
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

The authors present a novel compound, BPN-15477, that promotes exon inclusion. The authors 

are motivated by the IVS20+6T>C mutation, which is known to increase skipping of exon 20 of 

the Elongator complex protein 1 (ELP1) gene and causes familial dysautonomia (FD). They show 

that BPN-15477 fully rescues splicing of ELP1 in cell lines from FD patients at reasonable 

concentrations, making it a potential therapeutic candidate. 

 

To understand the mechanisms of BPN-15477 and to further explore its therapeutic potential, the 

authors treat wildtype (WT) cell lines with BPN-15477 and record the splicing changes. Then they 

train a convolutional neural network (CNN) to learn to predict which exon triplets will have 

increased middle-exon inclusion or exclusion after BPN-15477 treatment. They use this model to 

make predictions at ClinVar pathogenic and likely-pathogenic mutations that are also predicted to 

affect splicing by SpliceAI and they identify hundreds of such mutations that could potentially be 

targeted by BPN-15477. Using patient cell lines or minigene constructs, they validate predictions in 

disease-causing genes for cystic fibrosis (CFTR), cholesterol ester storage disease (LIPA), Lynch 

syndrome (MLH1) and familial frontotemporal dementia (MAPT), showing that BPN-15477 

treatment has indeed the predicted effect on exon inclusion/exclusion. 

 

Although the results shown for ELP1 splicing rescue suggest a strong therapeutic potential for BPN-

15477 and the performance of the predictive model for finding additional therapeutic targets is 

promising, I believe that the analyses of the mechanism of action and sequence specificity of BPN-

15477 need to be strengthened. The authors should: 

 

1) improve the motif analysis of the CNN, which would shed light into the mechanism of action of 

BPN-15477, 

2) address the question of how BPN-15477, which was selected to increase exon inclusion in ELP1, 

leads to increased exon skipping in many genes, 

3) address concerns regarding the SpliceAI analysis. 

 

More detailed suggestions in these areas are below. 

 

1) Motif analysis and reproducibility of the CNN 

 

The authors train a CNN to predict whether an exon triplet would have increased inclusion or 

exclusion of the middle exon after BPN-15477 treatment, based on the sequences around the 

splice sites of the triplet. Then they attempt to extract motifs that explain the behavior of the CNN. 

However, the motif contribution and positional motif contribution results are hard to interpret. A 

lot of the motifs and positional contributions that they show could be artifacts of the baselines that 

they use for comparison (eg. average activation, which might correspond to motifs never present 

in real sequences) or simply non-reproducible neural-network noise. 

 

In particular, some of the results are counter-intuitive. Eg. the authors claim that motif09 is 

important at positions -1 and +1 of the 5’ss. But then the motif should have at least a weak GT 

within its first 3 positions, which is not the case. 

 

Below are a few suggestions for improving interpretation: 

 

a) Show examples of sequences where each first layer filter has high activations. 

 

b) Use a method like DeepLift, input*gradients, or in-silico mutagenesis of every input base, to 

show which bases contribute to the prediction made for specific examples. Of particular interest for 

understanding the underlying mechanisms would be examples where the model predicts increased 



exon exclusion. 

 

c) For positional importance, show which positions lead to the highest activations of each filter 

(instead of comparing to an artifactual baseline). 

 

d) For the motif enrichment analysis (Sup Fig 3b), the authors should compare the model 

motifs/filters to the motifs present at the same positions in the input sequences. Eg. in Sup Fig 3b, 

the AGTAA motif captures the donor motif starting at position -1. The "most similar" motif49 is 

presumably enriched at a different position (-2) so the two logos are not capturing the same thing. 

In the same figure, motif29 doesn't look similar at all to the LOGO above it. 

 

e) The authors should also address the question of the reproducibility of their results. Their CNN 

has several orders of magnitude more parameters than training examples. NNs can be very 

volatile especially with so few training examples. Why did the authors choose a model with that 

many parameters? Are the discovered motifs reproducible across random initializations of the 

model? 

 

2) How does BPN-15477 promote exon skipping? 

 

Although BPN-15477 was initially discovered in an effort to promote exon inclusion in ELP1, in WT 

fibroblasts, the authors report more than twice as many cases of increased exon skipping 

compared to increased exon inclusion. The authors suggest that BPN-15477 acts by promoting 

recruitment of U1 snRNP at non-canonical 5’ splice sites. Some questions that the authors should 

consider are: 

 

a) Do the exons whose skipping is increased tend to have suboptimal 5’ splice sites that get 

activated by BPN-15477? The improved motif analysis as suggested above should hopefully help 

clarify this mechanism. 

 

b) Does BPN-15477 treatment have other effects besides changing the rate of exon inclusion or 

skipping? For example, increased levels of intron retention or increased usage of 

alternative/suboptimal splice sites might not be captured by the measured percent splice in. 

 

3) SpliceAI analysis 

 

The authors might have misunderstood some of the SpliceAI parameters and results. By default, 

SpliceAI predicts how a variant changes splicing patterns within 50bp of the variant. To make this 

determination, SpliceAI uses +/-5Kb of context around the variant. Thus, the predicted effects will 

never be more than 50bp away from the variant under consideration. The predicted effects can be 

the loss/weakening or gain/strengthening of a splice acceptor or donor. SpliceAI outputs both the 

type and the position of the effect. The authors claim that “~20% of all CV-pMUTs are predicted to 

alter splicing within 5 kb of the mutation” (L168). This should be 50bp, not 5 kb. 

 

Similarly they say that ~98% of ClinVar mutations predicted to disrupt annotated splice sites were 

within 75bp of the splice site (L171). However, by design 100% of such mutations should be within 

50bp of the splice site that is predicted to be disrupted. The predicted disrupted splice site is not 

necessarily an Ensembl-annotated site, which is probably where the discrepancy is coming from. 

The authors should consider the site that SpliceAI is predicting to be disrupted and not the 

annotated site nearest to the variant. If the two sites differ, the output SpliceAI score refers to the 

former and does not apply to the latter. In particular, in the “Rescue definition and prediction” 

section, the authors should make sure that the affected junction predicted by SpliceAI (ISJ) is 

identical with the junction considered in their analysis, not simply overlapping the same domain. 

For example, the authors consider exon skipping events “if the 5’ splice site of the middle exon 

overlapped with an ISJ and its SpliceAI score indicated a splicing loss”. If the ISJ was not the same 

base as the annotated 5’ splice site of the middle exon, then SpliceAI is predicting a weakening of 



a DIFFERENT splice site than the annotated splice site. 

 

Other comments/suggestions: 

 

4) In some of the experimental validations, it’s unclear whether the authors made predictions on 

the WT or the mutant sequence. Eg. in section “Identification of potential therapeutic targets of 

BPN-15477” did they input the WT or the mutant allele of the considered 11,616 exon triplets? 

Similarly in the experimental validation section they claim: “As predicted, treatment with BPN-

15477 led to a significant reduction of exon 10 inclusion in the wild type MAPT transcript.“ 

However, they say in line 216 that they made predictions for the mutated sequence, not for the 

WT. 

 

5) It would be very interesting to study potential off-target or other unintended effects of BPN-

15477. In WT cell lines, are there any global changes in expression levels or cell viability? 

Similarly, since different exon triplets are normally expressed in different tissues, it’d be 

interesting to use the CNN to predict which/how many expressed exon triplets would be affected 

across different tissues (using for example GTEx data to get the expressed exons). 

 

Minor comments: 

 

6) Why did they only use a few hundred (out of several thousand) unchanged exon triplets to train 

their CNN? 

7) Why was it necessary to standardize the output scores as described in section “Standardized 

probability from prediction”? This isn’t common practice. 

8) In section “Candidate selection for minigene validation” what do the authors mean by condition 

3)? 

9) For computing gnomAD allele frequencies, it’d be better to take the average or maximum of 

exon and genome allele frequencies. Their current computation is a little problematic, since the 

samples used for exome and genome sequencing (and therefore also the observed counts) are not 

independent. 

 

Regards, 

Sofia Kyriazopoulou Panagiotopoulou 

 

 

 

Reviewer #2: 

Remarks to the Author: 

Slaugenhaupt and co-workers identify the splicing modulator BPN-15477 for familial dysautonomia 

and go on to evaluate its in vitro potential to correct splicing targets in a range of other human 

genetic disorders including in CFTR, LIPA, MLH1 and MAPT, all identified via a deep learning 

approach. While interesting and generally well-written, the manuscript as it stands raises 

fundamental questions which in this reviewer’s opinion preclude publication at the present time. 

 

Major comments / questions 

 

1. Confusing as to why SMN2 was not studied given history with risdiplam. 

2. BPN-15477: no mechanistic data for drug action provided – this should be directly addressed. 

3. Effects of BPN-15477 in validation experiments are marginal and not very impressive. It is not 

convincing that these would translate into meaningful changes in protein expression (although this 

is argued for the case of LIPA, without evidence). Evidence should be provided and in a paper such 

as this, reporting a novel methodology, at least one target should be studied in an appropriate in 

vivo model to provide direct evidence of likely disease benefit. 

4. Validation experiments are primarily based on artificial minigene systems with the exception of 

mutant fibroblasts in the case of LIMA and ELP1. No endogenous protein expression data is 



provided – this should be directly addressed. 

5. All assessments of splicing in validation experiments are assessed at the RNA level by semi-

quantitative RT-PCR. Data from quantitative PCR methods such as ddPCR or RT-qPCR should be 

provided. Figure 3d data for mutated constructs are particularly unconvincing. 

6. The authors identify specific motifs which explain ~95% of their model performance. It is 

essential that these motifs are independently validated by an orthogonal method e.g. an ASO 

which specifically targets those regions. 

