SUPPLEMENTAL MATERIAL

Xanthine Oxidase Drives Hemolysis and Vascular Malfunction in Sickle Cell Disease

Heidi M. Schmidt¹, Katherine C. Wood², Sara E. Lewis³, Scott A. Hahn², Xena M. Williams³, Brenda McMahon², Jeffrey J. Baust², Shuai Yuan², Timothy N. Bachman², Yekai Wang^{4,5}, Joo-Yeun Oh⁶, Samit Ghosh^{2,7}, Solomon F. Ofori-Acquah^{2,7,8}, Jeffrey D. Lebensburger⁹, Rakesh P. Patel^{6,10}, Jianhai Du^{4,5}, Dario A Vitturi^{1,2}, Eric E. Kelley³, and Adam C. Straub^{1,2}

¹Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; ²Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; ³Department of Physiology and Pharmacology, Health Sciences Center, West Virginia University, Morgantown, WV; ⁴Department of Ophthalmology, West Virginia University, Morgantown, WV; ⁵Department of Biochemistry, West Virginia University, Morgantown, WV; ⁶Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL; ⁷Division of Hematology/Oncology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA; ⁸School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana; ⁹Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL; ¹⁰Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; ¹⁰Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; ¹⁰Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; ¹⁰Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; ¹⁰Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; ¹⁰Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; ¹⁰Department of Pathology, University of Alabama at Birmingham, Birmingham, AL; ¹⁰Department of Pathology, University of Alabama at

SUPPLEMENTAL METHODS

Coumarin Boronic Acid (CBA) Assay

Oxidant load (H₂O₂, O=NOO⁻, and HClO) was measured using coumarin boronic acid (CBA) as previously published with some modifications.¹ Plasma samples were collected and stored at -80°C. To preserve oxidant production in plasma samples, sodium azide (20 mM) was supplemented to inhibit enzyme activity immediately upon thawing the plasma. CBA probe (Cayman, 14051) was prepared in the assay buffer (0.01% BSA in HBSS) and mixed with plasma samples at 0.5 mM final concentration. Kinetic fluorescence measurement was performed at 350/450 nm, 37 °C. The amount of oxidant load was quantified by the production rate of the fluorescent product in the log phase and expressed as fold change.

Pulmonary, Mesenteric, and Thoracodorsal (TDA) Ex-Vivo Two-Pin Wire Myography

Myography experiments were performed similarly to those previously described by our lab.² Briefly, mice were euthanized by heart puncture, following right heart catheterization (see below). Pulmonary, mesenteric, and TDA arteries were rapidly excised, placed in room temperature physiological salt solution (PSS), cleaned of fat, cut into 2 mm rings fitted with two 25 µm wires, and placed on a wire myograph (DMT 620M) filled with PSS containing (in mM): NaCl 119, KCl 4.7, MgSO₄ 1.17, KH₂PO₄ 1.18, D-glucose 5.5, NaHCO₃ 25, EDTA 0.027, CaCl₂ 2.5, pH 7.4 when bubbled with 95% O₂ and 5% CO₂ at 37°C. Vessels were allowed to rest for 30 minutes in PSS buffer. Vessels were then incrementally stretched to a tension equivalent to 80 mmHg. To constrict the arteries and determine viability, 60 mM potassium (K) in PSS (KPSS) was added for 5 minutes. Vessels were washed (3x) and rested in PSS for 30 minutes. For vessels isolated from mice treated with febuxostat. 10 uM febuxostat was added to the PSS following the washes. For pulmonary arteries, vasoconstriction was induced with increasing doses of the constrictor prostaglandin F2 α (PGF) (10⁻⁷-10⁻⁵ M, Tocris #4214) at 4-minute intervals until the vessels reached maximum constriction. For mesenteric and TDA arteries vasoconstriction was induced with increasing doses of the constrictor U46619 (10^{-7.5}-10⁻ ^{6.5} M, Cayman Chemicals) at 4-minute intervals until the vessels reached maximum constriction. Pulmonary, mesenteric, and TDA arteries were then treated with increasing doses of the vasodilator acetylcholine (10⁻⁸-10⁻⁵ M, Sigma) at 3-minute intervals. Finally, vessels were treated with Ca²⁺ free PSS containing 100 µM SNP to determine maximal dilation. Data was collected using Lab Chart Software (AD Instruments) and normalized to the change in maximum constriction or maximum dilation to determine the percent relaxation of vessels.

Closed Chest Right Ventricle (RV) Micro-Catheterization

Micro-catheterization was performed as previously described.^{3, 4} Briefly, mice were anesthetized with an intraperitoneal injection of etomidate/urethane (9/1.1 mg/kg, Butler Schein). Body temperature was regulated with a heating pad and heating lamp. While in the supine position, an incision was made between the sternohyoid and sternomastoid muscles of the right neck. Catheterization of an isolated 20 mm section of the external jugular vein was done using two 6-0 silk sutures by tying a surgical knot at the cranial end

of the external jugular vein and the other looped lightly on the same vein by the heart. A small incision was made in the vein and a 1.2F micro pressure-volume (PV) catheter was inserted beyond the suture by the heart which was then tightened to prevent bleeding. The catheter was further advanced until it passed through the right atrium and into the right ventricle. Pressure measurements were given five minutes to stabilize before beginning recording. The PV catheter was removed and the external jugular was ligated to prevent further bleeding. Pressure waveforms were saved and analyzed using IOX2 Software (EMKA Technologies; Falls Church, VA) and MATLAB (Mathworks, Natick, MA, USA).

Echocardiogram

Echocardiograms were performed by the University of Pittsburgh Rodent Ultrasonography Core. Mice were anesthetized with 3% isoflurane (maintained with 1.5% isoflurane) and body temperature was maintained with a heating pad. Images of the right and left ventricles were acquired using a Vevo 3100 imaging system and the VisualSonic MX400 (20-46 MHz, 50 μ m axial resolution) linear array transducer (FUJIFILM VisualSonics, Toronto, Canada). Heart rate was maintained between 400-500 bpm by adjusting the isoflurane concentration between 1-2%. Image acquisition and analysis was done as previously described.⁵

Trichrome Staining

Trichrome staining was performed as previously described.⁶ Tissues were stained using the Masson's Trichrome Kit (Thermo Fisher) in accordance with the manufacturer's guidelines. Sections were imaged using the TissueGnostics Microscope with a 20x objective and stitched using NIS Elements Software (Snake Stich, 8% overlap). Quantification of trichrome positive/fibrotic area was done using FIJI software.

SUPPLEMENTAL FIGURE LEGENDS

Supplemental Figure I. Characterization of chimeric SCD mouse model treated with febuxostat. A) Experimental design. **B)** Bone marrow engraftment evaluated by hemoglobin electrophoresis at 0, 3, and 10 weeks post-engraftment. Eighty percent was used as the threshold for adequate engraftment. Values are mean ± SEM using a oneway ANOVA with Sidak's multiple comparisons test. *P<0.05, **P<0.01, ***P<0.001, and ****P<0.0001. **C)** LC/MS-MS was used for purine metabolite analysis of hypoxanthine, xanthine, and urate. **D)** Febuxostat treatment decreased body weight of AA mice. Values are mean ± SEM using an unpaired Student's t test unless otherwise noted. ⁺Values are mean ± SEM using an unpaired Student's t test with Welch's correction. **E)** Spleen weight was normalized to tibia length. Values are mean ± SEM using a one-way ANOVA with Sidak's multiple comparisons test. ****P<0.0001. WT, wild type; febux, febuxostat; HypoX, hypoxanthine; SCD, sickle cell disease.

