Supplementary material

A metabolic modeling approach reveals promising therapeutic targets and antiviral drugs to combat COVID-19

Fernando Santos-Beneit¹, Vytautas Raškevičius², Vytenis A. Skeberdis², Sergio Bordel^{1,2}.

- 1. Institute of Sustainable Processes, Universidad de Valladolid, Spain.
- 2. Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania

* Sergio Bordel. Email: sergio.bordel@uva.es

Fernando Santos-Beneit: https://orcid.org/0000-0001-7986-5557

Sergio Bordel: https://orcid.org/0000-0001-6162-6478

Table S1. Composition of the viral particles used in the model of SARS-CoV-2 infected cells.

Virion components	Number of molecules per virion	
Viral RNA	1	
S protein	270	
M protein	1440	
N protein	758	
Cholesterol	1600	
Phosphatidylcholine	10800	
Phosphatidylethanolamine	4000	
Phosphatidylinosithol	2100	

Docking results:

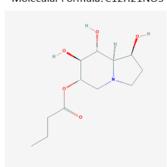
In order to quantify the interaction between each target enzyme and its putative inhibitors, the ΔG of binding was calculated after docking. The results are shown in the following table.

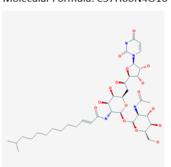
Table S2. Target-inhibitor binding affinities predicted by docking.

Gene	Uniprot ID	Ihibitor	CID	affinity (kcal/mo)
FAR2	Q96K12	Lonafarnib	148195	-10.9
FAR2	Q96K12	Tipifarnib	159324	-9.5
ALG8	Q9BVK9	Castanospermine	54445	-5.5
CYB5R3	P00387	Propylthiouracil (PTU)	657298	-5.4
CYB5R3	P00387	ZINC39395747	-	-7.5
CYB5R3	P00387	ZINC05626394	-	-6.5
ACSL3	O95573	Triacsin C	9576787	-6.1
SLC27A2	O14975	Diclofenac	3033	-7.2
ZDHHC5	Q9C0B5	2-bromopalmitate	82145	-4.6

The most negative values of ΔG correspond to the inhibitors of FAR2, Lonafarnib and Tipifarnib, which bind in the same region as NADPH with equal or higher affinity (see the main figure).

Propyltyouracil is a drug already approved against hyperthyroidism, thus it can be particularly interesting for further research. However, the experimental compounds ZINC39395747 and ZINC05626394 have a stronger binding to their substrate CYB5R3. Figure 1 shows the docking results for these three compounds.

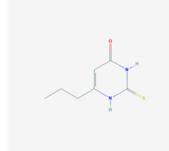

List of proposed drugs:

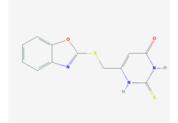

Celgosivir

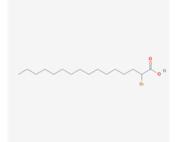
PubChem CID: 60734 Molecular Formula: C12H21NO5

Tunicamycin

PubChem CID: 57654701 Molecular Formula: C37H60N4O16

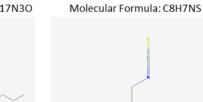

Propylthiouracil

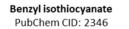

PubChem CID: 657298 Molecular Formula: C7H10N2OS


Dehydro-ZINC39395747

2-Bromohexadecanoic acid PubChem CID: 82145 Molecular Formula: C16H31BrO2

PubChem CID: 702583 Molecular Formula: C12H9N3O2S2

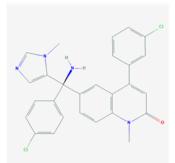

Lipofermata


PubChem CID: 3136622

Molecular Formula: C15H10BrN3OS

Triacsin c

PubChem CID: 9576787 Molecular Formula: C11H17N3O



PubChem CID: 159324

Molecular Formula: C27H22Cl2N4O

Lonafarnib

PubChem CID: 148195 Molecular Formula: C27H31Br2ClN4O2

Figure S1. Structures and indentifiers of each of the putative inhibitors identified.