7. The paper draws parallels to ASO targetable exon-skipping diseases. However, the biggest 

drawback of BPN-15477 is the observation of unspecific splicing modulation (934 exon triples show 

significant modulation of the middle exon). The effects of this unspecific splicing alteration are not 

discussed but are certainly of concern from a therapeutic aspect. A more detailed analysis (ideally 

in vivo) and discussion of the limitations of the current approach are required. 

8. Ironically, it would be difficult to train a model like this with a drug which doesn't have 

unspecific effects, because you would not have enough data to train the model. This limits the 

potential applicability of this approach for drugs with better specificity and appears to be a major 

limitation of the current work. 

 

Minor Points 

1. The apostrophe symbol is incorrectly used instead of the prime symbol throughout 

2. In Figure 1, P1 and P2 are not described. These are presumably the primers used for RT-PCR in 

other figures. 

3. I assume that ‘Normalized RLU’ in Figure 1 refers to the FLuc:RLuc ratio. If true, this should be 

clarified. 

4. The percent spliced index (psi) is confusingly used throughout. It seems that psi is a ratio and 

not a percentage, so the nomenclature is inaccurate 

5. Figure 2a is confusing. If I understand correctly R1, R2 and R3 are supposed to represent reads, 

but this is not clear from the diagram. At present these labels appear to show the intron or intron-

exon-intron sequence that is spliced out. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

In this manuscript, authors present the development of a compound that corrects splicing of exon 

20 of ELP1 gene carrying the major IVS20+6T>C mutation which is responsible for familial 

dysautonomia. Further, they applied machine learning approaches to evaluate the therapeutic 

potential of this compound to correct splicing in other human genetic diseases. This manuscript is 

a good example of how deep learning techniques can identify sequence signatures and predict 

response to pharmacological modulation. I am not an expert on machine learning so I will 

circumscribe my review comments to the aspects related with splicing. I assume that other 

reviewer (s) will comment on the machine learning aspects of the manuscript. 

 

Major 

• Figs. 4c-f: really the changes observed in the mutated lines with the BPN-15477 compound are 

very small (3-10% change). How much of that little change is caused by the compound or any 

other secondary effect? 

• Related with the previous point: how significant is the change in response to BPN-15477 in terms 

of physiologic relevance? I think this is something important to have this manuscript published in 

Nature Communications and it will for sure make the paper much stronger combining: splicing 

correction with a small molecule + physiological impact of that correction + machine learning. 

• Please, indicate the number of independent experiments in each figure legend. It should be at 

least three. 

 

Minor 

 



1. SMC abbreviation in the abstract is not defined. 

2. Avoid green red combinations (color blind readers). 

 

 

 

Reviewer #4: 

Remarks to the Author: 

Gao et al., present a deep-learning approach to predict splicing events that will be affected by the 

splicing modulator compound, BPN-15477, a more potent and efficacious derivative of the natural 

product, kinetin, in vitro. Kinetin was shown previously by the authors to promote exon 20 

inclusion in the ELP1 IVS20+6T>C mutation associate with familial dysautonomia (FD). In this 

manuscript they used a deep convolutional neural network to identify additional splicing targets of 

the new compound and validated a number of these to demonstrate the utility of the approach. 

With splicing-related defects being a prevalent cause of disease and as more splicing modulator 

compounds are being discovered, tools such as the one presented in this manuscript are valuable 

for understanding and predicting potentially harmful off-target effects as well as for identifying 

additional therapeutic targets for the molecules. The molecule tested here is similar to another 

kinetin derivative reported by Yoshida et al., in 2015. In that study, similar analyses to the current 

manuscript are presented and motifs are also identified that appear to be common to compound-

responsive splicing events. While the current study by Gao et al., offers a more sophisticated 

approach to identifying compound targets via deep machine learning, the overall experimental 

approach and molecule do not offer a major advance in our understanding of this class of drugs. 

Nonetheless, the study is a good proof-of-concept that presents a potentially valuable approach for 

identifying drug targets for this and other splice modulating compounds. The study also identifies 

some interesting possible therapeutic targets for BPN-15477, though the high concentrations of 

the compound used to identify splicing targets (30 micromolar) may limit the therapeutic value of 

this specific molecule. There are a number of issues with the reporting in the manuscript (both 

minor and major) that should be addressed as detailed below. 

 

1. Figure 1: b) should include EC50 data for both BPN-15477 and Kinetin. C) splicing correction is 

shown for the purpose of validating splicing correction by RT-PCR. The low end of the dose curve is 

missing as is the comparison to kinetin. 

 

2. For the RNA-seq samples, were the cells treated a single time with the compound and then 

incubated for seven days? What is known about the stability of the compound in the culture 

media? Why was this long incubation time selected? Fig 1b and c show results from fibroblast cells 

treated for only 24 hours. 

 

3. Provide citation for statement: “This is exciting since a small increase in functional CFTR protein 

is associated with a significant improvement in patient phenotype”. 

 

4. Provide raw data for all data points in Fig. 2C. This could be in the form of a Table that lists the 

name of the genes, the exon # that is changing and the PSI values. 

 

5. In terms of selectivity, as presented on page 5 line 116, it would be informative to also include 

the number of alternatively spliced exons (triplets with two isoforms) that do not change. This 

number, I presume is the same as the unchanged-response set (382) exon triplets with two 

expressed isoforms described on p. 6 line 129. 

 

 

6. In the bar graphs for the drug response plotting standardized probability, the values for the y-

axis are not completely labeled with the bars extending beyond the y-axis labels, making it difficult 

to estimate the actual value. 

 

7. Fig. 3 and 4. These motifs are very short and degenerate, it is surprising that they could have 



any predictive value as they will be expected to be very frequent. Is there a way to score the motif 

match for each of these? 

 

8. The figure legend of Supp. Fig 3 indicates that the RT-PCR was performed in triplicate to make 

the bar plot. This use of technical replicates is not as robust as the use of experimental replicates 

and lessens the strength of the results. Similarly in Fig. 3 d-e, the legend states that each RT-PCR 

was done in duplicate and independently repeated three times for each minigene, does this mean 

that the same RNA sample from a single transfection/treatment was analyzed six times or was the 

transfection/treatment performed three times? Please clarify. 

 

9. Fig. 4c,d it would be helpful to indicate the position of the mutation and the effect on the motif. 

 

10. The discussion could be expanded to consider in more detail the meaning of the results and 

how they relate to previous studies and the future of the molecule as a therapeutic. For example, 

the authors should comment on whether the motifs represent direct targets of the compound or 

just identify features of “weak” or “strong” splice sites that might be sensitive to subtle alterations 

in splicing in general induced by the compound. Further, it is a big leap to conclude from the motif 

analysis associated with sensitive exon 5’ss that the result is consistent with this class of 

compounds promoting the recruitment of U1 snRNP to non-canonical 5’ splice sites. They cite a 

study by Yoshida et al., which shows that a kinetin-like molecule promotes U1-binding to the weak 

5’ss of ELP1. However, Yoshida et al., actually go on to identify cis-acting sequence elements 

common to splicing events responsive to compound treatment and conclude that sequence 

elements that appear to act as hnRNP H binding exonic splicing silencers and may be the target of 

the compounds and that inactivating or interfering with these ESSs may allow more effective U1 

snRNP binding simply because splicing is derepressed by the ESS. 

 

11. Regarding Yoshida et al. further, the authors should discuss these previous results in more 

detail, perhaps commenting on the similarities or differences in identified motifs as well as the 

identified responsive splicing events. 



Reviewer #1 
 
Although the results shown for ELP1 splicing rescue suggest a strong therapeutic potential 
for BPN-15477 and the performance of the predictive model for finding additional 
therapeutic targets is promising, I believe that the analyses of the mechanism of action and 
sequence specificity of BPN-15477 need to be strengthened. 

Major comments: 
1) Motif analysis and reproducibility of the CNN.  

The authors train a CNN to predict whether an exon triplet would have increased 
inclusion or exclusion of the middle exon after BPN-15477 treatment, based on the 
sequences around the splice sites of the triplet. Then they attempt to extract motifs that 
explain the behavior of the CNN. However, the motif contribution and positional motif 
contribution results are hard to interpret. A lot of the motifs and positional contributions 
that they show could be artifacts of the baselines that they use for comparison (eg. 
average activation, which might correspond to motifs never present in real sequences) 
or simply non-reproducible neural-network noise. 

 
We appreciate the reviewer’s insight regarding the reproducibility of our model and the 
approach of motifs analysis. To address these concerns, our revision includes the 
following: 
I) To assess reproducibility, we retrained the model 1,000 times using random 
initialization. We then tested the correlation between the motifs derived from 1,000 
random initiated models and those derived from the original model, by which we found 
our CNN model trained from a relatively small sample size was stable and robust 
(Supplementary Fig. 2d-e).  

II). For motif positional importance analysis, we investigated the highest activation of 
each position in the first layer, instead of comparing to an artificial baseline (Fig. 3b). The 
new result is consistent with the original analysis, emphasizing the importance of 
sequence patterns around the 5’ splice site. 

III) To assign each motif to the treatment-response class it contributes most to, we have 
investigated AUC changes, which are more informative than activation information 
alone. To avoid comparing to an artificial baseline, now we zeroed the activation from 
each motif in the first layer, as if the motif was not initially detected, and then calculated 
the AUC changes (Fig. 3a). We found thirteen motifs explained 92.62% of the AUC, nine 
of which were already reported among the twelve most significant motifs in our initial 
submission. We believe these analyses have greatly improved our interpretation of the 
results.  

 
In particular, some of the results are counter-intuitive. Eg. the authors claim that motif09 
is important at positions -1 and +1 of the 5’ss. But then the motif should have at least a 
weak GT within its first 3 positions, which is not the case. 
 
This observation is further explicated in our updated motif positional importance using 
activation of the first layer according to the reviewer’s suggestion (Fig. 3b). The Motif09 
([T/C]TTG[A/T]) now shows its highest activation at the -3 position. Its fourth and fifth 
positions are G[A/T], which aligns with +1 and +2 positions of the 5’ splice site. It is also 
important to note that the new positional importance estimated by activation is identical 
to the initial positional importance estimated by entropy changes for almost all motifs 
(Fig. 3b also see answers to Q1c). 



 
a) Show examples of sequences where each first layer filter has high activations. 