Supplemental Figure II. Evaluation of hemolysis in AA and SS mice treated with febuxostat. A) Experimental design. UV-visible spectral deconvolution was used to measure B) MetHb and C) OxyHb after 10 weeks of treatment. Values are mean ± SEM using a one-way ANOVA with Sidak's multiple comparisons test. *P<0.05, **P<0.01. UV-visible spectral deconvolution was used to measure D) plasma cell free hemoglobin, a combination of MetHb and OxyHb, and E) cell free hemin after 10 weeks of treatment. An ELISA was used to measure plasma F) haptoglobin and G) hemopexin concentration after 10 weeks of treatment. Values are mean ± SEM using an unpaired Student's t test. WT, wild type; febux, febuxostat; MetHb, methemoglobin; OxyHb, oxyhemoglobin; ELISA, enzyme linked immunosorbent assay.

Supplemental Figure III. Ex-vivo wire myography of AA mice treated with febuxostat. A) Ex vivo wire myography was used to asses vasoreactivity of pulmonary, mesenteric, and TDA arteries. **B)** Pulmonary, **C)** mesenteric, and **D)** TDA constriction was measured by normalizing to maximum KCI response. Values are mean ± SEM using an unpaired Student's t test unless otherwise noted. +Values are mean ± SEM using an unpaired Student's t test with Welch's correction. An acetylcholine dose response was used to measure dilation of E) pulmonary (AA n=12, AA + Febux. n=4), F) mesenteric (AA n=6, AA + Febux. n=4), and G) TDA (AA n=6, AA + Febux. n=4) arteries. Values are mean ± SEM using a two-way ANOVA with Sidak's multiple comparisons test. TDA, thoracodorsal; KPSS, potassium physiological salt solution; PSS, physiological salt solution; febux, febuxostat; max, maximum.

Supplemental Figure IV. XO inhibition did not affect the cardiac fibrosis observed in SS sickle mice. A) Experimental design. B) RV weight and C) LV + septum weight were normalized to tibia length. D) Trichrome staining of RV (top) and LV (bottom) heart sections. Scale bar = 100 μ m. Quantification of E) RV and F) LV trichrome staining using FIJI software. Values are mean ± SEM using an unpaired Student's t test unless otherwise noted. #Values are mean ± SEM using a Mann-Whitney test. WT, wild type; febux, febuxostat; RV, right ventricle; LV, left ventricle; XO, xanthine oxidase. Supplemental Figure V. Characterization and evaluation of hemolysis in hepatocyte-specific XO KO mice. A) Experimental design. B) Bone marrow engraftment evaluated by hemoglobin electrophoresis at 0, 3, and 10 weeks postengraftment. Eighty percent was used as the threshold for adequate engraftment. C) LC/MS-MS was used for purine metabolite analysis of hypoxanthine, xanthine, and urate. D) Hepatocyte-specific XO KO did not alter body weight of HXdh-/- mice. UV-visible spectral deconvolution was used to measure E) plasma MetHb and OxyHb and F) cell free hemin 10 weeks post-engraftment. G) An ELISA was used to measure plasma hemopexin concentration after 10 weeks of treatment. Values are mean ± SEM using an unpaired Student's t test unless otherwise noted. #Values are mean ± SEM using a Mann-Whitney test. ⁺Values are mean ± SEM using an unpaired Student's t test with Welch's correction. xanthine dehydrogenase; HypoX, hypoxanthine: MetHb. XDH. methemoglobin; OxyHb, oxyhemoglobin; XO, xanthine oxidase; KO, knockout; ELISA, enzyme linked immunosorbent assay.

Supplemental Figure VI. Evaluation of vasoreactivity and cardiac function of HXdh⁻

^{/-} **mice. A)** Experimental design. **B)** Pulmonary, **C)** mesenteric, and **D)** TDA constriction was measured by normalizing to maximum KCI response. Values are mean ± SEM using an unpaired Student's t test. An acetylcholine dose response was used to measure dilation of E) mesenteric ($Xdh^{fl/fl}$ n=8, $Xdh^{-/-}$ n=7), and F) TDA ($Xdh^{fl/fl}$ n=8, $Xdh^{-/-}$ n=6) arteries. Values are mean ± SEM using a two-way ANOVA with Sidak's multiple comparisons test. **G)** RV weight and **H)** LV + septum weight was normalized to tibia length. Values are mean ± SEM using an unpaired Student's t test. XDH, xanthine dehydrogenase; max, maximum; TDA, thoracodorsal; RV, right ventricle; LV, left ventricle.

SUPPLEMENTAL REFERENCES

- 1. DeVallance E, Branyan KW, Lemaster KC, Anderson R, Marshall KL, Olfert IM, Smith DM, Kelley EE, Bryner RW, Frisbee JC and Chantler PD. Exercise training prevents the perivascular adipose tissue-induced aortic dysfunction with metabolic syndrome. *Redox Biol.* 2019;26:101285.
- Rahaman MM, Nguyen AT, Miller MP, Hahn SA, Sparacino-Watkins C, Jobbagy S, Carew NT, Cantu-Medellin N, Wood KC, Baty CJ, Schopfer FJ, Kelley EE, Gladwin MT, Martin E and Straub AC. Cytochrome b5 Reductase 3 Modulates Soluble Guanylate Cyclase Redox State and cGMP Signaling. *Circ Res*. 2017;121:137-148.
- Potoka KP, Wood KC, Baust JJ, Bueno M, Hahn SA, Vanderpool RR, Bachman T, Mallampalli GM, Osei-Hwedieh DO, Schrott V, Sun B, Bullock GC, Becker-Pelster EM, Wittwer M, Stampfuss J, Mathar I, Stasch JP, Truebel H, Sandner P, Mora AL, Straub AC and Gladwin MT. Nitric Oxide-Independent Soluble Guanylate Cyclase Activation Improves Vascular Function and Cardiac Remodeling in Sickle Cell Disease. *Am J Respir Cell Mol Biol.* 2018;58:636-647.
- 4. Wood KC, Durgin BG, Schmidt HM, Hahn SA, Baust JJ, Bachman T, Vitturi DA, Ghosh S, Ofori-Acquah SF, Mora AL, Gladwin MT and Straub AC. Smooth muscle cytochrome b5 reductase 3 deficiency accelerates pulmonary hypertension development in sickle cell mice. *Blood Adv.* 2019;3:4104-4116.
- 5. Rutledge C, Cater G, McMahon B, Guo L, Nouraie SM, Wu Y, Villanueva F and Kaufman BA. Commercial 4-dimensional echocardiography for murine heart volumetric evaluation after myocardial infarction. *Cardiovasc Ultrasound*. 2020;18:9.
- 6. Durgin BG, Hahn SA, Schmidt HM, Miller MP, Hafeez N, Mathar I, Freitag D, Sandner P and Straub AC. Loss of smooth muscle CYB5R3 amplifies angiotensin II-induced hypertension by increasing sGC heme oxidation. *JCI Insight*. 2019;4.

Major Resources Table

In order to allow validation and replication of experiments, all essential research materials listed in the Methods should be included in the Major Resources Table below. Authors are encouraged to use public repositories for protocols, data, code, and other materials and provide persistent identifiers and/or links to repositories when available. Authors may add or delete rows as needed.

