in pUC19       | Sakumoto, N. et al. 1999          |
| pCgTRP1                                             | <i>C. glabrata TRP1</i> in pUC19        | Sakumoto, N. et al. 1999          |
| pFA6a-kanMX6                                        | kanMX6                                  | Longtine, M. S. et al. 1998       |
| pFA6a-HIS3MX6                                       | HIS3MX6                                 | Longtine, M. S. et al. 1998       |
| pFA6a-natNT2                                        | natNT2                                  | Janke, C. et al. 2004             |
| pFA6a-hphNT1                                        | hphNT1                                  | Janke, C. et al. 2004             |
| pFA6a-GFP-HIS3MX6                                   | GFP-ADH 3'UTR-HIS3MX6                   | Longtine, M. S. et al. 1998       |
| YEplac181                                           | LEU2                                    | Gietz, R. D. & Sugino, A 1988     |
| YCplac33                                            | URA3                                    | Gietz, R. D. & Sugino, A 1988     |
| pRS306                                              | URA3                                    | Sikorski, R. S. & Hieter, P. 1989 |
| YCplac33-P <sub>ATG39</sub> -GFP                    | URA3, P <sub>ATG39</sub> -GFP           | Mizuno, T. et al. 2020            |
| pRS306-P <sub>ATG39</sub> -GFP                      | URA3, P <sub>ATG39</sub> -GFP           | Mizuno, T. et al. 2020            |
| YEplac181-MSN2                                      | LEU2, MSN2                              | this study                        |
| YEplac181-MSN4                                      | LEU2, MSN4                              | this study                        |
| YEplac181-PDE2                                      | LEU2, PDE2                              | this study                        |
| YCplac33-P <sub>ATG39</sub> -HIS3                   | URA3, P <sub>ATG39</sub> -HIS3          | this study                        |
| YCplac33-P <sub>MCM2</sub> -HIS3                    | URA3, P <sub>MCM2</sub> -HIS3           | this study                        |
| YCplac33-P <sub>ATG39(STRE1mut)</sub> GFP           | URA3, PATG39(STRE1mut)-GFP              | this study                        |
| YCplac33-P <sub>ATG39(STRE2mut)</sub> GFP           | URA3, PATG39(STRE2mut)-GFP              | this study                        |
| YCplac33-P <sub>ATG39(STRE1mut STRE2mut</sub> GFP   | URA3, PATG39(STRE1mut STRE2mut)-GFP     | this study                        |
| YCplac33-P <sub>ATG39(STRE1mut STRE2mut</sub> ATG39 | URA3, PATG39(STRE1mut STRE2mut)-ATG39   | this study                        |
| pRS306-P <sub>ATG39(STRE1mut)</sub> GFP             | URA3, P <sub>ATG39(STRE1mut)</sub> -GFP | this study                        |
| pRS306-P <sub>ATG39(STRE2mut)</sub> GFP             | URA3, P <sub>ATG39(STRE2mut)</sub> -GFP | this study                        |
| pRS306-P <sub>ATG39(STRE1mut STRE2mut)</sub> GFP    | URA3, PATG39(STRE1mut STRE2mut)-GFP     | this study                        |
| pRS306-P <sub>ATG39(STRE1mut STRE2mut)</sub> ATG39  | URA3, PATG39(STRE1mut STRE2mut)-ATG39   | this study                        |