 

 
The heatmap above (Figure R1) represents the average activation per sequence 
from the test set (by column) of each motif (by row), extracted from the first layer of 
our CNN model. The sequences with inclusion, exclusion and unchanged responses 
detected from RNASeq are grouped together and marked by red, blue and black on 
the top X-axis of the heatmap. Each motif is marked by either red, blue or black 
depending on which class prediction it contributes most to, according to the motif 
importance analysis (Fig. 3a, Supplementary Fig. 3). We have the following 
observations: a) most motifs derived from our CNN model have medium-to-high 
overall activations in the first layer; b) our top 13 motifs in Fig. 3a all have medium-to-
high average activations; c) The summarized activation per motif (e.g. by taking 
average as shown in the heatmap above, maximum, or 75 percentile per motif) is not 
sufficient to distinguish treatment response. Also see the answers to Q1b and Q1c 
below.   
 

b) Use a method like DeepLift, input*gradients, or in-silico mutagenesis of every input 
base, to show which bases contribute to the prediction made for specific examples. 
Of particular interest for understanding the underlying mechanisms would be 
examples where the model predicts increased exon exclusion. 
 
We appreciate the reviewer’s suggestion to improve the CNN-derived motif analysis. 
We have implemented in silico saturation mutagenesis (Supplementary Fig. 4). This 
result revealed that the base contribution to the treatment response was consistent 
with our positional analysis in Fig. 3b and peaked in proximity to the 5’ splice sites of 
the middle exons. It also demonstrated distinct activation patterns among sequences 



with inclusion, exclusion and unchanged responses, although it is not a direct 
interpretation of the molecular mechanism of the treatment.  
 

c) For positional importance, show which positions lead to the highest activations of 
each filter (instead of comparing to an artifactual baseline). 
 
We appreciate the reviewer’s suggestion. We re-applied the analysis as suggested 
(Fig. 3b), and found comparable results to our initial submission, highlighting the 
significance of the motif importance around the 5’ splice site, and that our analyses 
are robust. Notably, the most important positions for each motif are almost the same 
between the two analyses.    

 
d) For the motif enrichment analysis (Sup Fig 3b), the authors should compare the 

model motifs/filters to the motifs present at the same positions in the input 
sequences. Eg. in Sup Fig 3b, the AGTAA motif captures the donor motif starting at 
position -1. The "most similar" motif49 is presumably enriched at a different position 
(-2) so the two logos are not capturing the same thing. In the same figure, motif29 
doesn't look similar at all to the LOGO above it. 
 
We did not initially perform a quantitative analysis of the similarities between the 
derived CNN and the k-mer-enrichment-derived motifs, and we thank the reviewer 
for this suggestion. In the revised manuscript, we have applied a Pearson correlation 
to reveal the most similar matches between the two sets, and these results are now 
provided in Supplementary Fig. 5a. 

 
e) The authors should also address the question of the reproducibility of their results. 

Their CNN has several orders of magnitude more parameters than training 
examples. NNs can be very volatile especially with so few training examples. Why 
did the authors choose a model with that many parameters? Are the discovered 
motifs reproducible across random initializations of the model? 
 
We appreciated the reviewer’s comment on our CNN model stability and 
reproducibility. We have now implemented an L1 regularization and dropout 
approach to control overfitting in the original model. According to the reviewer’s 
suggestion, we also used the following approaches to demonstrate the robustness of 
our original model: we retrained the model 1,000 times using random initialization 
and investigated the AUC distribution across all these models for each class 
(Supplementary Figure 2d). We also found a high correlation between top 10 motifs 
derived from random-initiated models and our original CNN model (Supplementary 
Fig. 2e). Collectively, these above analyses have improved the robustness and 
nuance of our interpretation, but none of our additional analyses have altered our 
initial conclusions. 

 
2) How BPN-15477 leads to increased exon skipping in many genes. 
Although BPN-15477 was initially discovered in an effort to promote exon inclusion in ELP1, 
in WT fibroblasts, the authors report more than twice as many cases of increased exon 
skipping compared to increased exon inclusion. The authors suggest that BPN-15477 acts 
by promoting recruitment of U1 snRNP at non-canonical 5’ splice sites. Some questions that 
the authors should consider are: 
 



a) Do the exons whose skipping is increased tend to have suboptimal 5’ splice sites 
that get activated by BPN-15477? The improved motif analysis as suggested above 
should hopefully help clarify this mechanism. 
 
We agree that the discovery of exon skipping following treatment is intriguing, and a 
study of the mechanism of drug action is certainly warranted in the future.  We did 
investigate suboptimal 5’ splice sites as the reviewer suggested by calculating 
suboptimal splice site usage as a ratio relative to the expression of its nearby optimal 
splice site. Among 18,639 suboptimal splice sites detected in our RNASeq data, we 
found only one of them with decreased usage against the treatment (Fig. R2a 
below), suggesting exon skipping caused by the drug was not due to the enrichment 
of suboptimal 5’ splice sites. We did, however, observe that the skipped exons 
preferred T at the last nucleotide position in the new analysis using in silico 
saturation mutagenesis (Supplementary Fig. S4).   

 
 

b) Does BPN-15477 treatment have other effects besides changing the rate of exon 
inclusion or skipping? For example, increased levels of intron retention or increased 
usage of alternative/suboptimal splice sites might not be captured by the measured 
percent splice in. 

 
We appreciate the reviewer’s suggestion to comprehensively examine whether any 
other types of splicing events were altered by the treatment and agree that this is a 
logical next step for our future studies.  We did calculate the IR ratio using a 
published algorithm, IRFinder (https://github.com/williamritchie/IRFinder). We 
detected 99 (0.04%) differential IR events among 236,293 annotated introns (Fig. 
R2b, red dots indicate significant IR changes).  We focused this work on the study of 
intron skipping/retention by studying exon triplets, but again agree that it will be 
important to look at other splicing changes in the future.  

 
3) SpliceAI analysis.  

The authors might have misunderstood some of the SpliceAI parameters and results. By 
default, SpliceAI predicts how a variant changes splicing patterns within 50bp of the 
variant. To make this determination, SpliceAI uses +/-5Kb of context around the variant. 



Thus, the predicted effects will never be more than 50bp away from the variant under 
consideration. The predicted effects can be the loss/weakening or gain/strengthening of 
a splice acceptor or donor. SpliceAI outputs both the type and the position of the effect. 
The authors claim that “~20% of all CV-pMUTs are predicted to alter splicing within 5 kb 
of the mutation” (L168). This should be 50bp, not 5 kb. Similarly they say that ~98% of 
ClinVar mutations predicted to disrupt annotated splice sites were within 75bp of the 
splice site (L171). However, by design 100% of such mutations should be within 50bp of 
the splice site that is predicted to be disrupted. The predicted disrupted splice site is not 
necessarily an Ensembl-annotated site, which is probably where the discrepancy is 
coming from.  
 
We regret that we were not sufficiently clear on this issue and have updated the main 
text to reflect that SpliceAI predicts the splice sites with potentially altered splicing within 
50bp of the mutations. We have also removed the original Fig. 4b, which is now 
unnecessary, and Fig 4a now indicates that the predicted splice sites disrupted are not 
necessarily Ensembl-annotated sites. Please note that this did not change our initial 
results for potential BPN-15477 targets.  

 
The authors should consider the site that SpliceAI is predicting to be disrupted and not 
the annotated site nearest to the variant. If the two sites differ, the output SpliceAI score 
refers to the former and does not apply to the latter. In particular, in the “Rescue 
definition and prediction” section, the authors should make sure that the affected junction 
predicted by SpliceAI (ISJ) is identical with the junction considered in their analysis, not 
simply overlapping the same domain. For example, the authors consider exon skipping 
events “if the 5’ splice site of the middle exon overlapped with an ISJ and its SpliceAI 
score indicated a splicing loss”. If the ISJ was not the same base as the annotated 5’ 
splice site of the middle exon, then SpliceAI is predicting a weakening of a DIFFERENT 
splice site than the annotated splice site. 
 
We appreciate the reviewer’s attention to the details behind our approach. In our original 
report, the word “overlap” was intended to mean “identical” (as we were comparing a 
single nucleotide position predicted by SpliceAI to another single nucleotide position 
named ISJ). We apologize for the confusion and have made this change in the main 
text.  

 
Other Suggestions/Comments: 

4) It’s unclear whether the authors made predictions on the WT or the mutant sequence.  
 

For model validation, we made predictions on both WT and mutant sequences.  For the 
potential drug target exploration, we predicted the mutant sequence only. We now have 
updated the main text to make this clear. 

 
5) It would be very interesting to study potential off-target or other unintended effects of 

BPN-15477. In WT cell lines, are there any global changes in expression levels or cell 
viability? Similarly, since different exon triplets are normally expressed in different 
tissues, it’d be interesting to use the CNN to predict which/how many expressed exon 
triplets would be affected across different tissues (using for example GTEx data to get 
the expressed exons). 

 
Similar to previously reported splicing modulator compounds (Naryshkin et al. Science, 
2014; Palacino et al.  Nat. Chem. Biol. 2015; Woll et al. RNA Therapeutics, 2018). BPN-



15477 treatment had minimal effect on global gene expression; only 557 of 17812 
(3.24%) genes were differentially expressed in the BPN-15477 treated cells compare 
with the vehicle-treated cells.  Further, we performed in vivo experiments in transgenic 
animals with no negative health outcomes.   We appreciate the reviewer’s suggestion to 
investigate the tissue specific effect of the treatment on gene expression, which would 
be very interesting, but the goal of this study was to identify new targets for this class of 
splicing modulator compounds.   

