
Stem Cell Reports, Volume 16
Supplemental Information
Automatic identification of small molecules that promote cell conver-

sion and reprogramming

Francesco Napolitano, Trisevgeni Rapakoulia, Patrizia Annunziata, Akira
Hasegawa, Melissa Cardon, Sara Napolitano, Lorenzo Vaccaro, Antonella Iuliano, Luca
Giorgio Wanderlingh, Takeya Kasukawa, Diego L. Medina, Davide Cacchiarelli, Xin
Gao, Diego di Bernardo, and Erik Arner



Automatic identification of small molecules that promote cell 

conversion and reprogramming 
 

Francesco Napolitano1,2*, Trisevgeni Rapakoulia2,3*, Patrizia Annunziata4, Akira Hasegawa5, Melissa 

Cardon5, Sara Napolitano1, Lorenzo Vaccaro4, Antonella Iuliano1, Luca Giorgio Wanderlingh1, Takeya 

Kasukawa5, Diego L. Medina1,6, Davide Cacchiarelli4,6#, Xin Gao2#, Diego di Bernardo1,7#, Erik Arner5,8# 

 
1Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA) 80078, Italy 
2Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-

6900, Saudi Arabia. 
3Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany 
4Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli (NA) 

80078, Italy. 
5RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045 Japan 
6Department of Translational Medicine, University of Naples Federico II, Naples, Italy 
7Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, 

Italy. 
8Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, 739-8528 Japan 

 
*Contributed equally to this work. 
#Correspondence: d.cacchiarelli@tigem.it, xin.gao@kaust.edu.sa, dibernardo@tigem.it, erik.arner@riken.jp 

 

 

 

 

 

Supplementary Materials 
 

 

 

  

  



Supplementary Methods 

 

Conversion to pathway-based profiles 

 

To harmonize the two datasets, we converted the ranked lists of genes from both cell-types (FANTOM5) 

and drug treatments (LINCS) into pathway-based expression profiles (PEPs). A PEP is a transcriptomic 

profile expressed in terms of pathways as opposed to genes. PEPs were introduced in our previous work 

(Napolitano et al., 2016) and their efficacy for drug discovery applications was also proved (Napolitano 

et al., 2018). To convert FANTOM5 and LINCS Gene Expression Profiles (GEPs) to PEPs, we applied 

the gep2pep Bioconductor package (Napolitano et al., 2019) using all the 14,645 gene sets from 16 

different gene set collections included in the MsigDB v6.1 (Liberzon et al., 2015). The gep2pep package 

iteratively performs Gene Set Enrichment Analysis (GSEA)(Subramanian et al., 2005) to compute 

Enrichment Scores for each gene set and each expression profile. A PEP is then defined as a ranked list 

of pathways, each of which is associated with an Enrichment Score (and the corresponding p-value). 

Once FANTOM5 and LINCS GEPs are converted to PEPs, they can be directly compared 

(Supplementary Figure 4A). 

 

Various pathway-based profiles for the same gene expression profile can be obtained based on the 

chosen pathway database. In our case, as previously mentioned, we tried 16 different pathway 

collections available at the MSigDB database. We then evaluated which one out of these 16 collections 

best captured cell-type similarities, with respect to the Cell Ontology (Bard et al., 2005). To this aim, we 

used the Cell Ontology annotation of cell-types created by the FANTOM5 consortium (Lizio et al., 

2015). In order to obtain a numerical score for each pair of cell-types i and j in the ontology, we used the 

Jaccard Index as follows: 

 

𝐷𝐶𝑂(𝑖, 𝑗)=1 −
|𝐶𝑖 ∩ 𝐶𝑗|

|𝐶𝑖|+|𝐶𝑗|−|𝐶𝑖 ∩ 𝐶𝑗 |
  (Jaccard index) 

 

where Ci are the ontology ancestors of cell type i, Cj are the ontology ancestors of cell type j, 1 ≤ i, j ≤ 

145, i ≠ j. Then we defined the PEP-based distance between cell types i and j using the Manhattan 

distance as follows: 

 

𝐷𝑃(𝑖, 𝑗) = |𝑃𝑖 − 𝑃𝑗| 

 



Pi is the PEP of cell type i, Pj is the PEP of cell type j, 1 ≤ i, j ≤ 145, i ≠ j. 

Finally, we compared the cell distances computed on the PEPs with the same cell distances based on the 

Cell Ontology (Supplemental Figure 4B). The PEPs based on the C2 collection (Canonical Pathways) 

achieved the highest agreement with the ontology-based similarities, capturing more accurately the 

known cell hierarchy, even when compared to a previously developed gene-based approach (Iorio et al., 

2010).Thus, pathway-based profiles obtained with C2 collection, which includes 250 pathways, were 

chosen for all further analyses. 