Animals (in vivo studies)

Species	Vendor or Source	Background Strain	Sex	Persistent ID / URL
C57BL/6J	Jackson Laboratories	N/A	Μ	N/A

Genetically Modified Animals

Species Vendor or		Background	Other Information	Persistent ID / URL
	Source	Strain		
Xdh ^{fl/fl} Alb-	Bred at	C57BI/6J	N/A	N/A
1 ^{Cre/Wt or Wt/Wt}	University of			
	Pittsburgh			
Townes AA	Bred at	C57BI/6J and	N/A	N/A
and SS	University of	129S		
	Pittsburgh			

Antibodies- Not applicable

DNA/cDNA Clones- Not applicable

Cultured Cells- Not applicable

Data & Code Availability- Not applicable

Other- Not applicable

		0 w	reek	3 w	eek	10	week	Significance
		AA	AA + Febux.	AA	AA + Febux.	AA	AA + Febux.	AA 0 vs AA + Febux. 0
		(n=6)	(n=5-6)	(n=6)	(n=6)	(n=6)	(n=6)	AA 3 vs AA + Febux. 3
								<u>AA 10 vs. AA + Febux. 10</u>
	Uric Acid,	0.62 ± 0.09	1.05 ± 0.07	1.52 ± 0.15	0.13 ± 0.05	0.95 ± 0.10	0.28 ± 0.06	P=0.011, P<0.001
na	μM							<u>P=0.001</u>
asr								
٦	XO Activity,	58.00 ± 8.81	64.34 ± 5.05	90.95 ± 8.92	13.05 ± 5.96	57.06 ± 6.13	16.67 ± 3.46	P=0.894, P<0.001
	µUnits/mL							<u>P=0.001</u>
	Uric Acid,	-	-	-	-	56.43 ± 3.87	9.97 ± 2.89	<u>#P=0.002</u>
Ъ.	μM							
. <u>×</u>								
	XO Activity,	-	-	-	-	15.86 ± 0.92	3.04 ± 0.93	<u>P<0.001</u>
	mUnits/mg							
	Uric Acid,	-	-	-	-	13.78 ± 0.78	8.07 ± 1.69	<u>P=0.012</u>
b	μM							
Lu								// T
_	XO Activity,	-	-	-	-	28.62 ± 1.24	16.82 ± 3.46	<u>#P=0004</u>
	mUnits/mg						0.44 + 0.47	D 0 0 0 1
	Uric Acid,	-	-	-	-	6.60 ± 0.32	0.44 ± 0.17	<u>P<0.001</u>
Je	μM							
lidr						0.40 + 0.00	0.4.4 + 0.05	D 40 004
x	XO Activity,	-	-	-	-	2.13 ± 0.08	0.14 ± 0.05	<u>P<0.001</u>
	mUnits/mg		×0 ***					
	Definition of	abbreviations	s: XO = xanthi	ne oxidase; fe	bux = tebuxos	stat; - = measu	irement not ma	ide. Values are mean ±

Supplemental Table I. Febuxostat treatment significantly decreased uric acid concentration and XO activity in plasma and tissues of AA control mice at 10 weeks post-initiation of treatment with effects on plasma detected as early as 3 weeks.

Definition of abbreviations: XO = xanthine oxidase; febux = febuxostat; - = measurement not made. Values are mean ± SEM using a 2-way ANOVA with Sidak's multiple comparison test for plasma measurements. Values are mean ± SEM using an unpaired t test for tissue measurements unless otherwise noted. #Values are mean ± SEM using a Mann-Whitney test. P values are in normal font for AA 0 week vs. AA + febuxostat 0 week, **bolded** for AA 3 week vs. AA + febuxostat 3 week, and <u>underlined</u> for AA 10 week vs. AA + febuxostat 10 week.

		0 v	veek	3 w	reek	10 v	veek	Significance
		SS	SS + Febux.	SS	SS + Febux.	SS	SS + Febux.	SS 0 vs SS + Febux. 0
		(n=12)	(n=12)	(n=11-12)	(n=11)	(n=12)	(n=12)	SS 3 vs SS + Febux. 3
								<u>SS 10 vs. SS + Febux. 10</u>
	Uric Acid,	1.32 ± 0.14	1.099 ± 0.29	0.55 ± 0.13	0.23 ± 0.07	2.65 ± 0.15	0.94 ± 0.13	P=0.8814, P=0.1189
na	μM							<u>P<0.0001</u>
asr								
٩	XO Activity,	79.08 ± 8.52	65.95 ± 17.44	45.62 ± 9.72	13.56 ± 4.30	159.1 ± 8.78	52.20 ± 9.74	P=0.8814, P=0.0279
	µUnits/mL							<u>P=<0.0001</u>
	Uric Acid,	-	-	-	-	85.18 ± 2.04	2.97 ± 0.51	<u>P<0.0001</u>
Ē	μM							
.≚								
_	XO Activity,	-	-	-	-	29.40 ± 1.00	0.97 ± 0.17	<u>P<0.0001</u>
	mUnits/mg							
	Uric Acid,	-	-	-	-	11.50 ± 0.60	4.34 ± 0.54	<u>P<0.0001</u>
g	μM							
Lu								
_	XO Activity,	-	-	-	-	12.60 ± 0.94	4.80 ± 0.62	<u>+P<0.0001</u>
	mUnits/mg					40.00 + 0.00		
	Uric Acid,	-	-	-	-	10.88 ± 0.63	0.29 ± 0.06	<u>#P<0.0001</u>
Je)	μΜ							
Kidı						0.70 + 0.00	0.00 + 0.04	- D -0 0001
x	XU ACtivity,	-	-	-	-	2.78 ± 0.20	0.08 ± 0.01	<u>+P<0.0001</u>
	mUnits/mg			f - -		- 4		
			s: x O = xantnin	e oxidase; fec	oux = tebuxost	at; - = measur	ement not ma	de. values are mean ±
		a ∠-way ANO	A WITH SIDAK'S	multiple com	barison test to	r plasma mea	surements. Va	alues are mean ± SEM
	using an un	paired i lest to	or ussue measu	rements unles	ss otherwise r	iolea. #values	s are mean ± 3	SEIVI USING A Mann-

Supplemental Table II. Febuxostat treatment significantly decreased uric acid concentration and XO activity in plasma and tissues of SS sickle mice at 10 weeks post-initiation of treatment with effects on plasma detected as early as 3 weeks.

SEM using a 2-way ANOVA with Sidak's multiple comparison test for plasma measurements. Values are mean ± SEM using an unpaired t test for tissue measurements unless otherwise noted. #Values are mean ± SEM using a Mann-Whitney test. +Values are mean ± SEM using an unpaired t test with Welch's correction. P values are in normal font for SS 0 week vs. febuxostat 0 week, **bolded** for SS 3 week vs. febuxostat 3 week, and <u>underlined</u> for SS 10 week vs. febuxostat 10 week.

Supplemental Table III. Blood cell indices for Townes AA bone marrow transplanted mice at 0, 3, 6, and 10 weeks of drinking normal water (AA) or febuxostat treated water (AA + Febux).

