
Supplementary Methods 

Genotype and phenotype data 

Genomic DNA was fragmented on the Covaris LE220 instrument targeting 375 bp 

inserts. Automated Illumina libraries were constructed with the TruSeq PCR-free 

(Illumina) or KAPA Hyper PCR-free library prep kit (KAPA Biosystems/Roche) on the 

SciClone NGS platform (Perkin Elmer). The fragmented genomic DNA was size-selected 

on the SciClone instrument with AMPure XP beads to tighten the distribution of 

fragmented DNA to ensure the average insert of the libraries was 350-375 bp. We 

followed the manufacturer’s protocol as provided by Perkin Elmer, with the following 

exception: post ligation, the libraries were purified twice with a 0.7x AMPure bead/sample 

ratio to eliminate any residual adaptors present. An aliquot of the final libraries was diluted 

1:20 and quantitated on the Caliper GX instrument (Perkin Elmer). The concentration of 

each library was accurately determined through qPCR utilizing the KAPA library 

Quantification Kit according to the manufacturer's protocol (KAPA Biosystems/Roche) to 

produce cluster counts appropriate for the Illumina HiSeqX instrument. Libraries were 

pooled and run over a few lanes of the HiSeq X to ensure the libraries within the pool 

were equally balanced. The final pool of balanced libraries was loaded over the remaining 

number of HiSeq X lanes to achieve the desired coverage for this project. 2x150 paired 

end sequence data were demultiplexed using a single index, which was a restriction on 

the HiSeqX instrument at this time. A minimum of 19.5x coverage was achieved per 

sample. 

 The quality of the aligned sequence data was assessed using metrics 

generated by Picard[1] v2.4.1, Samtools[2] v1.3.1 and VerifyBamID[3] v1.1.3. Based on 



the output files from Picard, the following alignment statistics were collected for review: 

PF_MISMATCH_RATE, PF_READS, PF_ALIGNED_BASES, PCT_ADAPTER, 

PCT_CHIMERAS, PCT_PF_READS_ALIGNED, PCT_READS_ALIGNED_IN_PAIRS, 

PF_HQ_ALIGNED_BASES, PF_HQ_ALIGNED_Q20_BASES, 

PF_HQ_ALIGNED_READS, MEAN_INSERT_SIZE, STANDARD_DEVIATION, 

MEDIAN_INSERT_SIZE, TOTAL_READS, PCT_10x, and PCT_20x. Alignment rate was 

calculated as PF_READS_ALIGNED/TOTAL_READS. The formula for haploid coverage 

was as follows: 𝐻𝑎𝑝𝑙𝑜𝑖𝑑	𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑀𝐸𝐴𝑁_𝐶𝑂𝑉𝐸𝑅𝐴𝐺𝐸 ∗ :;<=>_?@=_AB<?
:	;	<=>_?@=_>C>DE

. From the 

Samtools output, inter-chromosomal rate was calculated as: 

FGHIJ_KHLLGI_MN_MNOGFPQFRKRJRKHS_LHMFJ
FGHIJ_KHLLGI_MN_LHMF

 and discordant rate was calculated as: 

𝑟𝑒𝑎𝑑𝑠_𝑚𝑎𝑝𝑝𝑒𝑑_𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	 − 	𝑟𝑒𝑎𝑑𝑠_𝑚𝑎𝑝𝑝𝑒𝑑_𝑖𝑛_𝑝𝑟𝑜𝑝𝑒𝑟_𝑝𝑎𝑖𝑟𝑠_𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒. 

Properly paired percentage (reads_mapped_in_proper_pairs_percentage) and 

singleton percentage (reads_mapped_as_singleton_percentage) were also reviewed. 

From VerifyBamID, the Freemix value was reviewed. 

The metrics for judgement of passing data quality were: 

FIRST_OF_PAIR_MISMATCH_RATE < .05, SECOND_OF_PAIR_MISMATCH_RATE < 

0.05, haploid coverage ≥ 19.5, interchromosomal rate < .05, and discordant rate < 5. All 

of the above metrics must have been met in order for the sample to be assigned as QC 

pass. If a sample did not meet the passing criteria, the following failure analysis was 

performed: a) If the Freemix score was at least 0.05, the sample or the library was 

considered contaminated, and both the library and the sample were abandoned; b) if the 

discordant rate was over 5 and/or the inter-chromosomal rate was over 0.05, the quality 

of DNA was considered poor and the sample was removed from the sequencing pipeline; 



and c) in the case of a) and b), the collaborator was contacted to determine if selection of 

a replacement sample from the same cohort was desired or feasible. 