#### Supplementary Table 2

## Supplementary Table 2. Plasmids used in this study.

| Supplementally lable 3 |
|------------------------|
|------------------------|

| Strains | Genotype                                                                                                                       | reference                |
|---------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 10B     | MAT $\alpha$ ade2 trp1 can1 leu2 his3 ura3 GAL psi+ HOp-ADE2-HO 3' UTR                                                         | Tadauchi, T. et al. 2001 |
| 10Ba    | MAT a ade2 trp1 can1 leu2 his3 ura3 GAL psi+ HOp-ADE2-HO 3' UTR                                                                | Tadauchi, T. et al. 2001 |
| 10BD    | MAT a/MAT $\alpha$ ade2/ade2 trp1/trp1 can1/can1 leu2/leu2 his3/his3 ura3/ura3                                                 | Tadauchi, T. et al. 2001 |
| YCH101  | ade2 trp1 can1 leu2 his3 ura3 snf1                                                                                             | Mizuno, T. et al. 2015   |
| YCH122  | ade2 trp1 can1 leu2 his3 ura3 reg1                                                                                             | Mizuno, T. et al. 2015   |
| YCH124  | ade2 trp1 can1 leu2 his3 ura3 snf1 $\varDelta$ ::CgTRP1 reg1 $\varDelta$ ::CgLEU2                                              | Mizuno, T. et al. 2015   |
| YCH301  | ade2 trp1 can1 leu2 his3 ura3 SEC63-GFP::HIS3MX6                                                                               | Mizuno, T. et al. 2020   |
| YCH307  | ade2 trp1 can1 leu2 his3 ura3 SEC63-GFP::HIS3MX6 atg40 $\varDelta$ ::natNT2                                                    | Mizuno, T. et al. 2020   |
| YCH381  | ade2 trp1 can1 leu2 his3 ura3 PGK1-GFP::HIS3MX6                                                                                | Mizuno, T. et al. 2020   |
| YCH401  | ade2 trp1 can1 leu2 his3 URA3::P <sub>ATG39</sub> -GFP                                                                         | Mizuno, T. et al. 2020   |
| YCH501  | ade2 trp1 can1 leu2 his3 URA3::P ATG39-GFP msn2                                                                                | this study               |
| YCH502  | ade2 trp1 can1 leu2 his3 URA3::P ATG39-GFP msn4                                                                                | this study               |
| YCH503  | ade2 trp1 can1 leu2 his3 URA3::P $_{ATG39}$ -GFP msn2 $\varDelta$ ::kanMX6 msn4 $\varDelta$ ::CgTRP                            | this study               |
| YCH506  | ade2 trp1 can1 leu2 his3 URA3::P ATG39(STRE1mut)-GFP                                                                           | this study               |
| YCH507  | ade2 trp1 can1 leu2 his3 URA3::P ATG39(STRE2mut)-GFP                                                                           | this study               |
| YCH508  | ade2 trp1 can1 leu2 his3 URA3::P ATG39(STRE1mut STRE2mut)-GFP                                                                  | this study               |
| YCH511  | ade2 trp1 can1 leu2 his3 ura3 msn2 $\varDelta$ ::kanMX6 msn4 $\varDelta$ ::natNT2                                              | this study               |
| YCH512  | ade2 trp1 can1 leu2 his3 ura3 snf1 ${\it \Delta}$ ::CgTRP1 msn2 ${\it \Delta}$ ::kanMX6 msn4 ${\it \Delta}$ ::natNT2           | this study               |
| YCH513  | ade2 trp1 can1 leu2 his3 ura3 pde1 ${\it \Delta}$ ::CgLEU2 pde2 ${\it \Delta}$ ::CgTRP1                                        | this study               |
| YCH516  | ade2 trp1 can1 leu2 his3 ura3 SEC63-GFP::HIS3MX6 msn2 $\varDelta$ ::kanMX6 msn4 $\varDelta$ ::CgTRP                            | this study               |
| YCH517  | ade2 trp1 can1 leu2 his3 ura3 SEC63-GFP::HIS3MX6 atg40 $\varDelta$ ::natNT2 msn2 $\varDelta$ ::kanMX6 msn4 $\varDelta$ ::CgTRP | this study               |
| YCH518  | ade2 trp1 can1 leu2 his3 ura3 SEC63-GFP::HIS3MX6 pde1 $\varDelta$ ::CgLEU2 pde2 $\varDelta$ ::CgTRP1                           | this study               |
| YCH521  | ade2 trp1 can1 leu2 his3 ura3 PGK1-GFP::HIS3MX6 msn2 $\varDelta$ ::kanMX6 msn4 $\varDelta$ ::natNT2                            | this study               |
| YCH522  | ade2 trp1 can1 leu2 his3 ura3 PGK1-GFP::HIS3MX6 pde1 ${\it \Delta}$ ::CgLEU2 pde2 ${\it \Delta}$ ::CgTRP1                      | this study               |
| YCH526  | ade2 trp1 can1 leu2 his3 ura3 MSN2-GFP::HIS3MX6                                                                                | this study               |
| YCH527  | ade2 trp1 can1 leu2 his3 ura3 MSN2-GFP::HIS3MX6 pde1 $\varDelta$ ::CgLEU2 pde2 $\varDelta$ ::CgTRP1                            | this study               |
| YCH531  | ade2 trp1 can1 leu2 his3 URA3::P $_{ATG39}$ -ATG39 SEC63-GFP::HIS3MX6 atg39 $\varDelta$ ::kanMX6                               | this study               |
| YCH532  | ade2 trp1 can1 leu2 his3 URA3::P ATG39(STRE1mut STRE2mut)-ATG39 SEC63-GFP::HIS3MX6 atg39 Δ ::kanMX6                            | this study               |

10B and YCH are W303 derivatives.

# Supplementary Table 3. Strains used in this study.

#### Supplementary Table 4

| Gene Name | Forw ard Primer      | Reverse Primer         |
|-----------|----------------------|------------------------|
| ACT1      | TGCCGAAAGAATGCAAAAGG | TCTGGAGGAGCAATGATCTTGA |
| GFP       | GGAGAGGGTGAAGGTGATGC | CTTCGGGCATGGCACTCTTG   |
| ATG39     | TCCTTTGCAGGAGAGGACGA | GTTCCGCCAACATTTGAGCC   |
| ATG40     | CAGTTGCCATTCCTTTGCAG | TGGGGACTGACCCAAAGAAG   |

Supplementary Table 4. Primers used to analyze the mRNA level in this study.