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Supplementary Figure 1. SETD5 expression increases in MEKi resistance and is associated with 
poor survival outcomes in pancreatic cancer. Related to Figure 1. 
(A-E) SETD5 ablation in human PDAC cell lines CaPan1 (A), PNS1 (B), YAPC (C), DANG (D), KP4 (E) 
causes the shift in cellular viability in response to MEKi (trametinib) at the dose indicated on the x-axis. 
Geometric mean half-maximum inhibitory concentration (IC50) values for MEKi calculated. Data are 
represented as mean ± SEM of three technical replicates in two independent experiments. Western 
analysis with the indicated antibodies of cancer cell transduced with Cas9 and sgRNA targeting SETD5 
(sgSETD5) and a control non-targeting sgRNA (sgControl). Actin served as loading control. 

(F) Summary of SETD5 expression levels in six publicly available expression data sets of PDAC (n = 294 
tumors and n = 141 normal tissue independent samples). Detailed statistical description in STAR Methods. 

(G) Representative immunohistochemical (IHC) images showing nuclear SETD5 expression in pancreatic 
cancer but not in normal pancreas samples from human pancreatic cancer samples (representative of 12 
independent samples) and Kras;p53 mutant mouse model of PDAC (representative of 8 independent 
samples). Scale bars, 100 μm; insets present higher magnification. 

(H) Analysis of correlation of SETD5 staining and PDAC patient survival assessed by IHC. ***p < 0.001, 
log-rank test, 172 different samples were stained in total.  
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Supplementary Figure 2. Loss of Setd5 attenuates KrasG12D-driven pancreatic tumorigenesis in vivo 
and sensitizes PDAC to MEKi toxicity. Related to Figure 2. 
(A) Schematic of the Setd5 conditional allele. In the presence of Cre recombinase, exon 3 is deleted to 
disrupt Setd5 expression. 

(B) Western blots with the indicated antibodies of pancreatic tissue lysates from Kras;p53;Setd5 and 
Kras;p53 (control) mutant mice. Two independent and representative samples are shown for each 
genotype. Tubulin is shown as a loading control. 

(C) Kaplan-Meier survival curves of Kras;p53;Setd5 (n = 24, median survival = 66 days) and Kras;p53 
(control, n = 27, median survival = 57 days) mice, *p = 0.002 by log-rank test for significance. 

(D) Treatment schedule for administration of Selumetinib (MEK inhibitor) or placebo (vehicle) to Kras;p53 
mutant PDAC mouse model.  

(E) Western analysis with the indicated antibodies of tissue biopsy collected from Kras;p53 mutant mice 
treated with Selumetinib (E), or placebo (vehicle). Two independent and representative samples are 
shown.  

(F) Quantitative real-time qPCR (qRT-PCR) analysis of SETD5 expression in control (vehicle) and PDAC 
cell lines cultured to be resistant to Binimetinib, Pimasertib, Selumetinib and trametinib. Error bars 
represent mean ± SD from three independent experiments, **p < 0.05, *** p < 0.001, n.s., not significant, 
by two-tailed unpaired Student’s t test.  

(G) Western blot analysis of SETD5 expression in cells in (F). A representative sample for each condition 
is shown. Detailed cell treatment condition description in STAR Methods. 

(H) Confirmation of successful induction of CreER-mediated recombination of Setd5LoxP/LoxP allele upon 
tamoxifen administration by PCR on DNA isolated from tumor biopsy, two independent and representative 
samples are shown for each treatment group. 

(I) Representative HE-stained sections and immunohistochemical staining of pancreas tissue from dual 
recombinase mouse model of PDAC treated with Tamoxifen, MEKi or placebo (vehicle), (representative of 
n = 9 mice for each experimental group). Scale bars, 50 µm. 
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Supplementary Figure 3. SETD5 lack intrinsic histone methyltransferase activity. Related 
to Figure 3. 
(A) Amino acid sequence alignment of the SET domain of human SETD5 with its most similar family 
member, the catalytically inert MLL5, and SETD2, NSD1, NSD2 and NSD3 – four validated H3K36 lysine 
methyltransferases. Boxed and asterisk denoted areas indicated conserved SAM binding sites found within 
all known active SET enzymes (and not conserved in SETD5 and MLL5). 