WGS callset generation and quality control 

Single nucleotide polymorphisms (SNPs) and small insertions and deletions were 

called from the full set of 4,163 samples using GATK[4] v3.5. GVCFs containing SNVs 

and Indels from GATK HaplotypeCaller (-ERC GVCF -GQB 5 -GQB 20 -GQB 60 -

variant_index_type LINEAR -variant_index_parameter 128000) were first 

processed to ensure no GVCF blocks crossed boundaries every 1 Mb (CombineGVCFs; 

--breakBandsAtMultiplesOf 1000000). The resulting GVCFs were then 

processed in 10 Mb shards across each chromosome. Each shard was combined 

(CombineGVCFs), genotyped (GenotypeGVCFs; -stand_call_conf 30 -

stand_emit_conf 0), hard filtered to remove alternate alleles uncalled in any individual 

removed (SelectVariants; --removeUnusedAlternates), and hard filtered to remove 

lines solely reporting symbolic deletions in parallel. All shards were jointly recalibrated 

(VariantRecalibrator) and then individually filtered (ApplyRecalibration) based on the 

recalibration results. All of the above methods were performed using GATK v3.5. SNP 

variant recalibration was performed using the following options to VariantRecalibrator and 

all resources were drawn from the GATK hg38 resource bundle (v0): 

-mode SNP 

-resource:hapmap,known=false,training=true,truth=true,prior=15.0 

-resource:omni,known=false,training=true,truth=true,prior=12.0 

-resource:1000G,known=false,training=true,truth=false,prior=10.0 

-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 

-an QD -an DP -an FS -an MQRankSum -an ReadPosRankSum 



-tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 

Indel variant recalibration was performed using the following options to 

VariantRecalibrator (with the same resource bundle as with SNPs): 

-mode INDEL 

-resource:mills,known=true,training=true,truth=true,prior=12.0 

-an DP -an FS -an MQRankSum -an ReadPosRankSum 

--maxGaussians 4 

-tranche 100.0 -tranche 99.9 -tranche 99.0 -tranche 90.0 

When applying the variant recalibration the following options were used: 

For SNPs: --ts_filter_level 99.0 

For Indels: --ts_filter_level 99.0 

 

Following SNP and INDEL variant recalibration, multiallelic variants were 

decomposed and normalized with vt[5] v0.5. Duplicate variants and variants with symbolic 

alleles were subsequently removed. The bottom tranche of variants identified by GATK’s 

Variant Quality Score Recalibration tool and variants with missingness greater than 2% 

were removed as well, although variants with allele balance between 0.3 and 0.7 were 

rescued. Variants with Hardy-Weinberg equilibrium (on a second-degree unrelated 

subset of 3,969 individuals, as determined by KING[6]) P value less than 10-6 and those 

with allele balance less than 0.3 or greater than 0.7 were also removed. 

Sample-level quality control was also undertaken on this dataset; 13 samples were 

identified for exclusion because of singleton counts that were at least eight median 

absolute deviations above the median. Separately, 12 sex-discordant samples were 

flagged using plink --check-sex, and after examining chromosome Y missingness 



and F coefficient values for these samples, only the one that clearly differed from its 

reported sex was marked for exclusion. No samples were excluded based on 

missingness fraction or the first five principal components. In total, 14 samples were 

excluded from the heritability, GWAS, and Mendelian randomization analyses; the other 

analyses were performed without exclusion of these samples. As a result, the former 

analyses were performed with N = 4,149 while the latter had N = 4,163. 

Mendelian Randomization 

In our formulation (Figure 4a), X, the natural log of MT-CN (adjusted for nuclear 

genomic coverage but not for age, age2, or sex), and a genotype matrix G were used to 

build a genetic instrument Z, which was then tested against Y, the natural log of fasting 

serum insulin. The goal of the MR approach was to use a large number of common 

variants to build a genetic instrument Z that satisfies the three assumptions of MR[7]: 

1. Association of Z with X 

2. Independence of Z from any variables U confounding the relationship between X 

and Y 

3. Independence of Z and Y given X and U	

To attempt to build a genetic instrument satisfying assumptions 2 and 3 (see 

Methods), the deep METSIM phenotype data were leveraged. A matrix W was 

constructed using the 75 measured traits and first 20 PCs of the genotype matrix 

(including a third-degree polynomial basis for PC 1). From these variables, covariates that 

could violate one of these two assumptions were chosen by selecting columns of W 

associated with X or Y (Figure 4b). These columns were selected using two successive 