 

Merging of Pathway-based Expression Profiles 

 

As previously proposed (Iorio et al., 2010) we merged multiple expression profiles elicited by the same 

drug treatment in order to obtain a single “consensus-profile” for each drug, thus enhancing drug-

specific effects while reducing unrelated ones. The gep2pep package (Napolitano et al., 2019) supports 

this operation by averaging the Enrichment Scores over multiple profiles and applying the Fisher 

method to aggregate their p-values. Using this approach, we merged together all the LINCS profiles 

induced by the same drug in the same cell line across different concentrations and treatment durations. 

An additional profile for each drug was generated by averaging all conditions, including different cell 

lines (termed “independent”). We used both approaches to obtain both cell-specific and cell-independent 

meta-profiles. We ended up with 17,259 drug-induced PEPs. 

 

Additivity of the drugs at the pathway level 

 

We showed in previous work that the transcriptional response to combinatorial drug treatment at 

promoters and enhancers is effectively described by a linear combination of the responses of the 

individual drugs (log2FC values) (Rapakoulia et al., 2017). We used our previous dataset to test if this 

additive relationship also applies to PEPs. Accordingly, we performed multivariable linear regression 

analysis, where PEPs of individual drugs were considered as explanatory variables and the PEP of 

combinatorial drug action as the response variable. We applied our analysis to five pathway databases, 

Biological Process (BP), Molecular Function (MF), Cellular Component (CC), Transcription Factor 

Targets (TFT) and Canonical Pathways (C2_CP). Supplementary Table 6 demonstrates the 

performance of the linear regression model after ten-fold cross-validation in all the three drug 

combinations and the four pathway collections. The results show that the linear model using PEPs can 

describe the relation between single and combinatorial treatment. 

To validate whether both single drug PEPs contribute to the model, we performed the same regression 

analysis 100,000 times with random permutations of one of the single drug PEP. The Pearson 



correlation between the observed and predicted values after the permutations was significantly lower for 

all combinations compared to the regression model based on the non-permuted individual drug PEPs 

(Supplementary Figure 2D-F). 

 

In silico validation with the Pluripotency Score 

 

While the DECCODE framework is based on an unbiased, data-driven approach, we devised a 

pluripotency-specific method to score gene expression profiles based on prior knowledge about genes 

involved in the conversion to hIPSCs. We then compared these scores with DECCODE scores to 

validate the predictions. The pluripotency score (PS) is based on genes that were identified as 

differentially expressed during reprogramming. In particular, we used the “early pluripotency”, “late 

pluripotency”, “early somatic”, and “late somatic” gene sets previously identified (Cacchiarelli et al., 

2015) that characterize gene expression dynamics in the corresponding stages of conversion from human 

fibroblasts (HiF-T) to hIPSCs. The original study included also other six sets from the same context, 

which we used as statistical background. For each of the ten sets and for each drug-induced gene 

expression profile, we computed an Enrichment Score (ES) using the gep2pep tool. We then ranked 

them from 1st to 10th according to their ESs, thus obtaining a PEP profile. Finally, we computed the 

Pluripotency Score (PS) for each profile p as: 

 

𝑃𝑆(𝑝) = log (
𝑅𝑒𝑎𝑟𝑙𝑦 𝑝𝑙𝑢𝑟𝑖𝑝𝑜𝑡𝑒𝑛𝑡(𝑝)+𝑅𝑙𝑎𝑡𝑒 𝑝𝑙𝑢𝑟𝑖𝑝𝑜𝑡𝑒𝑛𝑡(𝑝)

𝑅𝑒𝑎𝑟𝑙𝑦 𝑠𝑜𝑚𝑎𝑡𝑖𝑐(𝑝)+𝑅𝑙𝑎𝑡𝑒 𝑠𝑜𝑚𝑎𝑡𝑖𝑐(𝑝)
), 

 

where Rx(p) is the rank of the gene set x within the profile p. The score is positive (negative) when genes 

associated with pluripotency stages tend to be more up-regulated (down-regulated) than genes associated 

with somatic stages. 

Computational validation of the obtained combinations was assessed using PSs (Figure 1B). In 

particular, for any drug combination the median of the corresponding PSs was used. Moreover, the top 

30 solutions were considered for a given drug combination size, thus obtaining 30 median PS values. In 

order to obtain a corresponding null distribution, the same calculation was performed also for random 

drug combinations of equal size. The random selection was repeated 100 times for each size, thus 

obtaining 100 times 30 median PSs. Figure 1B summarizes this analysis by reporting the obtained 30 

versus 300 median PSs for drug combinations of size 1 to 10. 