(B) SETD5 does not methylate H3K36. Coomassie stain of human SETD5 (aa 1-415), murine SETD5 (aa 
1-423) and SET domain of SETD2 (SETD2SET) purified from E. coli (left panel). These proteins were used 
for in vitro methylation reactions with poly-nucleosomes (rNucpoly, H3.3) as substrates as described in 
(Sessa et al., 2019). H3K36me1/2/3 were detected by western blots. Asterisk indicates cleaved H3 found 
in commercial poly-nucleosome. 

(C-F) Full length SETD5 purified from insect cells has no histone methylation activity, in contrast to 
established KMTs. The purified SETD5 protein from insect cells (C) was used for in vitro methylation 
reactions with recombinant nucleosomes as substrates. Histone methylation states were detected by 
western blots with the indicated antibodies. SET domain of NSD2 (NSD2SET) (D) and MLL4 complex 
(MLL4com) (E) were purified from E. coli, PRC2 complex (F) were purified from insect cells. 

(G) Representative tandem mass spectra identifying non- (Kme0), mono- (Kme1), di- (Kme2), tri-methylation 
(Kme3) of H3K9 methylated by SETD5com in vitro using S-adenosyl-methionine (SAM) as methyl donor and 
digested with trypsin (as in Figure 3E). m/z for b and y ions observed in spectra were indicated in blue and 
red, respectively.  

(H) SETD5 complex has no activity on other histone H3 lysines including no activity on H3K36. Samples 
(as in F) were analyzed by selected ion chromatograms for non-, mono-, di- and tri-methyl histone H3 
peptides. HPLC elution profiles show a 10 ppm mass window around expected peptide masses, peptide 
sequences flanking potential lysine methylation sites are provided for each panel.  

(I) SETD5 does not methylate any protein on a ProtoArray. Representative image (n = 2 independent 
experiments) showing a SETD5 in vitro methylation reaction on protein arrays (ProtoArray - containing 
more than 9,000 potential substrates) using 3H-SAM as methyl donor. Full length SETD5 was purified from 
insect cells. 

(J) SETD5 does not show any methylation on proteins in nuclear extracts. In vitro methylation reactions 
on nuclear extracts of Panc1 cells separated by size-exclusion chromatography as substrates. SETD5SET 
(aa 1-520) purified from E. coli. was used as enzyme, 3H-SAM as methyl donor. The appearance of a band 
specific to SETD5SET but not present in the no enzyme control would indicate a potential substrate but such 
a band is not seen.  
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Supplementary Figure 4. HDAC3 is converted into a highly selective deacetylase in the context of 
SETD5com. Related to Figure 5. 
(A-I) Screening of histone deacetylation activity of rHDAC3 complex or SETD5com on a library of 
recombinant nucleosomes designed to harbor a single acetylation modification at specific sites as 
substrates. Histone acetylation states were detected by western blots with the indicated antibodies: 
H4K5ac (A), H4K8ac (B), H4K12ac (C), H4K16ac (D), H3K4ac (E), H3K14ac (F), H3K23ac (G), H3K27ac 
(H) and H3K36a (I). See also Figure 5G-H. 
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Supplementary Figure 5. SETD5 forms a complex with HDAC3 and G9a in KPCR cells and SETD5 
does not physiologically regulate H3K36 methylation. Related to Figure 3 and Figure 6. 
(A) Western analysis with the indicated antibodies of SETD5com isolated from KPCR cell nuclear extracts 
and separated on a Superose 6 HR gel filtration column. The fraction numbers are indicated and protein 
molecular mass standards relative to fractions are indicated by arrows.  

(B) Western analysis with the indicated antibodies of whole cell lysates of PDAC cells isolated from 
Kras;p53 (control) and Kras;p53;Setd5 mutant mice (see also Figure S2). Two independent and 
representative samples are shown for each genotype. Note that there is no change in H3K36me3 levels.  