	0 week		3 week		6 week		10 w	veek	Significance
	AA	AA + Febux.	AA 0 vs AA + Febux. 0						
	(n=6)	(n=5-6)	(n=5-6)	(n=4-6)	(n=6)	(n=5)	(n=6)	(n=6)	AA 3 vs AA + Febux. 3
									AA 6 vs AA + Febux. 6
									<u>AA 10 vs. AA + Febux. 10</u>
WBC,	15.33 ± 0.69	14.28 ± 0.16	19.67 ± 0.72	15.53 ± 1.06	15.97 ± 0.65	12.26 ± 1.30	18.42 ± 1.40	16.57 ± 1.17	P=0.918, P=0.017
10 ³ /µL									<i>P</i> =0.052, <u>P=0.551</u>
RBC.	10.85 + 0.26	10.88 + 0.22	10.96 + 0.08	11.03 + 0.22	10.51 + 0.17	11.07 + 0.30	10.78 + 0.20	11.15 + 0.29	P>0.999. P=0.999
10 ⁶ /ul	10100 - 0120								P=0.323 $P=0.674$
10 /μ L									7 -0.323, <u>1 -0.074</u>
нст	35.00 + 0.83	35 08 + 0 62	34 88 + 0 18	35 17 + 0 64	33 38 + 0 51	35 30 + 0 79	34 13 + 0.67	35 63 + 1 07	P>0 999 P=0 997
%	00.00 ± 0.00	00.00 ± 0.02	04.00 ± 0.10	00.17 ± 0.04	00.00 ± 0.01	00.00 ± 0.70	04.10 ± 0.07	00.00 ± 1.07	P=0.254 $P=0.441$
70									1 0.204, <u>1 0.441</u>
MCV	32 35 + 0 23	32 20 + 0 09	31 83 + 0 19	31 87 + 0 10	31 78 + 0 13	31 88 + 0 16	31 65 + 0 16	31 92 + 0 20	P=0 999 P>0 999
fl	02.00 ± 0.20	02.20 ± 0.00	01.00 ± 0.10	01.07 ± 0.10	01.70 ± 0.10	01.00 ± 0.10	01.00 ± 0.10	01.02 ± 0.20	P=0.991 P=0.694
									1 0.001, <u>1 0.004</u>
RDW	27 35 + 0 20	27.30 + 0.10	27 20 + 0 03	27 28 + 0 08	27 27 + 0 24	28 34 + 0 41	27 27 + 0 14	28 52 + 0 32	P>0 999 P=0 998
%	21.00 ± 0.20	27.00 ± 0.10	21.20 ± 0.00	27.20 ± 0.00	21.21 ± 0.24	20.04 ± 0.41	21.21 ± 0.14	20.02 ± 0.02	P=0.006 P=0.001
70									1 0.000, <u>1 0.001</u>
HGB	12 15 + 0 25	12 37 + 0 20	12 38 + 0 05	12 30 + 0 23	11 93 + 0 13	12 62 + 0 31	12 18 + 0 22	12 67 + 0 28	P=0 927 P=0 998
a/dl	12.10 ± 0.20	12.07 ± 0.20	12.00 ± 0.00	12.00 ± 0.20	11.00 ± 0.10	12.02 ± 0.01	12.10 ± 0.22	12.07 ± 0.20	P=0.142 P=0.400
g/uL									1 0.142, <u>1 0.400</u>
мсн	11 20 + 0 10	11 40 + 0 07	11 30 + 0 05	11 13 + 0 09	11 42 + 0 10	11 42 + 0 05	11 32 + 0 05	11 35 + 0 06	P=0 221 P=0 388
na	11.20 ± 0.10	11.40 ± 0.07	11.00 ± 0.00	11.10 ± 0.00	11.42 ± 0.10	11.42 ± 0.00	11.02 ± 0.00	11.00 ± 0.00	P > 0.999 P=0.996
P9									1 × 0.333, <u>1 = 0.330</u>
РIТ	762 50 + 19 80	743 83 + 16 83	770 33 + 17 72	689 67 + 33 45	718 17 + 39 24	810 00 + 24 03	850 67 + 16 95	924 33 + 46 91	P=0 985 P=0 205
10 ³ /	102.00 ± 10.00	110.00 ± 10.00	110.00 ± 11.12	000.07 ± 00.10	110.17 ± 00.21	010.00 ± 21.00	000.07 ± 10.00	021.00 ± 10.01	P=0.146 $P=0.282$
10 /μĽ									F=0.140, <u>F=0.282</u>
	6 57 ± 0.03	6 60 ± 0 05	6 58 ± 0.08	6 60 ± 0 00	6 65 ± 0 07	672+0.06	6 4 3 ± 0 06	6 55 ± 0.02	P-0.086 P-0.000
fi	0.57 ± 0.05	0.00 ± 0.00	0.00 ± 0.00	0.00 ± 0.00	0.05 ± 0.07	0.72 ± 0.00	0.45 ± 0.00	0.00 ± 0.02	P=0.847 $P=0.414$
									1 -0.047, <u>F-0.414</u>
Retic	5 93 + 0 40	5 28 + 0 12	3 98 + 0 18	3 65 + 0 22	4 95 + 0 21	4 94 + 0 30	4 88 + 0 22	5 32 + 0 27	P=0 259 P=0 821
%	0.00 ± 0.70	0.20 ± 0.12	0.00 ± 0.10	0.00 ± 0.22	7.00 ± 0.2 I	7.07 ± 0.00	7.00 ± 0.22	0.02 ± 0.21	P > 0.000 P=0.640
70									<u>1 - 0.030, <u>1 - 0.040</u></u>

Definition of abbreviations: febux = febuxostat; WBC = white blood cells; RBC = red blood cells; HCT = hematocrit; MCV = mean corpuscular volume; RDW = red blood cell distribution width; HGB = hemoglobin; MCH = mean corpuscular hemoglobin; PLT = platelets; MPV = mean platelet volume; retic = reticulocytes. Values are mean ± SEM using a 2 way ANOVA with Sidak's multiple comparison test. P values are in normal font for AA 0 week vs. AA + febuxostat 0 week, **bolded** for AA 3 week vs. AA + febuxostat 3 week, *italicized* for AA 6 week vs. AA + febuxostat 6 week, and <u>underlined</u> for AA 10 week vs. AA + febuxostat 10 week.

Supplemental Table IV. Blood cell indices for Townes SS bone marrow transplanted mice at 0, 3, 6, and 10 weeks of drinking normal water (SS) or febuxostat treated water (SS + Febux).