 



Selection of the drugs for the experimental validation  

 

In order to validate the method experimentally, we selected two lists of drugs: the first using the single-

drug approach and the second using the combined approach. 

For single drugs, we selected 25 drugs from the top of the DECCODE ranking, plus 20 non-top drugs 

for comparison. In particular, to build the set of non-top drugs, we chose 10 drugs from the middle of the 

ranking and 10 drugs from the bottom. In case of an overlap between top and non-top drugs due to the 

same drugs being profiled across multiple cellular contexts in the LINCS database, we removed the 

repeated drugs from the non-top sets and chose the next one in the ranking. In all cases, only the drugs 

included in the Prestwick-FDA library or in the SelleckChem Kinase inhibitors library were considered. 

For the drug pairs, we applied further filtering in order to obtain a heterogeneous collection also taking 

into account the results from the single drug experiments. First, we reran the DECCODE algorithm for 

drug combinations directly considering only the available drugs in Prestwick-FDA library or in the 

SelleckChem Kinase inhibitors library. For each drug PEP, we fitted a linear regression model as 

previously described. We then picked the top 30 drugs and for each of them we selected 20 drugs whose 

addition to the linear models improves best the Spearman correlation with the hIPSCSs profile. 

Duplicated solutions were removed, resulting in 522 unique drug combinations. From the remaining 

pairs, we excluded those containing at least one drug that had already been tested in single drug 

experiments and showed negative outcome (FC < 1 for number of colonies or covered area). We then 

selected for experimental validation the top eight combinations having the highest DECCODE ranking 

and passing the above filters. Since Tazobactam showed particularly encouraging results in primary and 

secondary reprogramming, we considered two additional drug combinations that included Tazobactam 

(one such pair was already among the top eight, Tazobactam+Motesanib). Therefore, we finally 

obtained a list of ten drug pairs covering 16 drugs with Tazobactam included in three different pairs and 

another two drugs appearing twice (Motesanib and Afatinib). 

 

Colony quantification 

 

To quantify colony number and size in an unbiased and reproducible way, a completely automated 

procedure was developed, which is divided in two phases. The first phase was performed through a 

Matlab script which identifies each well inside all the plate scans, applies a 3X contrast, and saves each 

of them to a separate image file. The second phase was performed by an ImageJ macro that loads the 

well images produced by the previous step and performs the final counting and area estimation on each 

of them. Both Matlab and ImageJ source code, together with the high resolution plate scan images, are 

available online (Napolitano et al., 2020) (DOI: 10.5281/zenodo.3732772). 

 



In secondary reprogramming experiments, colony count and area values were averaged across the three 

replicates of the same treatment and across the two controls on the same plate. Average fold change of 

treatments versus controls were then obtained accordingly (Figure 2A, small panels). In order to 

summarize both count and covered area values together, the corresponding fold changes were averaged 

(Figure 2A, main panel). In the primary reprogramming experiment, counts and areas for tazobactam 

treatment and controls were compared directly (Figure 2B, small panels). Two controls were excluded 

according to the Bonferroni Outlier Test (𝑝 < 0.0118 and 𝑝 < 0.0106 respectively). In the case of 

primary reprogramming results, in order to summarize counts and covered areas together, all the 

absolute values were normalized dividing by the corresponding mean of the controls (Figure 2B, main 

panel). The same was done for drug combination experimental results (Figure 3A). 

 

Computation of DECCODE scores for all the FANTOM5 cell types 

 

The FANTOM5 cell types include sub-types that are very similar, thus the corresponding expression 

profiles are not different enough to produce sub-type specific predictions. Therefore, we merged similar 

cell types to form a single meta-cell profile (see methods subsection “Merging of Pathway-based 

Expression Profiles”). In order to systematically select which cell-type profiles to merge, we took 

advantage of the previously computed PEP-based and ontology-based cell type distances (refer to 

subsection “Conversion to pathway-based profiles”). We applied the Affinity Propagation algorithm 

(Frey and Dueck, 2007) individually to each of the two pairwise distances to obtain two different 

clusterings of the same cell types (Supplementary Figure 3). Affinity Propagation clustering was 

performed using the "apcluster" R package (Bodenhofer et al., 2011). Finally, we built a consensus 

clustering by assigning two cell types to the same cluster if and only if they were assigned to the same 

cluster by both the ontology-based and PEP-based clusterings. Meta-cell profiles are obtained by 

averaging all the profiles included in the same cluster. We then computed single-drug and multiple-drug 

DECCODE scores for all the meta-cell profiles. 

