Sam68 promotes hepatic gluconeogenesis via CRTC2

Aijun Qiao¹, Junlan Zhou², Shiyue Xu¹, Wenxia Ma¹, Chan Boriboun¹, Teayoun Kim³, Baolong Yan¹, Jianxin Deng¹, Liu Yang¹, Eric Zhang¹, Yuhua Song¹, Yongchao C. Ma⁴, Stephane Richard⁵, Chunxiang Zhang¹, Hongyu Qiu⁶, Kirk M Habegger³, Jianyi Zhang¹, Gangjian Qin^{1,2*}

- ¹ Department of Biomedical Engineering, University of Alabama at Birmingham, School of Medicine and School of Engineering, Birmingham, AL 35294, USA
- ² Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- ³ Department of Medicine Endocrinology, Diabetes & Metabolism, University of Alabama at Birmingham, School of Medicine, Birmingham, AL 35294, USA
- ⁴ Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Anne & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
- ⁵ Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
- ⁶ Center of Molecular and Translational Medicine, Institution of Biomedical Science, Georgia State University, Atlanta, GA 30303, USA

Supplementary Information

Supplementary Figures

Supplementary Fig. 1: Generation and metabolic characterization of hepatocyte-specific Sam68 knockout mice. (a) The structural components of the Sam68 gene (upper panel) and protein (lower panel) are illustrated. Sam68 contains a GSG domain composed of a single RNAbinding KH domain flanked by NK (N-terminus of KH) and CK (C-terminus of KH) segments; six consensus proline-rich motifs (P0-P5); RGG boxes: a C-terminal tyrosine-rich domain (YY), and a nuclear localization signal (NLS). Amino acid positions are numbered across the bottom of the protein structure. (b) The gene-targeting strategy for floxing exons 5-8 of Sam68 in embryonic stem (ES) cells is illustrated. (c) Southern blotting and (d) PCR analyses were conducted to confirm that the ES clones were correctly targeted. (e) The genotypes of the WT and floxed alleles were confirmed via PCR. (f) Sam68 protein expression was evaluated via Western blot in the liver, spleen, epididymal fat, brown fat, skeletal muscle, subcutaneous fat, brain, heart, lung, and kidney tissues of $Sam68^{LKO}$ and $Sam68^{t/f}$ mice. (g) Serum triglyceride and (h) free fatty acid levels were measured in Sam68^{LKO} and Sam68^{t/f} mice under feeding (Sam68^{t/f}, n=7; Sam68^{LKO}, n=5) or 16-h fasting condition (Sam68^{t/f}, n=6; Sam68^{LKO}, n=5). (i) Sam68^{t/f} mice were injected with AAV8-TBG-iCre (Sam68^{f/f}:AAV-Cre) to induce a hepatic-specific Sam68 deletion or with control AAV8-TBG-eGFP (Sam68^{t/f};AAV-GFP). Three weeks later, Sam68 protein levels were evaluated via Western blot in the liver, epididymal fat, brown fat, heart, skeletal muscle, and lung tissues, (i) Blood glucose levels were measured in $Sam 68^{t/f}$: AAV-Cre (n=8) and Sam68^{f/f};AAV-GFP (n=8) mice at the indicated time points during the ITT. Data are expressed as mean ± standard error of the mean (s.e.m.). *p<0.05 (g-h, unpaired two-sided t test; j, twoway ANOVA). Source data are provided as a Source Data file.

Supplementary Fig. 2: Sam68 deficiency reduces glucagon signaling and glucose production in hepatocytes. (a) WT and Sam68^{-/-} hepatocytes were treated with 200 nM and 400 nM glucagon for 3 h (n=3), and then the mRNA expression of gluconeogenic genes was measured via qRT-PCR. (b) WT and Sam68^{-/-} hepatocytes were treated with glucagon (100 nM) for 3 h and then with Actinomycin D (10 µg/mL) to block new mRNA synthesis: mRNA expression of gluconeogenic genes was measured 0-8 h later (n=3). (c) mRNA expression of PKA subunits was measured in WT and Sam68^{-/-} hepatocytes (n=4). (d-e) WT and Sam68^{-/-} primary hepatocytes were treated with (d) forskolin (10 μ M) or (e) Bt2-cAMP (100 μ M) for 0-30 min and 1-4 h; then, protein levels of phosphorylated PKA substrates was evaluated via Western blot. (f) Glucose production was measured in WT and Sam68^{-/-} primary hepatocytes after treatment with forskolin for 4 h (n=3). (g) mRNA expression of gluconeogenic genes was measured in WT and Sam $68^{-/-}$ hepatocytes after treatment with forskolin for 0-3 h (n=3). (h) Glucose production was measured in WT and Sam68^{-/-} primary hepatocytes after treatment with Bt2-cAMP for 4 h (n=3). (i) mRNA expression of gluconeogenic genes was measured in WT and Sam68^{-/-} hepatocytes after treatment with Bt2-cAMP for 0-3 h (n=3). Data are expressed as mean ± standard error of the mean (s.e.m.). *p<0.05, **p<0.01, ***p<0.001, NS, not significant (a-b, f-i: two-way ANOVA; c: unpaired two-sided t test). "n" denotes biologically independent primary hepatocyte samples. Source data are provided as a Source Data file.