	0 w	reek	3 we	eek	6 w	eek	10 v	veek	Significance
	SS	SS + Febux.	SS	SS + Febux.	SS	SS + Febux.	SS	SS + Febux.	SS 0 vs SS + Febux. 0
	(n=12)	(n=12)	(n=11-12)	(n=10-12)	(n=12)	(n=12)	(n=11-12)	(n=12)	SS 3 vs SS + Febux. 3
									SS 6 vs SS + Febux. 6
									<u>SS 10 vs. SS + Febux. 10</u>
WBC,	16.74 ± 1.20	19.32 ± 1.35	23.72 ± 1.51	21.47 ± 0.94	26.14 ± 0.86	23.73 ± 1.11	26.60 ± 1.43	25.48 ± 1.09	P=0.428, P=0.622 ,
10 ³ /µL									<i>P=0.494</i> , <u>P=0.942</u>
RBC.	6.09 + 0.16	5.94 + 0.14	6.52 + 0.32	6.41 + 0.08	6.17 + 0.19	6.61 + 0.11	6.42 + 0.17	6.94 ± 0.14	P=0.966. P=0.986 .
10 ⁶ /ul	0.00 - 0.10	0.0 0	0.02 2 0.02					0.0 0	P=0.290 P=0.151
10 /μ L									1 =0.230 , <u>1 =0.131</u>
нст	27 58 + 0 83	26 67 + 0 68	27 80 + 0 79	28 53 + 0 36	26 44 + 0 73	28 28 + 0 56	28 05 + 0 35	30 64 + 0 66	P=0 776 P=0 897
%	27.00 ± 0.00	20.07 ± 0.00	21.00 ± 0.10	20.00 ± 0.00	20.44 ± 0.70	20.20 ± 0.00	20.00 ± 0.00	00.04 ± 0.00	P=0.165 P=0.024
70									<u>1 0.100, <u>1 0.02 1</u></u>
MCV.	44.95 + 0.33	44.73 + 0.26	44.49 + 0.35	44.51 + 0.26	42.92 + 0.32	42.75 + 0.37	44.59 + 0.42	44.13 + 0.29	P=0.983, P>0.999 ,
fl									P=0.994 P=0.780
									<u> </u>
RDW.	35.00 ± 0.40	35.01 ± 0.23	35.57 ± 0.19	36.41 ± 0.15	36.91 ± 0.26	36.81 ± 0.26	35.93 ± 0.39	36.93 ± 0.29	P>0.999. P=0.147.
%		00101 2 0120			00.01 2 0.20	00.01 - 0.20	00.00 - 0.00	00.00 - 0.20	P=0.999, $P=0.057$
HGB.	9.72 ± 0.25	9.44 ± 0.23	9.82 ± 0.24	10.04 ± 0.17	9.63 ± 0.25	10.18 ± 0.19	9.77 ± 0.10	10.67 ± 0.23	P=0.831. P=0.910.
a/dL									P=0.234, P=0.017
0.									· · · · · · · · · · · · · · · · · · ·
MCH,	15.97 ± 0.09	15.93 ± 0.09	15.76 ± 0.07	15.68 ± 0.11	15.63 ± 0.14	15.43 ± 0.10	15.55 ± 0.20	15.37 ± 0.08	P=0.999, P=0.983,
pg									P=0.648, P=0.717
									·
PLT,	421.00 ± 14.79	417.33 ± 12.69	445.50 ± 31.24	470.10 ± 7.94	535.58 ± 21.88	550.83 ± 18.12	513.50 ± 18.84	573.58 ± 19.45	P=0.999, P=0.866,
10 ³ /uL									P=0.969, P=0.119
· • · [• –									
MPV.	6.37 ± 0.04	6.39 ± 0.04	6.43 ± 0.06	6.58 ± 0.04	6.48 ± 0.03	6.62 ± 0.05	6.47 ± 0.07	6.56 ± 0.05	P=0.993. P=0.130.
fl									P=0.143, P=0.539
									- ,
Retic.	44.7 ± 0.99	44.74 ± 0.57	-	-	44.30 ± 0.98	43.08 ± 0.81	46.58 ± 1.16	44.16 ± 1.22	P=0.984,
%									<i>P</i> =0.764, <u>P</u> =0.234
Definiti	on of obbroviatio	no fobuy - fobu	vestet: W/PC = 1	المعام ما معال	o DBC = rod blo		h a ma a ta a miti MCV		outor volume: DDW = red

Definition of abbreviations: febux = febuxostat; WBC = white blood cells; RBC = red blood cells; HCT = hematocrit; MCV = mean corpuscular volume; RDW = red blood cell distribution width; HGB = hemoglobin; MCH = mean corpuscular hemoglobin; PLT = platelets; MPV = mean platelet volume; retic = reticulocytes; - = measurement not made. Values are mean ± SEM using a 2 way ANOVA with Sidak's multiple comparison test. P values are in normal font for SS 0 week vs. SS + febuxostat 0 week, **bolded** for SS 3 week vs. SS + febuxostat 3 week, *italicized* for SS 6 week vs. SS + febuxostat 6 week, and <u>underlined</u> for SS 10 week vs. SS + febuxostat 10 week.

	AA	AA + Febux.	SS	SS + Febux.	XDH ^{fl/fl}	XDH ^{-/-}	Significance AA vs AA + Febux SS vs SS + Febux.	Significance
	(n=6)	(n=6)	(n=9-10)	(n=10)	(n=8)	(n=7)	AA vs SS AA + Febux. vs. SS + Febux.	XDH ^{fl/fl} vs. XDH ^{-/-}
RV Max Pressure mmHg	28.21 ± 1.15	29.19 ± 1.40	30.29 ± 1.52	32.50 ± 0.79	32.53 ± 0.58	33.65 ± 0.87	P=0.983, P=0.550 , <i>P</i> =0.720, <u>P=0.302</u>	P=0.294
Heart Rate bpm	581.38 ± 32.11	592.70 ± 21.25	620.69 ± 11.84	608.46 ± 12.03	610.11 ± 18.97	639.46 ± 11.39	P=0.992, P=0.972, <i>P=0.451</i> , <u>P=0.958</u>	P=0.224
RV End Diastolic Pressure mmHg	3.07 ± 0.37	3.13 ± 0.20	2.28 ± 0.25	2.63 ± 0.17	2.39 ± 0.23	2.95 ± 0.21	P>0.999, P=0.720, <i>P=0.139</i> , <u>P=0.532</u>	P=0.096
RV Max dP/dt	1716.33 ± 163.67	1910.50 ± 181.50	2309.80 ± 138.69	2546.20 ± 102.23	2395.38 ± 100.78	2564 ± 117.02	P=0.876, P=0.583, <i>P</i> =0.030, <u>P=0.018</u>	P=0.291
RV Min dP/dt	-1670.50 ± 141.90	-1777.83 ± 156.67	-1703.00 ± 138.30	-1890.80 ± 79.29	-1940.63 ± 86.39	-2035.71 ± 112.33	P=0.977, P=0.689, <i>P</i> >0.999, <u>P=0.958</u>	P=0.508
RV Contractile Index 1/s	60.33 ± 3.67	64.80 ± 3.01	75.99 ± 1.73	78.13 ± 1.40	73.53 ± 2.38	75.98 ± 1.73	P=0.651, P=0.912, <i>P<0.001</i> , <u>P=0.001</u>	P=0.431
PA Mean Pressure mmHg	18.89 ± 0.74	19.52 ± 0.91	20.24 ± 0.99	21.67 ± 0.51	21.70 ± 0.38	22.42 ± 0.56	P=0.983, P=0.550, <i>P</i> =0.720, <u>P=0.302</u>	P=0.294
Tau (W) ms	5.45 ± 0.17	6.20 ± 0.40	5.79 ± 0.38	6.27 ± 0.86	6.13 ± 0.55	5.82 ± 0.32	P=0.917, P=0.960, <i>P=0.994</i> , P>0.999	P=0.650

Supplemental Table V. Closed chest right heart catheterization indices for Townes AA, AA + febuxostat, SS, SS + febuxostat, Xdh fl/fl, and HXdh -/- chimeras ten weeks post-engraftment.

Definition of abbreviations: febux = febuxostat; RV = right ventricle; PA = pulmonary artery. Values are mean ± SEM using a 1 way ANOVA with Sidak's multiple comparison test for WT AA and SS mice. P values are in normal font for AA vs. AA + febuxostat, **bolded** for SS vs. SS + febuxostat, *italicized* for AA vs. SS, and <u>underlined</u> for AA + febuxostat vs. SS + febuxostat 10. Values are mean ± SEM using an unpaired t test for Xdh mice.

Supplemental Table VI. Right ventricle echocardiogram indices for Townes AA, AA + febuxostat, SS, SS + febuxostat, Xdh fl/fl, and HXdh -/- chimeras ten weeks postengraftment.