 

 

  



Supplementary Figures 

 

  



 
Supplementary Figure 1: Validations for single-drug predictions. A) DECCODE scores are evaluated against the PSs of drugs. Top-ranked 

(higher DECCODE scores) drugs exhibit higher PSs while bottom-ranked drugs exhibit lower PSs. B) Efficacy of the 45 single drug 

treatments experimentally tested (colony area and counts) versus DECCODE ranking (left), PS score (top-right) and combined DECCODE 



and PS ranking (bottom right). C) Experimental validation of drugs enhancing conversion to hIPSCs: number of colonies formed versus % 

of covered area. Tazobactam (ID: 3) shows the highest performance for covered. All ID codes are explained in Supplementary Table 2. D) 

Imaging of wells treated with tazobactam and OSKM (left) against the controls (only OSKM) for the specific plate (right). The fold change 

in number of colonies and area covered by the colonies for each drug treatment was computed against the control experiments of the 

corresponding plate. E) Density and Cumulative distribution of the ranks assigned in the small molecules reported in (Chen et al., 2020) 

based on PS and DECCODE scores. F) Distribution of the top 30 DECCODE drug scores and distribution of all the 1,768 DECCODE drug 

scores for all meta-cell cluster profiles. 

  



 
Supplementary Figure 2: Validations for drug combinations. A) Rsquared and B) AIC criterion of the top 30 regression solutions for the 

hIPSC target profile as more drugs are added to the regression models. Red line highlights the average incremental improvement. C) 

Distribution of the distances between the drug profiles for the top 30 selected drug pairs in hiPSCs by DECCODE. Null distribution was 

created by random sampling 1000 drug profiles from LINCS dataset and computing their pairwise distances (499500 distances). D-F) Density 

plots of the Pearson correlation coefficients between observed and predicted values after the permutations of individual profiles for 

Gefitinib_U0126 (D), Gefitinib_Wortmannin (E), and U0126_Wortmannin (F) drug combinations using the C2_CP PEPs. The Pearson 

correlation coefficient achieved without permutation is also reported. Similar results were obtained for all the pathway collections of 

Supplementary Table 6. 

  



 
Supplementary Figure 3: Hierarchical clustering visualization of cell types based on the ontology distance (A) and pathway distance (B). 

Affinity Propagation algorithm (Frey and Dueck, 2007) was applied for the used clustering. 

  



 
Supplementary Figure 4: A) Harmonization of expression profiles. Promoter-based target cell type profiles are converted to gene-based 

profiles. Gene-based profiles for both primary cells and drug treated cell lines are then converted to pathway-based expression profiles (PEPs). 

B) Spearman correlation between pathway distances and ontology distance. Pairwise cell similarity obtained by the different pathway 

collections are evaluated against cell similarity obtained by the Cell Ontology annotation. Mantra distance (Iorio et al., 2010) computed on 

single gene ranks is also tested against the ontology distance. 

  



Supplementary Tables 

 

Supplementary Table 1: Top-ranked drugs by DECCODE for the hIPSCs target profile. Several drugs have been already associated with 

enhancement of the reprogramming process. 

Drugs Indication ID 

Motesanib 

(Chen et al., 2014) 

treatment in solid tumors 1 

Fluticasone activating glucocorticoid receptors, inhibiting nuclear factor kappa b and inhibiting lung eosinophilia in 

rats 

2 

Tazobactam bacterial β-lactamase inhibitor 3 

Cyclizine histamine H1 antagonist 4 

Etofenamate 

(Yang et al., 2011) 

nonsteroidal anti-inflammatory drug (NSAID), COX inhibitor 5 

Pentoxifylline modulates immunologic activity by stimulating cytokine production. 6 

Irsogladine anti-inflammatory agent 7 

Leflunomide pyrimidine synthesis inhibitor/chemotherapeutic 8 

Dexfenfluramine serotonergic anorectic drug/studied in obesity 9 

Paroxetine selective serotonin reuptake inhibitor (SSRI) drug commonly known as Paxil 10 

Afatinib tyrosine kinase inhibitor /ErbB family blocker 11 

Doramapimod highly potent p38 MAPK inhibitor 12 

Nalbuphine anticonvulsant effect/inhibited breast cancer cell growth and tumorigenesis 13 

PIK-93 PI4KIIIβ inhibitor 14 

Glycopyrrolate synthetic anticholinergic agent 15 

SGX523 MET receptor tyrosine kinase inhibitor. 16 

Dasatinib 

(Lin and Wu, 2015) 