Figure S3

Supplementary Fig. 3: Hepatic Sam68 deficiency reduces glucagon signaling and CRTC2 protein stability. (a-b) WT and Sam68^{-/-} primary hepatocytes were treated with (a) forskolin (10 μ M) and (**b**) Bt2-cAMP(100 μ M) for 0-30 min and 1-4 h; then, protein levels of phosphorylated CREB (p-CREB), total CREB, and CRTC2 were evaluated via Western blot. (c) WT and Sam68^{-/-} primary hepatocytes were treated with PBS or alucadon (100 nM) for 30 min: then, protein levels of p-CREB, total CREB, and CRTC2 in nuclear and cytoplasmic extracts were evaluated by immunoblot. (d-e) mRNA expression of CRTC1, CRTC2, and CRTC3 was evaluated via gRT-PCR in (d) WT and Sam68^{-/-} primary hepatocytes (n=6) and in (e) liver tissue from WT and Sam68^{-/-} mice (n=3) under feeding conditions, after 16 h of fasting, and after 16 h of fasting followed by 4 h of refeeding. (f) mRNA expression of CRTC1, CRTC2, and CRTC3 was evaluated in WT and Sam68^{-/-} hepatocytes after treatment with Actinomycin D (10 µg/mL) for 0-8h to block new mRNA synthesis (n=3). (g) Protein expression of CRTC1 and CRTC3 was evaluated by Western blotting in the liver of Sam68^{LKO} and Sam68th mice under feeding condition or after 16 h fasting. (h-i) Sam68^{LKO} and Sam68th mice were administered Ad-GFP or Ad-CRTC2^{K628R}. (h) Four days later, mice were sacrificed under feeding conditions or after 16 h of fasting, and CRTC2 mRNA expression was evaluated in liver tissues (n=6). (i) Four days after Ad-GFP or Ad-CRTC2^{K628R} administration, mice were treated with (+) or without (-) insulin (1 mU/g), and protein levels of phosphorylated AKT (at amino acids S473 and T308) and total AKT were evaluated 20 min later. (j-n) WT and Sam68-/- primary hepatocytes were treated with Ad-GFP or mutant Ad-CRTC2^{K628R}; 48 h later, (j) CRTC2 protein expression was evaluated via Western blot, (k) glucose production was measured after treatment with glucagon (100 nM). forskolin (10 μ M) or Bt2-cAMP (100 μ M) for 4 h, and (I-n) mRNA expression of gluconeogenic genes was evaluated after treatment with (I) glucagon, (m) forskolin, or (n) Bt2-cAMP for 0-3 h (n=3). (o-q) HepG2 cells were co-transfected with a Sam68-expressing or empty plasmid and a CRTC2 or scrambled siRNA for 48 h, then treated with glucagon for 4 h, followed by assessments of (\mathbf{o}) Sam68 and CRTC2 protein expression, (\mathbf{p}) glucose production (n=3), and (q) gluconeogenesis gene expression (n=4). Data are expressed as mean ± standard error of the mean (s.e.m.). *p<0.05, **p<0.01, ***p<0.001, NS, not significant (d: unpaired two-sided t test; e-f, h, k-n, p-q: two-way ANOVA). "n" denotes biologically independent primary hepatocyte samples or liver tissues or independently transfected HepG2 cell samples. Source data are provided as a Source Data file.