	AA	AA + Febux.	Right \ SS	/entricle SS + Febux.	XDH ^{fl/fl}	XDH-/-	Significance AA vs AA + Febux SS vs SS + Febux .	Significance
	(n=5-6)	(n=5-6)	(n=8-11)	(n=7-11)	(n=5-8)	(n=3-7)	AA vs SS	
TV A mm/s	334.05 ± 24.30	339.16 ± 14.01	327.43 ± 19.15	320.51 ± 28.81	325.22 ± 76.76	362.41 ± 22.69	P>0.999, P=0.999 , P>0.999, <u>P=0.981</u>	#P=0.656
TV E ms	192.97 ± 3.82	198.63 ± 25.32	439.54 ± 25.44	360.25 ± 32.00	330.07 ± 39.41	375.28 ± 72.33	P>0.999, P=0.126, <i>P<0.001</i> , <u>P=0.004</u>	P=0.567
TV LW A' mm/s	-36.36 ± 4.03	-32.82 ± 3.71	-33.01 ± 3.19	-40.73 ± 3.10	-30.73 ± 5.66	-33.06 ± 2.77	P=0.949, P=0.343, <i>P=0.940</i> , <u>P=0.435</u>	P=0.744
TV LW E' ms	-28.17 ± 3.36	-29.27 ± 2.57	-28.84 ± 2.78	-38.58 ± 3.23	-25.15 ± 5.33	-27.65 ± 6.25	P=0.999, P=0.088, <i>P</i> >0.999, <u>P=0.186</u>	P=0.768
TV E/A ms	0.55 ± 0.03	0.58 ± 0.06	1.40 ± 0.12	1.22 ± 0.16	1.24 ± 0.22	1.02 ± 0.17	P>0.999, P=0.711, <i>P=0.001</i> , <u>P=0.020</u>	P=0.469
TV E/e' mm/s	-8.53 ± 0.96	-7.02 ± 1.06	-16.58 ± 2.98	-7.85 ± 1.61	-15.11 ± 2.79	-10.32 ± 1.85	P=0.988, P=0.025, <i>P=0.073</i> , <u>P=0.998</u>	P=0.272
PAT mm/s	22.59 ± 0.78	20.51 ± 0.99	20.96 ± 0.80	20.73 ± 0.57	20.60 ± 1.59	22.62 ± 1.33	P=0.405, P=0.999, <i>P=0.516</i> , <u>P>0.999</u>	P=0.349
PET	58.98 ± 1.64	57.04 ± 1.04	63.23 ± 1.44	60.48 ± 2.23	66.88 ± 3.23	70.67 ± 2.70	P=0.956, P=0.675, <i>P=0.438</i> , <u>P=0.634</u>	P=0.385
PA Peak Velocity	-529.39 ± 26.32	-571.45 ± 29.89	-599.00 ± 18.97	-573.34 ± 24.52	-458.73 ± 35.32	-470.89 ± 23.80	P=0.782, P=0.876, <i>P=0.234</i> , <u>P>0.999</u>	P=0.780
PAT/PET	0.39 ± 0.02	0.36 ± 0.01	0.33 ± 0.02	0.34 ± 0.01	0.31 ± 0.02	0.32 ± 0.01	P=0.845, P=0.962, <i>P=0.202</i> , <u>P=0.984</u>	P=0.601
FAC %	50.76 ± 2.80	43.99 ± 3.87	39.41 ± 1.31	46.85 ± 3.45	34.82 ± 0.67	46.30 ± 4.25	P=0.546, P=0.184, <i>P=0.053</i> , <u>P=0.944</u>	*P=0.036
RVID mm	1.38 ± 0.04	1.38 ± 0.15	1.68 ± 0.06	1.60 ± 0.10	1.80 ± 0.08	1.88 ± 0.06	P>0.999., P=0.931, <i>P=0.139</i> , <u>P=0.385</u>	P=0.4618
RVFW mm	0.40 ± 0.02	0.38 ± 0.01	0.40 ± 0.02	0.34 ± 0.01	0.39 ± 0.02	0.43 ± 0.03	P=0.987, P=0.115, <i>P=0.999</i> , <u>P=0.622</u>	P=0.305
TAPSE	1.15 ± 0.07	1.14 ± 0.09	1.24 ± 0.07	1.36 ± 0.09	1.07 ± 0.10	1.22 ± 0.07	P>0.999, P=0.737,	P=0.266

 mm
 P=0.925, P=0.320

 Definition of abbreviations: febux = febuxostat; TV = tricuspid valve; A = peak velocity of late transmitral flow; E = peak velocity of early diastolic transmitral flow; LW = left wall; A' = peak velocity of diastolic mitral annular motion; E' = peak velocity of early diastolic mitral annular motion; PAT = pulmonary acceleration time; PET = pulmonary ejection time; PA = pulmonary artery; FAC = fractional area change; RVID = right ventricular internal diameter; RVFW = right ventricular free wall; TAPSE = tricuspid annular plane systolic excursion. Values are mean ± SEM using a 1 way ANOVA for WT AA and SS mice. P values are in normal font for AA vs. AA + febuxostat, **bolded** for SS vs. SS + febuxostat, *italicized* for AA vs. SS, and <u>underlined</u> for AA + febuxostat vs. SS + febuxostat 10. Values are mean ± SEM using a nunpaired t test for XDH mice unless otherwise noted. #Values are mean ± SEM using a Mann-Whitney test.

Supplemental Table VII. Left ventricle echocardiogram indices for Townes AA, AA + febuxostat, SS, SS + febuxostat, Xdh fl/fl, and HXdh -/- chimeras ten weeks postengraftment.