 
Minor Comments: 

6) Why did they only use a few hundred (out of several thousand) unchanged exon triplets 
to train their CNN? 

 
We chose to only use exon triplets for which we had high confidence to determine that 
splicing was unchanged. Thus, we decided to restrict to those triplets whose initial PSIs 
in WT were between 0.1 to 0.9 and PSI changes after treatment were less than 0.01, 
which we would consider as high-confidence unchanged triplets. 

 
7) Why was it necessary to standardize the output scores as described in section 

“Standardized probability from prediction”? This isn’t common practice. 
 

We appreciate the opportunity to further describe this approach. There are several 
components to implementing this standardization. First, the training data is not balanced, 
so we adjusted the classification threshold against the training size of each class and set 
a 95%-specificity threshold on the ROC curve of each class. Second, the use of such 
thresholds made a direct comparison across prediction values (probabilities) of the three 
classes challenging in a bar plot format. Thus, we re-calculated post-prediction adjusted 
probabilities relative to the threshold of each class. Finally, the adjusted probabilities 
were scaled for the purposes of visualization of all prediction results after adjustment on 
the same scale. Most importantly, this standardization process does not change the 
conclusion from the CNN prediction compared to non-standardized results. 

 
8) In section “Candidate selection for minigene validation” what do the authors mean by 

condition 3)? 
 

The third condition means that the minigenes selected for validation must recapitulate 
the splicing pattern of the endogenous gene.  

 
9) For computing gnomAD allele frequencies, it’d be better to take the average or 

maximum of exon and genome allele frequencies. Their current computation is a little 
problematic, since the samples used for exome and genome sequencing (and therefore 
also the observed counts) are not independent. 

 
We appreciate the reviewer’s suggestion. We have changed to use the maximal allele 
frequencies between exon and genome sequencing data. We have updated the 
corresponding results in the main text, main table and supplementary tables.  

 
Reviewer #2 
 
Slaugenhaupt and co-workers identify the splicing modulator BPN-15477 for familial 
dysautonomia and go on to evaluate its in vitro potential to correct splicing targets in a range of 
other human genetic disorders including in CFTR, LIPA, MLH1 and MAPT, all identified via a 



deep learning approach. While interesting and generally well-written, the manuscript as it 
stands raises fundamental questions which in this reviewer’s opinion preclude publication at the 
present time. 
 
Major comments / questions: 
 

1) Confusing as to why SMN2 was not studied given history with risdiplam.  
 

We previously established that this class of SMCs do not affect the splicing of SMN2 exon 7.   
Kinetin, the original lead compound, was identified while participating in the NINDS 
Sponsored Drug Screening Consortium and teams studying SMA participated in that 
consortium (Hims et al. J Mol Med, 2007, Heemskerk et al. Trends Neurosci, 2002). 
Likewise, small molecules that alter splicing of SMN2 (aclarubicin, valproic acid, risdiplam) 
do not correct splicing of ELP1 exon 20. Further, the RNASeq results from the current study 
confirmed that BPN-15477 does not change the splicing of SMN2. 

 
2) BPN-15477: no mechanistic data for drug action provided. 

 
The main objective of the current work was to evaluate the effect of BPN-15477, a more 
potent analog of kinetin, on splicing and to use it to build and validate our machine learning 
model with the goal of identifying new potential targets for therapy.   Our previous work and 
that of others suggests that this class of SMCs are likely promoting recruitment of U1 to the 
splice site, either directly or indirectly. We have modified the manuscript accordingly. 
 
3) Effects of BPN-15477 in validation experiments are marginal and not very impressive. It 
is not convincing that these would translate into meaningful changes in protein expression 
(although this is argued for the case of LIPA, without evidence). Evidence should be 
provided and in a paper such as this, reporting a novel methodology, at least one target 
should be studied in an appropriate in vivo model to provide direct evidence of likely disease 
benefit. 
 
We thank the reviewer for raising this critically important and frequently discussed 
misconception that the magnitude of in vitro effect size can necessarily be translated into 
predictions of clinical efficacy.  In FD, we have previously demonstrated and published that 
a 10% increase in functional protein can have a dramatic phenotypic effect (Morini et al. 
AJHG 2019 and Dietrich et al. HMG 2012), and this is true for many other human recessive 
diseases.  Several studies have shown that CF protein levels as low as 10% of WT result in 
improved lung function and survival, and protein levels of as low as 3% of WT can rescue 
pancreatic insufficiency, even in moderate to advanced stages of disease (McCague et al. 
Am J Respir Crit Care Med 2019; Ramsey et al. N Engl J Med 2011; Wainwright et al. N 
Engl J Med 2015; Taylor-Cousar et al. N Engl J Med 2017; Davies JC et al. N Engl J Med 
2018; Keating et al. N Engl J Med 2018). Another good example is represented by the small 
increase in lysosomal acid lipase (LAL or LIPA) residual enzyme activity. Wolman disease 
and cholesterol ester storage disease (CESD) are both caused by mutations in the LIPA 
gene. Wolman is lethal in infancy, whereas CESD patients with only 3% of the normal level 
of LIPA transcript have a much milder clinical course (Aslanidis et al. Genomics 1996). 
Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder caused by 
frameshift mutations that completely eliminate the production of dystrophin. Several 
therapeutic approaches for DMD, including the antisense oligonucleotide eteplirsen for DMD 
exon 51 skipping and golodirsen and viltolarsen for DMD exon 53 skipping, are evolving with 
the aim to transform the severe DMD into the milder Becker form of the disease by only 



partially restoring the expression of a mutated or truncated dystrophin. Viltolarsen raises 
dystrophin production by about 5%, yet it can stabilize and improve muscle strength and 
functionality (Dhillon S. Drugs 2020, Clemens et al. JAMA Neurol. 2020 and FDA Approves 
Targeted Treatment for Rare Duchenne Muscular Dystrophy Mutation. 2020).  Taken 
together, all of these studies show that even very small increases in the level of functional 
protein can have a dramatic impact on phenotype. 
As suggested by the reviewer, we have now included new in vivo data of BPN-15477 
treatment in our humanized transgenic mouse model.  We show that BPN-15477 treatment 
leads to ELP1 splicing correction and increases ELP1 protein in all tissues examined. In 
addition, in this revised version of the manuscript we have included new data showing that 
splicing correction using BPN-15477 leads to increased protein production in disease 
relevant cellular models of LIPA and CFTR. Lastly, we have also included new data 
generated in collaboration with Dr. Gary Cutting’s laboratory showing that BPN-15477 
significantly increases CFTR chloride channel function in bronchial epithelial (CFBE) cell 
lines.   
This new data clearly shows that the observed magnitude of splicing correction translates 
into a meaningful increase in protein levels.  

 
4) Validation experiments are primarily based on artificial minigene systems with the 
exception of mutant fibroblasts in the case of LIPA and ELP1.  – this should be directly 
addressed. 
 
Expression minigenes (EMG) are the most common systems used in the field to study 
splicing.  The minigenes used in our assays have been well-studied and accurately model 
the mis-splicing seen in patient cell lines.  We have now added new mouse and protein 
validation data as described above which clearly shows that the minigene assays are 
representative and accurate.    

 
5) All assessments of splicing in validation experiments are assessed at the RNA level by 
semi-quantitative RT-PCR. Data from quantitative PCR methods such as ddPCR or RT-
qPCR should be provided. Figure 3d data for mutated constructs are particularly 
unconvincing.  
 
Our long-standing experience in quantifying splicing isoforms validates the reliability and 
accuracy of assessing relative splicing changes using semi-quantitative RT-PCR as 
described (Cuajungco et at. 2003, Hims et al. J Mol Med, 2007, Shetty et al. HMG 2011; 
Donadon et al. HMG 2018 and Morini et al. AJHG 2019). It has proven difficult to amplify 
and correctly quantify with high specificity single isoforms due to the high sequence 
similarity using ddPCR or RT-qPCR.   A direct comparison of RT-PCR vs RNAseq, 
confirming the accuracy of the method, is now shown in Supplementary Table 3.  
 
6) The authors identify specific motifs which explain ~95% of their model performance. It is 
essential that these motifs are independently validated by an orthogonal method e.g. an 
ASO which specifically targets those regions. 

 
The experimental validations included in the manuscript demonstrate the accuracy of our 
motif-based predictions. It is also important to note that the treatment response is not 
determined by any of these motifs independently, which is the strength of this approach, and 
therefore direct validation of a specific motif is not warranted.  The splicing changes are 
quite specific, and the addition of the new functional data showing increases in ELP1, LIPA, 



and CFTR protein offer further validation of the predictive power of our method and the 
specificity of action of our compound.    
 
7) The paper draws parallels to ASO targetable exon-skipping diseases. However, the 
biggest drawback of BPN-15477 is the observation of unspecific splicing modulation (934 
exon triples show significant modulation of the middle exon). The effects of this unspecific 
splicing alteration are not discussed but are certainly of concern from a therapeutic aspect. 
A more detailed analysis (ideally in vivo) and discussion of the limitations of the current 
approach are required.  
 
Although we consider our compound quite specific since we observed splicing changes in 
only 0.58% of all expressed triplets (934 out of 161,097 expressed triplets), we would like to 
highlight that we used a low stringency cutoff in order to increase the number of splicing 
changes used in the machine learning model and to increase the power of prediction ( |∆ψ| 
≥ 0.1 and FDR < 0.1). If we increased the stringency of the threshold, for example, fewer 
exons would be affected.   We understand that specificity is an important consideration and 
we recognize that our compound needs additional medicinal chemistry optimization for any 
specific indication in order to increase the potency and decrease the off-target effects. Also, 
whether off-target effects observed in cells in a dish will lead to any undesired 
consequences to an organism is unclear.  It should be noted that kinetin, which is less 
potent and a more promiscuous splicing modifier than BPN-15477, has been used in 
preclinical studies in mice with treatment lasting well over 2 years with no negative health 
consequences.  Likewise, BPN-15477 was tested in vivo as reported in this manuscript and 
had no gross toxicity to the mice.  Eventually, for any drug development project (including 
ASOs), the safety profile needs to be evaluated regardless of the presence of molecular off-
target effects.  
 