Figure S4

Supplementary Fig. 4: Sam68 interacts directly with CRTC2. (a) WT primary hepatocytes were treated with glucagon (100 nM) or PBS for 30 min, then, Sam68 protein levels were evaluated in nuclear and cytoplasmic fractions by immunoblot. (b) WT and Sam68^{-/-} primary hepatocytes were treated with glucagon (100 nM) for 30 min; then, CRTC2 was immunoprecipitated, and Sam68 was detected in the precipitate by immunoblot. (c) 293T cells were co-transfected with plasmids coding for HA-tagged Sam68 and Flag-tagged CRTC2; 48 h later, Sam68 was immunoprecipitated from the cells with anti-HA, and CRTC2 was detected in the precipitates by immunoblotting with anti-Flag. (d) Nuclear and cytoplasm protein extracts were isolated from WT and Sam68-- primary hepatocytes; Sam68 was immunoprecipitated, and CRTC2 in the precipitate of each fraction was detected by immunoblot. (e) WT primary hepatocytes were transduced with Ad-GFP or Ad-Sam68, treated by cycloheximide (100 µM) for 0-12 h; then CRTC2 protein levels were evaluated by Western blot, quantified via NIH image J software, normalized to β -actin levels, and reported as the proportion of the amount present at 0 h. Data are expressed as mean ± standard error of the mean (s.e.m.). **p<0.001 (two-way ANOVA). (f) HepG2 cells were co-transfected with three plasmids, one coding for Flag-tagged CRTC2, one for Myc-Flag-tagged COP1, and one for HA-tagged WT Sam68 or for Sam68^{△N} or Sam68^{ΔC} mutant; 48 h later, protein levels of CRTC2, COP1, and Sam68 or Sam68^{ΔN} or Sam68^{ΔC} were evaluated via immunoblotting with anti-CRTC2, anti-Myc, and anti-HA antibodies, respectively. (g-i) Computational results from text pattern search and hydropathy analyses show that P5 domain in the C-terminus of Sam68 has 87.5% hydropathic complementarity/percent match (PM) and 0.461 degree of complementary hydropathy (DCH) with the N-terminus of CRTC2 (amino acids 77-84) in a palindromic manner (\mathbf{g} and \mathbf{h}), suggesting a model that P5 domain in Sam68 binds N-terminal nuclear localization domain of CRTC2 (amino acids 77-84) (i). (j) 293T cells were co-transfected with two plasmids, one coding for Flag-tagged CRTC2 and one for HA-tagged WT Sam68, HA-tagged Sam68^{ΔP5}, or HA only; 48 h later, HA was immunoprecipitated from the cells, and CRTC2 in the precipitates was detected by immunoblotting with anti-Flag. Source data are provided as a Source Data file.

Figure S5

Supplementary Fig. 5: Generation and metabolic characterization of $Sam68^{\Delta N-Tg}$ **mice.** Experiments were conducted in mice carrying an HA-tagged ΔN -truncated Sam68 mutation ($Sam68^{\Delta N-Tg}$) and their WT littermates. (a) The genotypes of WT and $Sam68^{\Delta N-Tg}$ mice were confirmed via PCR. (b) Expression of the Sam $68^{\Delta N-Tg}$ and WT mice via immunoblot with anti-HA. (c) Blood glucose levels during the insulin tolerance test (ITT) were measured in $Sam68^{\Delta N-Tg}$ (n=9) and WT (n=11) mice. (d) $Sam68^{\Delta N-Tg}$ and WT mice were treated with (+) or without (-) insulin (1 U/kg); 20 minutes later, liver tissues were harvested and protein levels of phosphorylated AKT (at amino acids S473 and T308) and total AKT were evaluated by Western blot (n=3). Data are expressed as mean ± standard error of the mean (s.e.m.). *p<0.05, **p<0.01 (two-way ANOVA). Source data are provided as a Source Data file.