			1.041/	a matrical a			Significance	Significance
	AA (==5, 0)	AA + Febux.	SS	SS + Febux.		XDH-/-	SS vs SS + Febux.	
	(n=5-6)	(n=6)	(n=10-11)	(n=9-11)	(n=6-8)	(n=7)	AA VS SS AA + Febux vs SS + Febux	
A' mm/s	-22.02 ± 2.16	-21.48 ± 2.07	-27.77 ± 2.34	-23.76 ± 1.31	-23.03 ± 2.08	-22.40 ± 2.32	P>0.999, P=0.437 , <i>P=0.241</i> , <u>P=0.916</u>	P=0.843
AET ms	56.53 ± 0.92	55.28 ± 1.37	57.83 ± 1.61	55.40 ± 1.55	56.01 ± 2.21	56.56 ± 3.59	P=0.983, P=0.637, <i>P</i> =0.969, <u>P>0.999</u>	P=0.894
E' mm/s	-29.30 ± 2.43	-32.22 ± 2.41	-32.06 ± 1.64	-33.60 ± 2.25	-30.41 ± 2.07	-28.84 ± 3.56	P=0.887, P=0.967, <i>P</i> =0.857, <u>P=0.988</u>	P=0.710
IVCT ms	14.77 ± 0.88	15.97 ± 0.88	13.16 ± 0.88	12.31 ± 0.70	13.78 ± 2.10	12.91 ± 1.52	P=0.876, P=0.894, <i>P</i> =0.610, <u>P=0.027</u>	P=0.748
IVRT ms	15.51 ± 1.11	15.51 ± 1.74	15.13 ± 0.62	15.68 ± 1.86	17.55 ± 0.13	15.03 ± 1.53	P>0.999, P=0.997, <i>P</i> >0.999, <u>P>0.999</u>	+P=0.151
MV A mm/s	463.06 ± 58.69	378.48 ± 28.71	451.34 ± 17.25	437.95 ± 31.43	398.37 ± 40.40	457.05 ± 58.75	P=0.414, P=0.996, <i>P</i> =0.997, <u>P=0.638</u>	P=0.416
MV E mm/s	721.20 ± 38.57	723.46 ± 58.07	760.50 ± 24.40	777.47 ± 39.33	598.22 ± 46.68	694.53 ± 39.95	P>0.999, P=0.994, <i>P</i> =0.936, <u>P=0.825</u>	P=0.147
LV MPI IV	0.54 ± 0.03	0.57 ± 0.04	0.49 ± 0.02	0.47 ± 0.03	0.58 ± 0.06	0.49 ± 0.04	P=0.926, P=0.971, <i>P</i> =0.762, <u>P=0.110</u>	P=0.222
MV E/A	1.66 ± 0.17	1.94 ± 0.16	1.71 ± 0.07	1.67 ± 0.09	1.61 ± 0.21	1.65 ± 0.20	P=0.458, P=0.999, <i>P</i> =0.998, <u>P=0.393</u>	P=0.899
MV E/E'	-25.03 ± 1.41	-23.00 ± 2.41	-24.27 ± 1.25	-23.65 ± 1.68	-21.69 ± 1.96	-25.35 ± 1.88	P=0.920, P=0.997, <i>P=0.996</i> , <u>P=0.998</u>	P=0.203
Heart Rate bpm	490.02 ± 15.76	472.49 ± 22.76	459.62 ± 10.51	465.10 ± 10.83	441.43 ± 16.43	447.17 ± 11.10	P=0.911, P=0.996, <i>P=0.465</i> , <u>P=0.994</u>	P=0.7831
Diameter;s mm	2.78 ± 0.09	2.64 ± 0.14	2.75 ± 0.12	2.61 ± 0.09	2.75 ± 0.18	2.92 ± 0.17	P=0.911, P=0.782, <i>P</i> >0.999, <u>P>0.999</u>	P=0.519
Diameter;d mm	3.90 ± 0.11	3.77 ± 0.14	4.14 ± 0.11	4.06 ± 0.10	4.05 ± 0.17	4.11 ± 0.14	P=0.937, P=0.963, <i>P</i> =0.507, <u>P=0.332</u>	P=0.765
Volume;s μL	29.35 ± 2.51	26.17 ± 3.27	29.24 ± 2.93	25.34 ± 2.03	29.69 ± 4.79	33.82 ± 5.13	P=0.934, P=0.700, <i>P</i> >0.999, <u>P=0.999</u>	P=0.566
Volume;d μL	66.34 ± 4.60	61.48 ± 5.58	76.66 ± 4.56	73.03 ± 4.00	73.28 ± 7.28	75.75 ± 6.34	P=0.956, P=0.955, <i>P=0.473</i> , <u>P=0.363</u>	P=0.804
Stroke Volume μL	36.99 ± 2.38	35.32 ± 2.79	47.41 ± 3.15	47.69 ± 3.29	43.59 ± 3.30	41.93 ± 3.42	P=0.997, P>0.999, <i>P</i> =0.144, <u>P=0.059</u>	P=0.733
Ejection Fraction %	55.87 ± 1.29	58.06 ± 2.30	62.28 ± 2.64	65.17 ± 2.43	60.90 ± 3.03	56.09 ± 3.83	P=0.977, P=0.837, <i>P</i> =0.334, <u>P=0.241</u>	P=0.337
Fractional Shortening %	28.70 ± 0.85	30.20 ± 1.50	33.64 ± 1.97	35.62 ± 1.75	32.49 ± 2.13	29.30 ± 2.64	P=0.981, P=0.861, <i>P</i> =0.276, <u>P=0.200</u>	P=0.359
Cardiac Output mL/min	18.08 ± 1.13	16.44 ± 0.75	20.50 ± 0.83	22.06 ± 1.43	19.09 ± 1.32	18.81 ± 1.73	P=0.881, P=0.772, <i>P</i> =0.553, <u>P=0.012</u>	P=0.900
LV Mass mg	116.73 ± 1.33	115.37 ± 7.12	143.48 ± 5.52	159.86 ± 9.27	130.30 ± 10.74	136.08 ± 12.10	P>0.999., P=0.350 , <i>P=0.136</i> , <u>P=0.002</u>	P=0.726
LV Mass Cor mg	93.38 ± 1.06	92.30 ± 5.69	114.78 ± 4.42	127.89 ± 7.42	104.24 ± 8.59	108.86 ± 9.68	P>0.999, P=0.350, <i>P=0.136</i> , <u>P=0.</u> 002	P=0.726
LVAW;s mm	1.15 ± 0.05	1.14 ± 0.05	1.28 ± 0.03	1.39 ± 0.03	1.15 ± 0.04	1.10 ± 0.05	P=0.999, P=0.104, <i>P</i> =0.093, <u>P<0.001</u>	P=0.459
LVAW;d mm	0.89 ± 0.02	0.85 ± 0.04	0.97 ± 0.04	1.07 ± 0.04	0.89 ± 0.03	0.89 ± 0.04	P=0.947, P=0.281, <i>P</i> =0.568, <u>P=0.004</u>	P=0.933
LVPW;s mm	1.10 ± 0.02	1.12 ± 0.04	1.29 ± 0.07	1.30 ± 0.05	1.18 ± 0.09	1.16 ± 0.06	P=0.997, P>0.999 , <i>P</i> =0.089, <u>P=0.143</u>	P=0.887
LVPW;d mm	0.80 ± 0.03	0.84 ± 0.02	0.86 ± 0.05	0.89 ± 0.04	0.80 ± 0.05	0.81 ± 0.03	P=0.963, P=0.985, <i>P</i> =0.779, <u>P=0.917</u>	#P=0.463
Left Atrial Area	4.04 ± 0.27	4.08 ± 0.31	4.07 ± 0.21	4.09 ± 0.17	4.07 ± 0.36	3.84 ± 0.27	P>0.999, P>0.999 ,	P=0.620

mm² P>0.999, <u>P>0.999</u> Definition of abbreviations: A' = peak velocity of diastolic mitral annular motion; AET = aortic ejection time; E' = peak velocity of early diastolic mitral annular motion; IVCT = isovolumic contraction time; IVRT = isovolumic relaxation time; MV = mitral valve; A = peak velocity of late transmitral flow; E = peak velocity of early diastolic transmitral flow; LV = left ventricle; MPI = myocardial performance index; s = systolic; d = diastolic; LVAW = left ventricle anterior wall; LVPW = left ventricle posterior wall. Values are mean ± SEM using a one way ANOVA for WT AA and SS mice. P values are in normal font for AA vs. AA + febuxostat, **bolded** for SS vs. SS + febuxostat, *italicized* for AA vs. SS, and <u>underlined</u> for AA + febuxostat vs. SS + febuxostat. Values are mean ± SEM using a students t test for Xdh mice unless otherwise noted. +Values are mean ± SEM using an unpaired t test with Welch's correction. #Values are mean ± SEM using a Mann-Whitney test.