Src family tyrosine kinase inhibitor 17 

SB-203580 

(Di Stefano et al., 2016) 

inhibitor of p38α and p38β 18 

Doxycycline 

(Chang et al., 2014) 

antibacterial agent 19 

Saracatinib 

(Zhang et al., 2014) 

inhibitor of the Src/abl family 20 

Levetiracetam plays a role in the control of regulated secretion in neural and endocrine cells 21 

Tranylcypromine 

(Di Stefano et al., 2016) 

belongs to a class of antidepressants monoamine oxidase inhibitors (MAOIs). 22 

HMN-214 PLK inhibitor 23 

histamine immune responses, neurotransmitter 24 

dabrafenib chemotherapeutic, inhibitor of the associated enzyme B-Raf 25 

  



Supplementary Table 2: Small molecules facilitating reprogramming to hIPSCs reported in (Chen et al., 2020), having an available 

profile in LINCS database, and their ranking based on PS and DECCODE scores. The DECCODE rankings for both hIPSCs cells and 

meta-cell cluster 34 (see Supplementary Table 4) which includes hIPSCs as a target profile are reported. 

Pert name PS 

ranking 

DECCODE ranking  

(hIPSCs) 

DECCODE ranking  

(hIPSCs meta-cell) 

BAY-K8644 1434 884 581 

BIX-01294 136 1157 783 

CHIR-99021 638 1160 368 

D-4476 18 369 405 

LY-294002 346 494 121 

PD-0325901 52 498 53 

RG-108 230 554 664 

Y-27632 74 378 42 

Curcumin 438 258 124 

Dexamethasone 589 1022 834 

Dovitinib 34 1239 1480 

EPZ004777 455 1628 1557 

Forskolin 659 129 761 

Lenvatinib 1757 355 477 

Motesanib 936 1 3 

Nintedanib 28 46 168 

Pazopanib 633 74 32 

Quercetin 613 890 655 

Resveratrol 489 41 26 

Sorafenib 402 833 710 

Sunitinib 415 174 242 

Tivozanib 504 138 50 

Tranylcypromine 232 45 34 

Valproic-acid 1758 1104 1026 

Vandetanib 343 359 589 

Mean ranking 528.52 553.2 471.4 

 

 

 

 

  



Supplementary Table 5: Small molecules that were experimentally proved to facilitate various cell conversions and were predicted among 

the top drug profiles for the corresponding Meta-cells from the DECCODE single and multi-drug approach. 

DECCODE Sing Drug Approach 

Target Meta-cell Small Molecule Rank 

Astrocyte cells- Cerebral Cortex Tranylcypromine 

(Tian et al., 2016) 

44 

Hepatocyte cells RG108 

(Zhu et al., 2014) 

55 

hIPS cells - Neural Stem cells PD0325901 

(Lin et al., 2009; Wang et al., 2011; 

Zhu et al., 2010) 

53 

hIPS cells - Neural Stem cells Tranylcypromine 

(Li et al., 2009; Zhu et al., 2010) 

34 

Mesenchymal Stem cells - Amniotic membrane - Multipotent Cord Blood 

Unrestricted Somatic Stem cells 

PD0325901 

(Lai et al., 2017) 

59 

Neurons Y27632 

(Hu et al., 2015) 

7 

Neurons PD0325901 

(Dai et al., 2015) 

19 

   

DECCODE Multidrug Approach 

Target Meta-cell Small Molecule Rank 

Cardiac Myocyte cells BIX01294 

(Cao et al., 2016) 

6 

hIPS cells - Neural Stem cells Tranylcypromine 

(Li et al., 2009; Zhu et al., 2010) 

18 

Neurons PD032590 

(Dai et al., 2015) 

8 

Neurons Y27632 

(Hu et al., 2015) 

19 

 

 

  



Supplementary Table 6: Pearson and Spearman correlation between fitted and observed PEPs in combinatorial treatment (Rapakoulia et 

al., 2017). The multivariable linear regression model was applied in five different pathway collections. The values shown in the table are 

the mean performance after tenfold cross validation. 

 
BP (4436 pathways) MF  (901pathways) CC (580 pathways) TFT (615 pathways) C2_CP (250 

pathways) 

 
Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson Spearman 

Gefitinib-

U0126 

0.8038 0.7883 0.8685 0.8554 0.8401 0.8401 0.7929 0.8129 0.8538 0.8550 

Gefitinib-

Wortmannin 

0.7460 0.7226 0.7538 0.7203 0.7947 0.6297 0.7276 0.7304 0.6814 0.6751 

U0126-

Wortmannin 

0.6430 0.6211 0.6197 0.6095 0.6826 0.6502 0.6758 0.6336 0.6355 0.6080 
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