Figure S6

Supplementary Fig. 6: Hepatic Sam68 inactivation reduces gluconeogenic gene expression and blood-glucose levels in diabetic mice. (a-b) mRNA expression of Sam68, CRTC2, and SREBP-1c, and gluconeogenic genes was evaluated via gRT-PCR in the livers of (a) WT mice fed a normal diet (ND, n=8) or a HFD (n=6) for 3 months and (b) *db/db* (n=6) and control db/m (n=6) mice at age 2-3 months. (c) mRNA expression of Sam68. CRTC2, and gluconeogenic genes was measured in the livers of patients with or without diabetes (n=10 per group). (d) Sam68 protein levels were evaluated in the epididymal fat, brown fat, skeletal muscle, heart, and lung of *db/db*;sh-Scr and *db/db*;sh-Sam68 mice. (e-f) Blood glucose levels were measured in (e) Sam68^{t/f};HFD (n=7) and Sam68^{LKO};HFD (n=8) mice after 5 h of fasting and in (f) $Sam68^{t/t}$; HFD (n=7), $Sam68^{LKO}$; HFD (n=8), db/db; sh-Scr (n=8) and db/db; sh-Sam68 (n=8) mice during the insulin tolerance test (ITT). (g) Mice were treated with (+) or without (-) insulin (1 U/kg), and protein levels of phosphorylated AKT (at amino acids S473 and T308) and total AKT were evaluated 20 min later. (h) Serum insulin levels in *db/db*;sh-Scr (n=8) and *db/db*;sh-Sam68 (n=7) at feeding condition. Data are expressed as mean ± standard error of the mean (s.e.m.) *p<0.05, **p<0.01, ***p<0.001, NS, not significant (a-c, e, h: unpaired two-sided t test, f: two-way ANOVA). Source data are provided as a Source Data file.

Supplementary Tables

Age (years)	Sex	Ethnicity	Diabetes	Medications
48	Female	Caucasian	Yes	Metformin
36	Female	Caucasian	Yes	Metformin
56	Female	Caucasian	Yes	Metformin
78	Female	Caucasian	Yes	Metformin
68	Female	Caucasian	Yes	Metformin
74	Female	Asian	Yes	Metformin
54	Male	Caucasian	Yes	Insulin
58	Male	Caucasian	Yes	Insulin
73	Male	Caucasian	Yes	Insulin
71	Male	African American	Yes	Metformin
49	Female	Caucasian	No	N/A
41	Female	Caucasian	No	N/A
44	Female	Caucasian	No	N/A
31	Female	Caucasian	No	N/A
46	Female	African American	No	N/A
32	Female	Caucasian	No	N/A
52	Female	Caucasian	No	N/A
42	Female	African American	No	N/A
62	Female	Caucasian	No	N/A
50	Female	Caucasian	No	N/A

Supplementary Table 1: Demographic information of diabetic and non-diabetic patients

Supplementary	/ Table 2: List of antibodies
---------------	-------------------------------

Name	Catalogue Number	Company Name	Dilution
PGC-1α	ab54481	Abcam	1:1000
G6Pase	ab83690	Abcam	1:1000
Sam68 for WB	ab76472	Abcam	1:5000
PEPCK	12940	Cell Signaling	1:1000
FOXO1	2880	Cell Signaling	1:1000
β-actin	8457	Cell Signaling	1:1000
Lamin A/C	4777	Cell Signaling	1:1000
α-tubulin	2144	Cell Signaling	1:1000
β-tubulin	2146	Cell Signaling	1:1000
Myc-Tag	2276	Cell Signaling	1:1000
p-AKT (Thr308)	2965	Cell Signaling	1:1000
p-AKT (Ser473)	4060	Cell Signaling	1:1000
AKT	9272	Cell Signaling	1:1000
p-CREB (Ser133)	9196	Cell Signaling	1:1000
CREB	9197	Cell Signaling	1:1000
Phospho-(Ser/Thr) PKA substrate	9621	Cell Signaling	1:1000
LC3B	2775	Cell Signaling	1:1000
CRTC1	2587	Cell Signaling	1:1000
CRTC3	2720	Cell Signaling	1:1000
Anti-mouse IgG, HRP-linked antibody	7076	Cell Signaling	1:5000
Anti-rabbit IgG, HRP-linked antibody	7074	Cell Signaling	1:5000
HA-Tag	26183	Thermo Fisher	1:2000
CRTC2 for WB	PA5-72994	Thermo Fisher	1:1000
GcR	ABS551MI	Thermo Fisher	1:2000
HNF4α	MA1199	Thermo Fisher	1:1000
Flag-Tag	F3165	Sigma-Aldrich	1:5000
CRTC2 for IP	sc-271912	Santa Cruz	N/A
Normal mouse IgG-AC	sc-2343	Santa Cruz	N/A
Sam68 (7-1) for IP	sc-1238	Santa Cruz	N/A
Ubiquitin	VU101	LifeSensors	1:500
P62/SQSTM1	NBP1-48320	Novusbio	1:1000