8) Ironically, it would be difficult to train a model like this with a drug which doesn't have 
unspecific effects, because you would not have enough data to train the model. This limits 
the potential applicability of this approach for drugs with better specificity and appears to be 
a major limitation of the current work.  

 
We thank the reviewer for this comment, and agree, however we do not feel that this is a 
major limitation of this work.   We selected BPN-15477 for this study for this very reason.  
The current work has yielded 214 mutations that cause human disease to be potential 
targets for this class of compounds, which was our goal.  Further, we have validated several 
of our targets using EMGs and have now added data to show that even a small increase in 
splicing can translate into a clinically relevant increase in functional protein.  Targeted 
chemical optimization of this class of compounds could lead to new therapies for many 
currently untreatable human genetic diseases.   

 
Reviewer #3 
 
In this manuscript, authors present the development of a compound that corrects splicing of 
exon 20 of ELP1 gene carrying the major IVS20+6T>C mutation which is responsible for familial 
dysautonomia. Further, they applied machine learning approaches to evaluate the therapeutic 
potential of this compound to correct splicing in other human genetic diseases. This 
manuscript is a good example of how deep learning techniques can identify sequence 
signatures and predict response to pharmacological modulation. I am not an expert on 
machine learning so I will circumscribe my review comments to the aspects related with splicing. 



I assume that other reviewer (s) will comment on the machine learning aspects of the 
manuscript. 
 

1) Figs. 4c-f: really the changes observed in the mutated lines with the BPN-15477 
compound are very small (3-10% change). How much of that little change is caused by the 
compound or any other secondary effect? 
 
Although we recognize that for some targets the splicing changes are modest, they are quite 
specific.  The addition of our new data showing an increase of full-length protein after the 
treatment (for ELP1, LIPA and CFTR), as well as a specific increase in CFTR calcium 
channel function following treatment, further validate that the observed transcript changes 
are not the result of a secondary effect. Please also see the response to Reviewer 2, 
question 3.   

 
2) Related with the previous point: how significant is the change in response to BPN-15477 
in terms of physiologic relevance? I think this is something important to have this manuscript 
published in Nature Communications and it will for sure make the paper much stronger 
combining: splicing correction with a small molecule + physiological impact of that correction 
+ machine learning. 

 
This has been fully addressed above in response to Reviewer 2, question 3. 

 
3) Please, indicate the number of independent experiments in each figure legend. It should 
be at least three.  
 
We have now included in each figure legend the number of independent experimental 
replicates, and every experiment was repeated at least three times.  

 
Reviewer #4 
 
Gao et al., present a deep-learning approach to predict splicing events that will be affected by 
the splicing modulator compound, BPN-15477, a more potent and efficacious derivative of the 
natural product, kinetin…… With splicing-related defects being a prevalent cause of disease 
and as more splicing modulator compounds are being discovered, tools such as the one 
presented in this manuscript are valuable for understanding and predicting potentially 
harmful off-target effects as well as for identifying additional therapeutic targets for the 
molecules……The study is a good proof-of-concept that presents a potentially valuable 
approach for identifying drug targets for this and other splice modulating compounds.  
 
There are a number of issues with the reporting in the manuscript (both minor and major) that 
should be addressed as detailed below. 

 
1) Figure 1: b) should include EC50 data for both BPN-15477 and Kinetin. C) splicing 
correction is shown for the purpose of validating splicing correction by RT-PCR. The low end 
of the dose curve is missing as is the comparison to kinetin.  
 
We have now included the EC50 data for both BPN-15477 and Kinetin in Figure 1C.  

 
2) For the RNA-seq samples, were the cells treated a single time with the compound and 
then incubated for seven days? What is known about the stability of the compound in the 



culture media? Why was this long incubation time selected? Fig 1b and c show results from 
fibroblast cells treated for only 24 hours. 
 
The medium and drug were changed after three days of treatment.  We have added more 
details regarding the treatment protocol for the fibroblast lines used in the RNA-seq 
experiment in the Material and Methods section of our revised manuscript. Our extensive 
experience in treating cell lines with BPN-15477 has shown that this compound is quite 
stable in the culture media. We performed several time-course experiments and we know 
that, once the compound is removed from the medium, mRNAs are back to baseline levels 
in 24 hours. Therefore, the fact that we observed splicing changes in treated cells when 
compared to DMSO, even after a long incubation period, demonstrates that the compound 
is still active.   

 
3) Provide citation for statement: “This is exciting since a small increase in functional CFTR 
protein is associated with a significant improvement in patient phenotype”.  
 
We have added an expanded discussion of this topic (please see the response to Reviewer 
2, Question 3) and have added references to the manuscript, as requested. 
 
4) Provide raw data for all data points in Fig. 2C. This could be in the form of a Table that 
lists the name of the genes, the exon # that is changing and the PSI values. 
 
We have now included a table that lists the name of the genes, the exon that is 
included/excluded and the PSI values for each data point in Fig. 2c as Supplementary Table 
3. 

 
5) In terms of selectivity, as presented on page 5 line 116, it would be informative to also 
include the number of alternatively spliced exons (triplets with two isoforms) that do not 
change. This number, I presume is the same as the unchanged-response set (382) exon 
triplets with two expressed isoforms described on p. 6 line 129. 
 
This is correct, the number of alternatively spliced exons that do not change is 382, the 
same as the unchanged-response set. 
 
6) In the bar graphs for the drug response plotting standardized probability, the values for 
the y-axis are not completely labeled with the bars extending beyond the y-axis labels, 
making it difficult to estimate the actual value. 
 
Thank you, we have corrected this on all plots.   

 
7) Fig. 3 and 4. These motifs are very short and degenerate, it is surprising that they could 
have any predictive value as they will be expected to be very frequent. Is there a way to 
score the motif match for each of these? 

 
Although these motifs are quite short, please note their affects are not independent. Instead, 
the model uses a synergistic outcome of finding these motifs by adding up their convolved 
weights (Supplementary Fig. 2a), that is why the model is called convolutional neural 
network (CNN). For example, both Motif 18 and 25 had dominating AAG at the first three 
positions. The model “added up” the weight of them, which amplified the contribution of 
AAG, and pass it to the next stage of calculation towards final prediction. We regret not 
making this clear and we now updated the text in the manuscript to reflect this point. The 



heatmap in Fig. 3b and Supplementary Fig. 4 actually measured the match of each motif at 
each position along the sequences that was important to make accurate predictions.   

 
8) The figure legend of Supp. Fig 3 indicates that the RT-PCR was performed in triplicate to 
make the bar plot. This use of technical replicates is not as robust as the use of 
experimental replicates and lessens the strength of the results. Similarly in Fig. 3 d-e, the 
legend states that each RT-PCR was done in duplicate and independently repeated three 
times for each minigene, does this mean that the same RNA sample from a single 
transfection/treatment was analyzed six times or was the transfection/treatment performed 
three times? Please clarify. 
 
The transfection/treatment was performed three independent times, as was the RT-PCR.   
As stated above we changed the figure legends to better clarify experimental and technical 
replicates. 
 
9) Fig. 4c,d it would be helpful to indicate the position of the mutation and the effect on the 
motif. 
 
We marked all mutated positions by coordinates relative to the 5’ splice sites in red beneath 
the LOGO plots. We now mention this in the figure legends.   
 
10)  The discussion could be expanded to consider in more detail the meaning of the results 
and how they relate to previous studies and the future of the molecule as a therapeutic. For 
example, the authors should comment on whether the motifs represent direct targets of the 
compound or just identify features of “weak” or “strong” splice sites that might be sensitive to 
subtle alterations in splicing in general induced by the compound. Further, it is a big leap to 
conclude from the motif analysis associated with sensitive exon 5’ss that the result is 
consistent with this class of compounds promoting the recruitment of U1 snRNP to non-
canonical 5’ splice sites. They cite a study by Yoshida et al., which shows that a kinetin-like 
molecule promotes U1-binding to the weak 5’ss of ELP1. However, Yoshida et al., actually 
go on to identify cis-acting sequence elements common to splicing events responsive to 
compound treatment and conclude that sequence elements that appear to act as hnRNP H 
binding exonic splicing silencers and may be the target of the compounds and that 
inactivating or interfering with these ESSs may allow more effective U1 snRNP binding 
simply because splicing is derepressed by the ESS.  

 
Thank you, we have modified the discussion slightly, however, we would like to point out 
that the main objective of the current work was to evaluate the effect of BPN-15477, a more 
potent analog of kinetin, on splicing and to use it to build and validate our machine learning 
model to predict new potential targets for therapy.  It was not to evaluate the mechanism of 
action of this particular compound.   It is likely that this class of SMCs are promoting 
recruitment of U1 to the splice site, either directly or indirectly.   Further, as we noted above 
in response to Reviewer 2, further optimization would be needed to improve potency and 
specificity for each target.  Nonetheless, our current work has yielded 214 mutations that 
cause human disease as potential targets for this class of compounds, which was our goal. 
 
 
11) Regarding Yoshida et al. further, the authors should discuss these previous results in 
more detail, perhaps commenting on the similarities or differences in identified motifs as well 
as the identified responsive splicing events.  
 