(C-E) Western analysis with the indicated antibodies of whole cell lysates of KPCR mouse PDAC cells (C), 
embryonic hippocampal neurons (D) or neuron stem cells (NSC) (E) depleted using CRISPR-Cas9/sgRNA 
for SETD5 (sgSETD5), SETD2 (sgSETD2) or control (sgControl). SETD2, a known H3K36me3 
methyltransferase serves as positive control of H3K36me3 methylation. A representative sample for each 
condition is shown. Note that SETD5 depletion has no impact on H3K36 methylation. NSCs were used in 
Figure 8E in (Sessa et al., 2019). 

(F) Western analysis with the indicated antibodies of WCEs from KPCN and KPCR cells shows increased 
levels of SETD5 but not SHOC2 proteins in MEKi-resistant PDAC cells. 

(G and H) SHOC2 depletion sensitizes KPCN cells, but not KPCR cells, to MEK inhibition. (G) KPCN cells 
treated as indicated with trametinib and (H) KPCR cells cultured in the presence of 0.2 μM trametinib were 
transfected with the indicated siRNA pools (siControl and siSHOC2). 48 hours later, a portion of cells was 
harvested for Western analysis (left panel) and for proliferation assay (right panel), which is shown as 
relative fold change over siControl. Error bars represent mean ± SD from three independent experiments. 
***p < 0.001, n.s., not significant, two-tailed unpaired Student’s t test.  
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Supplementary Figure 6. Small molecule inhibitors of G9a and HDAC3 phenocopy SETD5 loss. 
Related to Figure 6 and Figure 7. 
(A) Quantitative real-time PCR analysis of expression of SETD5 regulated genes in SETD5-deficient 
(sgSETD5) versus control (sgControl) KPCR cells. The real-time qPCR data were normalized to Actb and 
presented as fold changes of gene expression. Error bars represent mean ± SD from three independent 
experiments. *p < 0.05, **p < 0.01, ***p < 0.001, n.s., not significant, by two-tailed unpaired Student’s t-
test.  

(B) N-acetyl-L-Cysteine (NAC) partially restores the levels of GSH in SETD5-depleted KPCR cells to levels 
observed in control KPCR cells. SETD5-depleted KPCR cells were treated with 1 mM NAC and GSH levels 
were determined as described in Figure 6H. Error bars represent mean ± SD from three independent 
experiments. ***p < 0.001, two-tailed unpaired Student’s t test.  

(C) NAC treatment partially rescues proliferation of SETD5-depleted KPCR cells to the proliferation rate of 
control KPCR cells. Error bars represent mean ± SD from three independent experiments. ***p < 0.001, 
n.s., not significant, two-tailed unpaired Student’s t test.  

(D) ChIP-qPCR analysis of SETD5, H3K9ac and H3K9me2 at the GM3776 (Glutathione S-transferase) 
gene regulatory regions (p1 and p2) in control (sgControl), SETD5-deficient (sgSETD5) or complemented 
with CRISPR-resistant wild-type SEDT5 (sgSETD5 + SETD5) KPCR cells. The data are plotted as percent 
enrichment relative to input. Error bars represent mean ± SEM from three independent experiments. **p < 
0.01, ***p < 0.001, n.s., not significant, by two-tailed unpaired Student’s t-test.  

(E) Volcano plot representing DEGs (differentially expressed genes) in RNA-seq data comparison between 
control (MEKi treated) and TripleTx treated KPCR cells (three biological replicates for each condition). 
Detailed cell treatment condition description in STAR Methods. The red dots represent 452 upregulated 
DEGs caused by TripleTx (fold change log2 ≤ -0.5, p < 0.05 by Wald test), green dots represent 320 
downregulated DEGs caused by TripleTx (fold change log2 ≥ 0.5, p < 0.05 by Wald test), and grey dots 
represent non-DEGs. False discovery rate (FDR) values are provided (detailed description in STAR 
Methods). 
(F) The most significantly enriched KEGG terms associated with the genes upregulated (452 genes) by 
TripleTx treated in KPCR cancer cells. 