Supplementary Table 3: List of primers

	Forward sequence	Reverse sequence		
For assessment of gene expression with qRT-PCR				
mSREBP-1c	GGAGCCATGGATTGCACATT	GGCCCGGGAAGTCACTGT		
mPGC-1α	AGCCGTGACCACTGACAACGAG	GCTGCATGGTTCTGAGTGCTAAG		
mPEPCK	CCACAGCTGCTGCAGAACA	GAAGGGTCGCATGGCAAA		
mG6pase	TGGGCAAAATGGCAAGGA	TCTGCCCCAGGAATCAAAAAT		
mCRTC1	CATGATGGAGAACGCCATCAG	CACCGTGAGGATGATGTTGGG		
mCRTC2	TTTGGGCATCAGTGGAGGTC	CCTGGAGGTTGGGATTGCTT		
mCRTC3	CACAGTCAGACTTCCAGCTC	ATGGGTTTGGTCTCAAGTGG		
mPkar1α	CCCTCGAGTCAGTACGGATG	GCATTCCTTCGGGAATACTTT		
mPkar2α	CCTCCTCTTCTTCATCAGGG	GAGTGACTCGGACTCGGAAG		
mPkar2β	GATCATCGGTTTTGGGATGT	ATAAACCGGTTCACAAGGCG		
mPkacα	ATTCTGAGAAGGGGTCTCCC	AAGAAGGGCAGCGAGCAG		
mPkacβ	TCCTCAAGCCCAGCATTACT	CAAGAAAGGCAGCGAAGTG		
mGcR	ATTGGCGATGACCTCAGTGTGA	GCAATAGTTGGCTATGATGCCG		
mβ-actin	GTATGGAATCCTGTGGCATC	AAGCACTTGCGGTGCACGAT		
mSam68	GATATCTGTCAGGAGCAGTTTCT	CTCCTCGTCCTCTCACAGATA		
hPGC-1α	AACAGCAGCAGAGACAAATGCACC	TGCAGTTCCAGAGAGTTCCACACT		
hPEPCK	AAGGAGGATGCCCTGAACCTGAAA	TGCACCTTATGGATGGGAAAGGGA		
hG6Pase	TGAATGGCTGCAGTGACCCAGATA	TGGATGTGGAGCCAGTGGAAGAAT		
hCRTC2	CTCTGCCCAATGTTAACCAGAT	GAGTGCTCCGAGATGAATCC		
hβ-actin	AGGATGCAGAAGGAGATCACTG	GGGTGTAACGCAACTAAGTCATAG		
h-Sam68	GCGAGTGCTGATACCTGTCAAG	TCATTGAGCCCTTTCCCAAT		
For ChIP-qPCR				
mPGC-1α-promoter	GGGCTGCCTTGGAGTGACGTC	AGTCCCCAGTCACATGACAAAG		
mG6Pase-promoter	GGAGGGCAGCCTCTAGCACTGTCAA	TCAGTCTGTAGGTCAATCCAGCCCT		
mPEPCK-promoter	GGCCTCCCAACATTCATTAAC	GTAGCCCGCCCTCCTTGCTTTA		
For generation of Sam68f/f mice				
5' arm PCR	CCAAGGCCTCCTCATCTGATG	GTCTACACACAAAGCCCCGAG		
Central fragment	CTGCCCGGCTTCTTGAGTAAG	TCCCCTACTTGTCGGCTCTAC		
3' arm PCR	TAGCACCAAGCTCCCTCCAAG	TCCTGTTCCCAACGTCACCAG		
ES screening PCR	GATTCGCAGCGCATCGCCTTCT	TACCGGTGGATGTGGAATGTG		
5' arm PCR Dig	CAGGGTTTCTCTGTGTAGCCC	AGTGGCGCACGCCTTTAATCC		
F or W genotyping	TTGGGAAAGAGGTATGGCTTGGCA	AAGAAGTTCCTGCCTAACTCTCCC		
For genotyping of Sam68 ^{LKO} mice				
Alb-Cre	TGCCTGCATTACCGGTCGATGC	CCATGAGTGAACGAACCTGGTCG		
For genotyping of Sam68 ^{ΔN-Tg} mice				
Exon6F-Exon7R	TAGAGGAGCTTTGGTTCGTG	AATAGCCTTCATAGCCTTCG		