Although we recognize that BPN-15477 has a similar chemical structure to the kinetin 
derivative RECTAS, the goal of our study is completely different and does not lend itself to a 
direct comparison to the Yoshida study.  One of the major differences between the two 
analyses is that while Yoshida et al. performed exon array analysis in treated FD fibroblasts 
we performed a deep RNA-seq analysis in treated WT fibroblasts. Treating FD cells with a 
splicing modifier increases the expression of ELP1 significantly, making it difficult to 
distinguish whether the observed changes in gene expression/splicing are due to the 
treatment itself or due to the increase in ELP1.  Another major difference is that while 
Yoshida et al. has investigated differential exon expression, our study focuses on differential 
exon splicing using the inclusion ratio as gleaned from RNA-seq analysis.   Exon expression 
can be influenced by gene expression while the exon inclusion ratio has been normalized for 
gene expression. It is not surprising, therefore, that we see differences.  The novelty of our 
study lies in the use of a deep learning approach to identify new targets for a class of 
splicing modulator compounds.   



Reviewers' Comments: 

 

Reviewer #2: 

Remarks to the Author: 

Overall the response of the authors to the initial review comments appears satisfactory and they 

have made a fair effort to improve the manuscript. 

 

• Effects of BPN-15477 in validation experiments are marginal and not very impressive. 

While the comments in response to this criticism are broadly satisfactory and some examples of 

extremely low protein restoration levels mitigating disease, the evidence is overall marginal. In the 

case of Duchenne for instance, despite FDA approvals, no oligonucleotide or small molecule drug 

that restores dystrophin has yet been unequivocally shown, in appropriately controlled studies, to 

modify disease progression. Consensus in the field is that approx. 5% dystrophin is inadequate 

and non-therapeutic. While the inclusion of new data demonstrating that BPN-15477 treatment 

leads to ELP1 splicing correction and increases in ELP1 protein is welcome, the critical question is 

the effect of low level protein restoration on disease phenotype/progression, not necessarily on the 

ability to generate low levels of a deficient protein. The authors should comment critically on this. 

 

• The authors identify specific motifs which explain ~95% of their model performance. It is 

essential that these motifs are independently validated by an orthogonal method e.g. an ASO 

which specifically targets those regions. 

The authors have failed to respond adequately to this criticism. Validating this potential new mode 

of analysis and drug discovery should be accompanied by an attempt to independently validate 

these findings and target motifs using an independent/orthogonal approach. The authors have 

failed to answer this point. 

 

• The paper draws parallels to ASO targetable exon-skipping diseases. However, the biggest 

drawback of BPN-15477 is the observation of unspecific splicing modulation (934 exon triples show 

significant modulation of the middle exon). The effects of this unspecific splicing alteration are not 

discussed but are certainly of concern from a therapeutic aspect. A more detailed analysis (ideally 

in vivo) and discussion of the limitations of the current approach are required. 

Response to this point are broadly satisfactory. However the authors specific response ‘We 

understand that specificity is an important consideration and we recognize that our compound 

needs additional medicinal chemistry optimization for any specific indication in order to increase 

the potency and decrease the off-target effects. Also, whether off-target effects observed in cells 

in a dish will lead to any undesired consequences to an organism is unclear’ should be clearly 

reflected in the discussion i.e. that the existing compound requires further med chem and 

therefore may fail in drug development and also that the off-target effects observed in vitro may 

or may not have undesirable effects in a patient, again leading to failed drug development. The 

point is that lack of specificity, even at this low level, could result in failed drug development 

and/or adverse affects for patients and this shouldn’t be dismissed. 

 

• Finally, regarding competing financial interests. In addition to Dr Slaugenhaupt other authors on 

the manuscript (e.g. Johnson, Paquette) should be disclosed as having interests with respect to 

International Application Number PCT/US2016/013553 

 

 

 

Reviewer #4: 

Remarks to the Author: 

The authors have improved the manuscript considerably by adding additional data and expanding 

on their descriptions and analysis. There are some critical points that need to be addressed in 

order to establish this approach as a robust means to identify relevant drug targets for disease 

therapeutics. 

 



The experiments in Flp-In-293 cells of CFTR c.2988G>A were done with 60 uM BPN-15477 for 5 

days with moderate splicing increase (Fig. 4C) and more dramatic protein increase Fig. 5b). The 

analysis of chloride channel function in treated CFBE cells were treated with only up to 10 uM drug 

for 3 days. Nonetheless, there was an increase in current suggesting an increase in CFTR protein. 

However, the authors do not correlate this increase in current with and increase in protein 

abundance or splicing correction, which can be easily done by collecting the cells after the 

functional assay is complete. This information is necessary to satisfactorily complete this very 

important experiment demonstrating the functional relevance of BPN-15477 treatment. 

 

Figure 4d: There is a doublet in the BPN-15477-treated samples near the indicated inclusion. It 

looks like cryptic splicing has been activated. All amplicons should be sequenced to verify correct 

splicing and to identify any cryptic splicing. 

 

In figure legends (2,3,4), please indicate explicitly the N used to calculate statistics. I assume that 

in Figure 4 the duplicates were averaged and that average was used as the independent repeat so 

N=3? My previous review asked this same question and it has not been satisfactorily addressed. 

 

 

 

Reviewer #5: 

Remarks to the Author: 

The authors have satisfactorily addressed most of the comments from Reviewer 1. However, a few 

issues still exist: 

 

1. Deep learning is prone to overfitting, especially when applied to small datasets. Therefore, I am 

quite surprised to see the high AUC value of the proposed CNN model, when trained on only a few 

hundred exons in each category. Could the authors clarify if the training and testing sets are 

completely separate from each other? That seems like the case, based on the text in the Methods 

section – but I think it’ll be helpful to state this explicitly in the Results section too. Additionally, 

can the authors provide additional discussions and potential mechanistic explanations for why the 

CNN model appears to perform so well, when trained on such small training data? 

 

2. As related to point #1 above, it would be useful to know whether this strategy can be similarly 

extended to other splicing-modulating small molecule compounds. RNA-seq data for other such 

compounds do exist, such as Risdisplam, and CLK small molecule inhibitor 

(https://www.nature.com/articles/s41467-016-0008-7). A demonstration on the generalizability of 

the proposed CNN model would substantially enhance its potential impact. 

 

3. The authors evaluated the performance of the proposed CNN model using the AUC value, and 

the unchanged exon set contains only 382 exons. I agree the authors have a reasonable 

justification of using high-confidence unchanged exons for training the CNN. However, the use of a 

very small “negative” set makes the AUC value somewhat uninformative. The authors pointed out 

that the effect of BPN-15477 on splicing is highly selective (only 0.58% of expressed exon triplets 

are differentially spliced upon drug treatment). Therefore, in a real-life usage scenario, a predictive 

model with a high AUC value could end up having a low positive predictive value and high false 

discovery rate. This issue needs to be addressed and discussed in the manuscript, and it would be 

better to evaluate the performance of the model using the AUPR value. 

 

4. The authors used RNA-seq data to examine drug induced exon splicing and intron retention 

events. The inclusion response exon set is characterized by weak 5’ splice sites, consistent with 

the proposed MOA of this compound. Given this proposed MOA, and the compound’s effect on 

exons with weak 5’ splice sites, I think the authors should also analyze alternative 5’ or 3’ splice 

site events, to see if the compound preferentially alters 5’ splice site usage leading to alternative 5’ 

splice site events. This could be easily done by running one of the popular splicing tools (rMATS, 

SUPPA2, etc) on the RNA-seq data. 



 

5. It is interesting to see that the majority of the drug-responsive exon splicing events fall into the 

exclusion response category, and these exons have “normal” splice site strength. Is it possible that 

BPN-15477 acts on these exons through an indirect mechanism, by perturbing a master splicing 

regulator? The authors noted that only 3.24% of genes were differentially expressed in BPN-15477 

treated cells. Are there splicing regulators in these differentially expressed genes? Are there 

splicing regulators differentially spliced in BPN-15477 treated cells? 

 



Reviewer #2 (Remarks to the Author): 
 
Overall the response of the authors to the initial review comments appears satisfactory and 
they have made a fair effort to improve the manuscript. 
 
1) Effects of BPN-15477 in validation experiments are marginal and not very impressive. 

While the comments in response to this criticism are broadly satisfactory and some 
examples of extremely low protein restoration levels mitigating disease, the evidence is 
overall marginal. In the case of Duchenne for instance, despite FDA approvals, no 
oligonucleotide or small molecule drug that restores dystrophin has yet been unequivocally 
shown, in appropriately controlled studies, to modify disease progression. Consensus in the 
field is that approx. 5% dystrophin is inadequate and non-therapeutic. While the inclusion of 
new data demonstrating that BPN-15477 treatment leads to ELP1 splicing correction and 
increases in ELP1 protein is welcome, the critical question is the effect of low level protein 
restoration on disease phenotype/progression, not necessarily on the ability to generate low 
levels of a deficient protein. The authors should comment critically on this.  

 
While we agree with the reviewer that this is a critical question, it is one that can only be 
answered through clinical studies in humans and it no way invalidates the potential 
significance of our study.   
 
While 5% dystrophin might be inadequate and non-therapeutic in DMD, this is not true for 
other diseases.    Several studies have shown that CF protein levels as low as 10% of WT 
result in improved lung function and survival, and protein levels as low as 3% of WT can 
rescue pancreatic insufficiency, even in moderate to advanced stages of disease (McCague 
et al. Am J Respir Crit Care Med 2019; Ramsey et al. N Engl J Med 2011; Wainwright et al. 
N Engl J Med 2015; Taylor-Cousar et al. N Engl J Med 2017; Davies JC et al. N Engl J Med 
2018; Keating et al. N Engl J Med 2018). Similarly, a 3% increase in lysosomal acid lipase 
(LAL or LIPA) residual enzyme activity is enough to distinguish Wolman disease, which is 
lethal in infancy, from the much milder CESD, therefore a 10% increase in functional LAL 
would be predicted to have clinical benefit (Aslanidis et al. Genomics 1996).  In this 
manuscript we show that splicing correction after BPN-15477 treatment leads to increased 
protein production in disease relevant cellular models of LIPA (10% increase) and CFTR 
(20% increase).  While these are representative confirmations, they are certainly over the 
predicted therapeutic threshold.  
 