LASSO feature selection procedures. First, a set A of covariates associated with Y was 



chosen by using LASSO to regress Y onto W. In this regression, age and the third-degree 

polynomial basis for PC 1 were left unpenalized to ensure that A contains these 

covariates. The shrinkage parameter was chosen by tenfold cross-validation as the 

largest value that gives a mean squared error (MSE) within one standard error of the 

minimum observed MSE. Next, the columns of W associated with X conditional on A were 

chosen using a similar LASSO procedure in the regression of X onto W. In this step, 

however, the variables in set A were left unpenalized in order to only capture associations 

that are conditionally independent of A. The selected variables from this regression were 

designated set B.	

The instrument was built using a penalized regression (using either an L1 or L2 

penalty, as implemented in glmnet[8]) of the form 𝑋	 ∼ 	𝐺 +	𝑊D +𝑊e , where WA and WB 

are the columns of W representing sets A and B, respectively, and G is a genotype matrix 

containing the alternate allele dosage (missing alleles are replaced with the MAF, similarly 

to PLINK[9]) of all variants with MAF greater than 1% and marginal GWAS P value below 

0.01. As X was the target vector for this regression, assumption 1 of MR was trivial. In the 

penalized regression, WA and WB were unpenalized in an effort to orthogonalize the 

regression coefficients of the genotypes to these covariates in an effort to enforce 

assumptions 2 and 3. glmnet was run with a convergence threshold of 1×10-10 and 

maximum number of iterations of 200,000. To avoid the overfitting that would result from 

calculating instrument values on the same samples on which regression coefficients are 

learned[10], the penalized regression model was fit on independent subsets of the data 

as follows. Five models were fit, each by holding out a different 20% of samples, such 

that the instrument value computed for each sample was calculated using the regression 



coefficient vector learned without that sample. The vector of possible shrinkage 

parameters λ for all five models was supplied as (103,102,…,10-13,10-14), and the λ value 

which minimized the joint residual sum of squares of all five models was chosen for 

instrument calculation. 

Formally, we randomly partitioned the set of samples S with nonmissing insulin 

measurements into five nonoverlapping sets Sj for 𝑗 = {1, … ,5}. We denote set 

complements as 𝑆q= = 𝑆	 ∖ 	𝑆q, such that each SjC contained 80% of the training samples. 

The instrument vector Zj for each Sj was computed as follows: 𝑍q = 𝐺q × 𝛽w
(;q), where Zj is 

the instrument vector for Sj, Gj is the genotype matrix of Sj, and βG(-j) is the vector of 

genotype regression coefficients from the model described above, trained on SjC. The 

instrument values within each Sj were inverse rank-normalized using a Blom 

transformation[11,12] before being concatenated across the values of j to give the final 

instrument vector Z. Because samples with missing insulin values could not be included 

in the causality test anyway, these samples were excluded from S but safely included in 

the training sets of all five models. The instrument values of these samples were never 

calculated or used in downstream analyses. 

 Often, the inclusion of unpenalized covariate sets A and B in the instrument-

building regression was not sufficient to completely orthogonalize Z to these covariates 

(see below). As a result, the test for association between Z and Y was performed 

conditional on a set of potentially assumption-violating covariates chosen using the newly 

constructed instrument Z in another attempt to account for possible violations of MR 

assumptions in the causality test (Figure 4c). To choose this set of covariates C, a final 

feature selection step was performed using LASSO regression of Z on W with covariate 



set A excluded from the penalty. As in the previous feature selection steps, the shrinkage 

parameter was chosen via tenfold cross-validation as the largest value with MSE within 

one standard error of the minimum observed MSE. Once this set, D, of covariates 

associated with Z was chosen, the covariates in W were partitioned into sets I, II, III, and 

IV based on their membership in A and D (see Figure 4). Formally, this partitioning was 

done as follows: 𝐼 = 𝑊	\	(𝐴 ∪ 𝐷), 𝐼𝐼 = 𝐷 ∩ 𝐴=, 𝐼𝐼𝐼 = 𝐴 ∩ 𝐷=, and 𝐼𝑉 = 𝐴 ∩ 𝐷, where 𝐴= =

𝑊	\	𝐴 and 𝐷= = 𝑊	\	𝐷. Then, the test for causality came from the regression coefficient 

of Z in the multiple regression 𝑌	 ∼ 	𝑍 + 𝐶, where C is the union of sets II, III, and IV 

(colored blue in Figure 4c). 
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