1		0 w	eek	3 we	eek	10 w	eek	Significance
		XDH ^{fl/fl}	XDH ^{-/-}	XDH ^{fl/fl}	XDH ^{-/-}	XDH ^{fl/fl}	XDH ^{-/-}	XDH ^{fl/fl} 0 vs. XDH ^{-/-} 0
		(n=8)	(n=6-7)	(n=8)	(n=6-7)	(n=7-8)	(n=6-7)	XDH ^{fl/fl} 3 vs. XDH ^{-/-} 3
								<u>XDH^{fl/fl} 10 vs. XDH^{-/-} 10</u>
	Uric Acid,	1.52 ± 0.16	1.16 ± 0.10	1.88 ± 0.16	1.05 ± 0.09	1.00 ± 0.14	0.31 ± 0.05	P=0.231, P=0.003
ma	μM							<u>P=0.005</u>
las		04.04 + 0.70	70.00 . 0.07	440.00 + 0.40	00 00 · 0 04	000 40 + 00 40	70 74 : 40 07	
Δ.	XO Activity,	91.21 ± 9.70	72.82 ± 6.07	112.83 ± 9.49	68.26 ± 2.01	229.40 ± 33.13	70.74 ± 12.27	P=0.355, P=0.006
					_	93 44 + 1 44	14 84 + 1 11	P=0.005 P<0.001
	uM	_	_	_	_	55.44 ± 1.44	14.04 ± 1.11	1 40.001
Vel	P							
	XO Activity,	-	-	-	-	24.56 ± 1.47	4.13 ± 0.43	<u>#P<0.001</u>
	mUnits/mg							
	Uric Acid,	-	-	-	-	20.46 ± 2.78	20.70 ± 1.76	<u>P=0.946</u>
b	μM							
Lu						40.07 + 4.00	40.00 + 0.07	D 0 575
	XU ACTIVITY,	-	-	-	-	12.07 ± 1.88	13.92 ± 0.87	<u>P=0.575</u>
	Uric Acid		_	_		15 31 + 0 79	12 29 + 2 54	+P=0 294
Ž	uM					10.01 ± 0.10	12.20 ± 2.01	1 0.201
dne	P							
ž	XO Activity,	-	-	-	-	4.87 ± 0.22	3.82 ± 0.78	<u>+P=0.236</u>
	mUnits/mg							
	Definition of	fabbreviations	s: XO = xanthi	ne oxidase; - =	measuremen	t not made. Valu	es are mean ±	SEM using a two-way

Supplemental Table VIII. Hepatocyte-specific XO knockout significantly decreased uric acid concentration and XO activity in plasma and liver tissue of H*X*dh -/- mice at 10 weeks post-engraftment with effects on plasma detected as early as 3 weeks.

Definition of abbreviations: XO = xanthine oxidase; - = measurement not made. Values are mean \pm SEM using a two-way ANOVA with Sidak's multiple comparison test for plasma measurements. Values are mean \pm SEM using an unpaired t-test unless otherwise noted. #Values are mean \pm SEM using a Mann-Whitney test. +Values are mean \pm SEM using an unpaired t test with Welch's correction. P values are in normal font for *Xdh* fl/fl 0 week vs. H*Xdh* -/- 0 week, **bolded** for *Xdh* fl/fl 3 week vs. H*Xdh* -/- 3 week, and <u>underlined</u> for *Xdh* fl/fl 10 week vs. H*Xdh* -/- 10 week.

Supple			ices for Townes	55 bone marrow	v transplanted X		I-/- chimeras at v		
	0 we	eek	3 w	eek	6 w	eek	10 v	veek	Significance
	SS + XDH fl/fl	SS + XDH -/-	SS + XDH fl/fl	SS + XDH -/-	SS + XDH fl/fl	SS + XDH -/-	SS + XDH fl/fl	SS + XDH -/-	SS + XDH fl/fl 0 vs SS + XDH -/- 0
	(n=8)	(n=7)	(n=7-8)	(n=7)	(n=8)	(n=7)	(n=8)	(n=7)	SS + XDH fl/fl 3 vs SS + XDH -/- 3
									SS + XDH fl/fl 6 vs SS + XDH -/- 6
									SS + XDH fl/fl 10 vs. SS + XDH -/- 10
WBC,	16.03 ± 1.19	20.44 ± 0.98	20.13 ± 1.05	22.04 ± 1.34	22.74 ± 1.57	25.17 ± 1.23	27.16 ± 0.54	30.76 ± 2.30	P=0.095, P=0.805
10 ³ /µĹ									P=0.605, <u>P=0.263</u>
RBC,	6.27 ± 0.15	6.23 ± 0.11	5.79 ± 0.08	6.04 ± 0.15	5.55 ± 0.16	6.03 ± 0.17	5.90 ± 0.22	5.73 ± 0.12	P>0.999, P=0.681
10º/µL									<i>P</i> =0.105, <u>P=0.898</u>
HCT,	30.54 ± 0.58	30.34 ± 0.61	27.25 ± 0.31	28.47 ± 0.92	26.19 ± 0.79	28.21 ± 0.81	27.14 ± 0.98	26.26 ± 0.69	P>0.999, P=0.680
%									<i>P=0.212, <u>P=0.873</u></i>
MCV,	48.75 ± 0.44	48.73 ± 0.41	47.09 ± 0.46	47.09 ± 0.57	47.23 ± 0.47	46.73 ± 0.39	45.99 ± 0.47	45.80 ± 0.45	P>0.999, P>0.999
TI									<i>P=0.909, <u>P=0.997</u></i>
RDW,	34.23 ± 0.42	34.01 ± 0.36	36.39 ± 0.58	37.01 ± 1.08	36.35 ± 0.42	36.56 ± 0.46	36.81 ± 0.62	36.89 ± 0.46	P=0.998, P=0.908
%									P=0.999, <u>P>0.999</u>
HGB,	10.54 ± 0.19	10.56 ± 0.16	9.74 ± 0.11	10.13 ± 0.24	9.275 ± 0.24	9.96 ± 0.26	9.56 ± 0.27	9.47 ± 0.20	P>0.999, P=0.602
g/dL									<i>P</i> =0.114, <u>P=0.997</u>
MCH,	16.86 ± 0.19	16.94 ± 0.16	16.84 ± 0.19	16.79 ± 0.17	16.75 ± 0.15	16.54 ± 0.17	16.26 ± 0.20	16.56 ± 0.13	P=0.996, P=0.999
pg									<i>P</i> =0.872, <u>P=0.657</u>
PLT,	464.00 ± 18.74	425.71 ± 8.25	476.63 ± 19.25	511.14 ± 34.93	444.75 ± 24.52	515.00 ± 16.41	489.00 ± 30.01	511.57 ± 25.23	P=0.695, P=0.769
10 ³ /µL									<i>P</i> =0.152, <u>P=0.939</u>
MPV,	6.25 ± 0.04	6.24 ± 0.04	6.33 ± 0.06	6.34 ± 0.05	6.38 ± 0.07	6.33 ± 0.03	6.41 + 0.07	6.34 ± 0.05	P>0.999, P=0.999
fl									<i>P</i> =0.957, <u>P=0.837</u>
Retic.	47.75 ± 1.15	47.83 ± 0.69	49.50 ± 1.10	47.90 ± 1.43	43.89 ± 0.82	42.33 ± 1.21	47.50 ± 1.19	47.60 ± 0.49	P>0.999, P=0.747
%									<i>P</i> =0.764, <u>P>0.999</u>

Definition of abbreviations: WBC = white blood cells; RBC = red blood cells; HCT = hematocrit; MCV = mean corpuscular volume; RDW = red blood cell distribution width; HGB = hemoglobin; MCH = mean corpuscular hemoglobin; PLT = platelets; MPV = mean platelet volume; Retic = reticulocyte. Values are mean \pm SEM using a two-way ANOVA with Sidak's multiple comparison test. P values are in normal font for SS Xdh fl/fl 0 week vs. SS + HXdh -/- 0 week, **bolded** for SS + Xdh fl/fl 3 week vs. SS + HXdh -/- 3 week, *italicized* for SS + Xdh fl/fl 6 week vs. SS + HXdh -/- 6 week, and <u>underlined</u> for SS + Xdh fl/fl 10 week vs. SS + HXdh -/- 10 week.