The power of our study is in predicting potential gene targets that might be amenable to a 
treatment strategy that targets splicing.  In response to the initial review, we added 
significant confirmatory data in animal models (FD) patient cell lines (LIPA) and functional 
data in CF.  The fact that we see functional protein increase after treatment is exciting, and 
further optimization for each disease is warranted.  We in no way argue in this paper that the 
protein increase that we see will be therapeutic, that is not the point as we are using a small 
molecule that has not been optimized for the specific targets yet.  We are arguing that we 
have identified 155 gene targets that harbor splice mutations that cause human disease (in 
some cases previously unrecognized) using a deep learning model and we have functionally 
validated several of our hits, setting the stage for future studies aimed at developing and 
testing therapeutics in human clinical trials.   
 
 

 



2) The authors identify specific motifs which explain ~95% of their model performance. It is 
essential that these motifs are independently validated by an orthogonal method e.g. an 
ASO which specifically targets those regions. 
The authors have failed to respond adequately to this criticism. Validating this potential new 
mode of analysis and drug discovery should be accompanied by an attempt to 
independently validate these findings and target motifs using an independent/orthogonal 
approach. The authors have failed to answer this point. 

 
Respectively, we do not agree that independent validation of specific motifs using an ASO is 
at all relevant to the validity of our results.  As we state in the paper and inherent in the deep 
learning approach, the treatment response is not determined by any of these motifs 
independently, which is the strength of using a modeling approach. Therefore, the 
inactivation of one specific motif using an ASO would not necessarily result in a failure of 
treatment response, again highlighting the complexity and the power of the model.   
 
Importantly, several of our predictions were independently validated by treating disease 
relevant cellular models and confirming splice correction and functional protein increase, 
which is ultimately a more powerful approach for validation since the point of our study was 
to identify gene targets harboring disease causing mutations predicted to respond to a 
specific small molecule.   We do not suggest that this is a new method for drug discovery, 
but rather a potential method to further interrogate existing compounds for their effect on a 
transcriptome level. 

 
3) The paper draws parallels to ASO targetable exon-skipping diseases. However, the biggest 

drawback of BPN-15477 is the observation of unspecific splicing modulation (934 exon 
triples show significant modulation of the middle exon). The effects of this unspecific splicing 
alteration are not discussed but are certainly of concern from a therapeutic aspect. A more 
detailed analysis (ideally in vivo) and discussion of the limitations of the current approach 
are required. 
Response to this point are broadly satisfactory. However the authors specific response ‘We 
understand that specificity is an important consideration and we recognize that our 
compound needs additional medicinal chemistry optimization for any specific indication in 
order to increase the potency and decrease the off-target effects. Also, whether off-target 
effects observed in cells in a dish will lead to any undesired consequences to an organism is 
unclear’ should be clearly reflected in the discussion i.e. that the existing compound requires 
further med chem and therefore may fail in drug development and also that the off-target 
effects observed in vitro may or may not have undesirable effects in a patient, again leading 
to failed drug development. The point is that lack of specificity, even at this low level, could 
result in failed drug development and/or adverse affects for patients and this shouldn’t be 
dismissed. 

 
We are pleased that the reviewer found our response to this point satisfactory and as 
suggested by the reviewer we have clarified this point in the discussion.   It is our view that 
the more potential therapies that exist for a specific disease, the better.  It may be that small 
molecules will be complementary to ASO therapies, or vice versa.  It is too soon to predict if 
one therapeutic mechanism will be better than another.   
 

4) Finally, regarding competing financial interests. In addition to Dr Slaugenhaupt other authors 
on the manuscript (e.g. Johnson, Paquette) should be disclosed as having interests with 
respect to International Application Number PCT/US2016/013553 

 



We have edited the Competing Financial Interests section and include Drs. Johnson and 
Paquette as inventors in the International Application Number PCT/US2016/013553.  
However, they have no financial interests as they have assigned to MGH as required by the 
NIH Blueprint Therapeutics Network agreements.   

 
Reviewer #4 (Remarks to the Author): 
 
The authors have improved the manuscript considerably by adding additional data and 
expanding on their descriptions and analysis. There are some critical points that need to be 
addressed in order to establish this approach as a robust means to identify relevant drug targets 
for disease therapeutics.  
 
1) The experiments in Flp-In-293 cells of CFTR c.2988G>A were done with 60 uM BPN-15477 

for 5 days with moderate splicing increase (Fig. 4C) and more dramatic protein increase Fig. 
5b). The analysis of chloride channel function in treated CFBE cells were treated with only 
up to 10 uM drug for 3 days. Nonetheless, there was an increase in current suggesting an 
increase in CFTR protein. However, the authors do not correlate this increase in current with 
and increase in protein abundance or splicing correction, which can be easily done by 
collecting the cells after the functional assay is complete. This information is necessary to 
satisfactorily complete this very important experiment demonstrating the functional 
relevance of BPN-15477 treatment.  

 
We have now included CFTR splicing analysis in treated CFBE cells and show that the 
improvement in chloride channel function correlates with a significant increase in exon 18 
inclusion (Supplementary Figure 6). 

 
2) Figure 4d: There is a doublet in the BPN-15477-treated samples near the indicated 

inclusion. It looks like cryptic splicing has been activated. All amplicons should be 
sequenced to verify correct splicing and to identify any cryptic splicing.  

 
As correctly stated by Reviewer 4, in the mutant MLH1 minigene we observed activation of a 
cryptic 5’ splice site at +31. The identity of each band was verified by sequence analysis. In 
the legend of Figure 4 we have now included this information.  

 
3) In figure legends (2,3,4), please indicate explicitly the N used to calculate statistics. I 

assume that in Figure 4 the duplicates were averaged and that average was used as the 
independent repeat so N=3? My previous review asked this same question and it has not 
been satisfactorily addressed. 

 
We have now included the N in each figure legend. We apologize that this was not clear in 
our original response.  Since we did not average the duplicates and we considered every 
single value independently the N is 6. 

 

Reviewer #5 (Remarks to the Author): 

The authors have satisfactorily addressed most of the comments from Reviewer 1. 
However, a few issues still exist: 

Major comments: 



1) Deep learning is prone to overfitting, especially when applied to small datasets. 
Therefore, I am quite surprised to see the high AUC value of the proposed CNN model, 
when trained on only a few hundred exons in each category. Could the authors clarify if 
the training and testing sets are completely separate from each other? That seems like 
the case, based on the text in the Methods section – but I think it’ll be helpful to state this 
explicitly in the Results section too. Additionally, can the authors provide additional 
discussions and potential mechanistic explanations for why the CNN model appears to 
perform so well, when trained on such small training data? 
 
As suggested by the reviewer, we now state in the Results section (Line 150-152) that 
the training and testing data are separate from each other.   We’ve also included a new 
discussion point (Line 346-357) suggesting the potential reasons why our CNN’s 
performance is robust, including 1) the trained model highly scored a short region of 
~8bp (out of a 400bp training region) flanking the 5’ ss of the middle exon, while the 
scores of other regions were almost zero (Supplementary Fig. 4). This suggests that the 
treatment effect might be in a condensed region relative to the 5’ ss. 2) We empirically 
avoided overfitting by applying the L1-regularization (coefficient = 0.6) in the 
convolutional layers and the dropout strategy (see Methods) in the hidden layer during 
model training. Both of these factors made the model converge quickly (in twelve epochs, 
Supplementary Fig. 2b) on a small sample size.  
 

2) As related to point #1 above, it would be useful to know whether this strategy can be 
similarly extended to other splicing-modulating small molecule compounds. RNA-seq 
data for other such compounds do exist, such as Risdisplam, and CLK small molecule 
inhibitor (https://www.nature.com/articles/s41467-016-0008-7). A demonstration on the 
generalizability of the proposed CNN model would substantially enhance its potential 
impact.  
 
We appreciate the Reviewer’s suggestion to demonstrate the generalizability of the 
model and we agree this will be a critical area of exploration. Indeed, we have written an 
entire grant proposal to partially pursue these questions, as well to include other 
molecules derived from kinetin in order to identify additional gene targets.  However, 
these additional experiments and analyses are well beyond the scope of this paper, 
where we focused on creating the model, identifying gene targets for BPN-15477, and 
validating our predictions in relevant cellular patient models.   
 

3) The authors evaluated the performance of the proposed CNN model using the AUC 
value, and the unchanged exon set contains only 382 exons. I agree the authors have a 
reasonable justification of using high-confidence unchanged exons for training the CNN. 
However, the use of a very small “negative” set makes the AUC value somewhat 
uninformative. The authors pointed out that the effect of BPN-15477 on splicing is highly 
selective (only 0.58% of expressed exon triplets are differentially spliced upon drug 
treatment). Therefore, in a real-life usage scenario, a predictive model with a high AUC 
value could end up having a low positive predictive value and high false discovery rate. 
This issue needs to be addressed and discussed in the manuscript, and it would be 
better to evaluate the performance of the model using the AUPR value. 
 



Thank you for this helpful comment.  As suggested, we have re-estimated the model 
performance using AUPR and we found that the prediction for inclusion, exclusion, and 
unchanged sequences in the test set achieved a PR-AUC of 0.8, 0.84 and 0.61 
respectively, which is consistent with our initial observations using AUC (Supplementary 
Fig. 2c right panel). This additional analysis proves the robustness of the model and 
confirms that a higher false discovery rate is unlikely.  The new figure for AUPR 
estimation is shown below and has been added to Supplementary Fig. 2c right panel. 
 
We agree with the Reviewer that the effect of BPN-15477 on the WT transcriptome is 
highly selective with only 0.58% of exon triplets responding to the drug. This is a 
reflection of the efficiency of the splicing machinery in WT cells where most middle 
exons are included 100% of the time.  However, our model is particularly valuable when 
a mutation leads to a splicing error. Given that the effect of a particular mutation on 
splicing is typically not annotated and highly underestimated, our model provides an 
approach to facilitate treatment development for diseases caused by splice mutations. 
We have now noted this in the Discussion (Line 366-369). 
 

4) The authors used RNA-seq data to examine drug induced exon splicing and intron 
retention events. The inclusion response exon set is characterized by weak 5’ splice 
sites, consistent with the proposed MOA of this compound. Given this proposed MOA, 
and the compound’s effect on exons with weak 5’ splice sites, I think the authors should 
also analyze alternative 5’ or 3’ splice site events, to see if the compound preferentially 
alters 5’ splice site usage leading to alternative 5’ splice site events. This could be easily 
done by running one of the popular splicing tools (rMATS, SUPPA2, etc) on the RNA-
seq data. 
 
As suggested by the Reviewer, this additional analysis will not change the results of our 
study since we focused on using alternative exon inclusion/exclusion as evaluated by 
exon triplets.  In other words, examining alternative 5’ and 3’ ss usage is merely a 
different way of viewing two unique exon triplets that would differ by the length of the 
middle exon. Given this, we did not add this analysis to the supplement since these 
events would have already been identified. Nonetheless, we agree that it is an 
interesting question and in order to answer the Reviewer, we applied rMATS on our 
RNASeq data with the option “--paired-stats” for using a paired statistical model. We 
defined alternative 5’ ss or 3’ ss with FDRs < 0.1 and absolute changes of splicing >= 
0.1, which is as the same magnitude of change we used to define differential exon 
inclusion and exclusion in the paper. By doing so, we found 132 (3.06%, out of 4,312) 
alternative 5’ ss events and 75 (1.11%, out of 6,742) alternative 3’ ss events (figures 
shown below). As expected, these events overlap significantly with our differential exon 
inclusion analysis. 



 
 

5) It is interesting to see that the majority of the drug-responsive exon splicing events fall 
into the exclusion response category, and these exons have “normal” splice site strength. 
Is it possible that BPN-15477 acts on these exons through an indirect mechanism, by 
perturbing a master splicing regulator? The authors noted that only 3.24% of genes were 
differentially expressed in BPN-15477 treated cells. Are there splicing regulators in these 
differentially expressed genes? Are there splicing regulators differentially spliced in BPN-
15477 treated cells? 
 
This is an interesting question and would require a detailed study of the precise 
mechanism of action of this compound.  We did, however, examine the functional 
annotations for the differentially expressed genes (DEGs) and differentially spliced exon-
triplet (DSEs). There are 157 (0.88% out of 17,812 expressed genes) splicing regulators 
in Gene Ontology database (GO:0043484). Among 577 DEGs, there were five (0.87%) 
splicing regulators: LPHN2, NEO1, NGR1, SLC22A17 and PILRB. The first four were 
upregulated while the last one is downregulated.  
 
Among the 934 DSEs responsive to BPN-15477, thirteen (or 1.40%) were located in 
eight annotated splicing regulators:  CLK1, FAM172A, FXR2, HNRNPA2B1, MBNL1, 
SETX, SLC38A2, SNRNP70 and TIA1.  Twelve of these exon triplets had increased 
middle exon retention after BPN-15477 treatment.  
 
While the above results suggest that BPN-15477 did not alter either splicing or 
expression of a known annotated splicing regulator more often than random, it is 
impossible to know for sure what the downstream consequences of these changes are, 
and we are unable to study this directly using RNAseq data.  As mentioned in the 
response above, our results set the stage for a future study, perhaps using RNA 
Immunoprecipitation Chip (RIP) assays, that will uncover the precise mechanism of 
action of this drug.       



Reviewers' Comments: 

 

Reviewer #2: 

Remarks to the Author: 

The manuscript is improved and all comments have been addressed satisfactorily except for that 

regarding the lack of independent biological validation of the treatment responsive sequence 

signatures identified. In my opinion this continues to represent a weakness in the manuscript. 

 

 

 

Reviewer #4: 

Remarks to the Author: 

I appreciate the authors' thoughtful and largely corrective responses to my previous concerns. I 

have only two remaining critiques that should be addressed. 

 

Figure 4: If the experiment was done three times and each sample from each experiment was 

analyzed twice, the n used for statistics and graphed should be 3 not 6 (the experiment was 

replicated three times, not six times). By using n=6, the authors are artificially lowering the p-

value and increasing the power of the result by representing each sample twice. 

 

Supplementary Fig. 6: The lanes in the gel should be labeled. I assume that the first three lanes 

are untreated and the last three lanes are treated with BPN-15477? Was the untreated actually 

vehicle-treated (which would be the appropriate control since DMSO is known to have effects on 

splicing)? 

 

 

 

Reviewer #5: 

Remarks to the Author: 

The authors have satisfactorily addressed most of my comments from the previous round of 

review. I only have one remaining issue. The authors’ response to my comment #3 regarding the 

performance of the CNN model seems to miss the point. As indicated by the data and noted by the 

authors, the effect of BPN-15477 on splicing is highly selective (only 0.58% of expressed exon 

triplets are differentially spliced upon drug treatment). Predicting drug-responsive exons in this 

situation is similar to diagnosing a disease with a very low prevalence in the population – a test 

with a low false positive rate could still end up having a high false discovery rate because the 

prevalence is low. In this work, the authors used a very small “negative” (i.e. unchanged) exon 

set, that contains only 382 exons, for training and evaluating the CNN. In reality, the size of the 

negative exon set is far larger than the size of the positive exon set. Therefore, regardless of 

whether AUC or AUPR is used for performance evaluation, the use of this small negative exon set 

would make the performance inflated and unrealistic. One way to assess this issue is to apply the 

CNN model to the whole transcriptome, and at various cutoffs for the prediction score, use the 

RNA-seq data (and/or RT-PCR experiments) to assess what percentage of positive predictions are 

indeed correct. This would provide a more realistic estimation of the false discovery rate. This can 

be done on all expressed exon triplets, or on a subset of expressed exon triplets with weak splice 

sites for the middle exon (given that the drug seems to particularly impact exons with weak splice 

sites, as noted by the authors). 

 

I should note that regardless of the results of the analysis proposed above, I don’t view this issue 

a deal breaker. Nonetheless, I think it’s important for the authors to present the performance and 

applicability of their model in a more realistic manner, that matches the real-life usage scenario of 

this model. 



Reviewer #4 (Remarks to the Author): 
 
I appreciate the authors' thoughtful and largely corrective responses to my previous 
concerns. I have only two remaining critiques that should be addressed. 
 
1) Figure 4: If the experiment was done three times and each sample from each experiment 

was analyzed twice, the n used for statistics and graphed should be 3 not 6 (the experiment 
was replicated three times, not six times). By using n=6, the authors are artificially lowering 
the p-value and increasing the power of the result by representing each sample twice. 

 
We regret the confusion regarding technical and biological replicates introduced with our 
usage of the word “duplicate”. We did not analyze the same samples twice. We performed 
two independent experiments and thus across these independent experiments and 
treatment groups we performed 6 replicates. We have corrected the legends accordingly.  

 

2) Supplementary Fig. 6: The lanes in the gel should be labeled. I assume that the first three 
lanes are untreated and the last three lanes are treated with BPN-15477? Was the 
untreated actually vehicle-treated (which would be the appropriate control since DMSO is 
known to have effects on splicing)? 
 
We now have labelled the lanes in Supplementary Figure 6. The first three lanes represent 
the CFTR splicing analysis in DMSO-treated cells while the last three lanes represent the 
CFTR splicing analysis in BPN-15477-treated cells.   

 
Reviewer #5 (Remarks to the Author): 
 
The authors have satisfactorily addressed most of my comments from the previous round of 
review. I only have one remaining issue…I should note that regardless of the results of the 
analysis proposed above, I don’t view this issue a deal breaker. Nonetheless, I think it’s 
important for the authors to present the performance and applicability of their model in a more 
realistic manner, that matches the real-life usage scenario of this model. 
 
1) In reality, the size of the negative exon set is far larger than the size of the positive exon set. 

Therefore, regardless of whether AUC or AUPR is used for performance evaluation, the use 
of this small negative exon set would make the performance inflated and unrealistic. One 
way to assess this issue is to apply the CNN model to the whole transcriptome, and at 
various cutoffs for the prediction score, use the RNA-seq data (and/or RT-PCR experiments) 
to assess what percentage of positive predictions are indeed correct...This can be done on 
all expressed exon triplets, or on a subset of expressed exon triplets with weak splice sites 
for the middle exon (given that the drug seems to particularly impact exons with weak splice 
sites, as noted by the authors). 
 
We did not initially conduct these analyses due to the inherent noise in a transcriptome-wide 
analysis, but we appreciate this perspective and have taken the Reviewer’s guidance to 
evaluate the CNN model using all available triplets. We included all exon-triplets with PSI 
between 0.01 and 0.99 before or after treatment. We defined the “true inclusion response” 
group as consisting of triplets with PSI changes >=0.01 after treatment, while the “true 
exclusion response” group consisted of triplets with PSI changes <= -0.01 after treatment. 
The remaining triplets were considered the “true unchanged” group. These groups 
contained 5.70%, 14.08% and 80.22% of the18,766 exon triplets, respectively. Application 



of our CNN model on these data yielded an ROC-AUC of 0.70, 0.67 and 0.67 for inclusion, 
exclusion, and unchanged predictions, respectively (see below). As expected and noted by 
the Reviewer,  these analyses display reduced performed by comparison to the highly 
curated true positive triplets used in the test set, however they remain highly significant by 
comparison to a random classifier (see below). We have now included these comparisons in 
the methods and Supplementary Figure 2c.  
 

 



Reviewers' Comments: 

 

Reviewer #4: 

Remarks to the Author: 

Thank you for making the clarifications and corrections in your manuscript. I am very enthusiastic 

about the study. 

 

 

 

Reviewer #5: 

Remarks to the Author: 

The authors have addressed my remaining concern. The paper is ready for publication. 