(G) GSEA analysis of RNA-seq data of MEKi treated SETD5 ablated (sgSETD5+MEKi) versus control 
(sgControl+MEKi) and TripleTx treated versus control (MEKi) KPCR cells. FDR values are provided 
(detailed description in STAR Methods). 

(H) Quantitative real-time PCR analysis of expression of SETD5 regulated genes in TripleTx versus control 
(MEKi) KPCR cancer cell line. The real-time qPCR data were normalized to Actb and presented as fold 
changes of gene expression. Error bars represent mean ± SD from three independent experiments. **p < 
0.01, ***p < 0.001, n.s., not significant, by two-tailed unpaired Student’s t-test. 

(I) Venn diagram showing the overlap between downregulated genes in SETD5 depletion and TripleTx 
therapy in MEKi resistant KPCR cancer cells. p value by hypergeometric test. 
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Supplementary Figure 7. Combined inhibition of MEK and the histone-modifying activities 
associated with SETD5 leads to sustained suppression of PDAC growth in PDXs and mouse 
models. Related to Figure 7. 
(A) Proliferation for eight days of KPCR cells treated with MEKi, MEKi + G9ai, MEKi + HDAC3i or TripleTx. 
Error bars represent SD from three independent experiments. ***p < 0.001, by two-tailed unpaired 
Student’s t-test.  

(B) Representative HE and immunohistochemistry staining for phospho ERK1/2 (pERK1/2) a marker of 
MEK1/2 inhibition, Ki67, a marker of proliferation, cleaved Caspase 3 (cl. Caspase3) a marker of apoptosis 
(arrowheads), in control and G9ai + HDAC3i, MEKi and combination treated (TripleTx) Kras;p53 mutant 
mouse model of PDAC. Scale bars, 50 µm 

(C and D) Quantification of proliferation (Ki67 positive cells) (C) and cleaved Caspase 3 (cl. Caspase3) (D) 
a marker of apoptosis in Kras;p53 mutant mice treated with MEKi, G9ai + HDACi or combination (TripleTx), 
(n = 8 for each experimental group). Boxes: 25th to 75th percentile, whiskers: min. to max., center: median; 
arrowheads, positive cleaved Caspase 3 cells; *p < 0.033, **p < 0.002; ***p < 0.0001 by two-way ANOVA 
with Tukey’s testing for multiple comparisons.  

(E) Western analysis with indicated antibodies of tumor biopsies from Kras;p53 mutant mice treated with 
MEKi, G9ai+HDACi, combination (TripleTx) or vehicle (control). Each treatment group represents two 
biological replicates. 

(F) Tumor volume quantification for patient derived PDAC xenografts treated with MEKi, G9ai+HDACi, 
TripleTx or vehicle (control). (n = 8 mice for each treatment group). Data are represented as mean ± SEM. 
*p < 0.033, **p < 0.002; ***p < 0.0001 by two-way ANOVA with Tukey’s testing for multiple comparisons. 

(G) Kras;p53 mutant mice weight changes in the course of treatment (n = 8, for each experimental 
condition). Note that control animals lose weight as a consequence of increased tumor burden (cachectic 
state); arrowheads indicate the last measurements that could be performed on animals in the indicated 
treatment arm. **p < 0.01; ***p < 0.001; by two-tailed unpaired Student’s t-test. 

(H) Model of the role SETD5 plays at coordinating histone-modifying activities to regulate a gene 
expression program that mediates adaptive resistance to MEKi therapy. 

  



Table S2. Identification of SETD5 interactions by mass spectrometry. Related to Figure 3. 
 
V5-SETD5-Flag with PreScission Protease cutting site between V5 and SETD5 was tandem-affinity 
purified (TAP) from 293T cells with V5 and Flag antibody affinity beads. After elution from beads, material 
was separated by 10% SDS polyacrylamide gel electrophoresis (SDS-PAGE) and silver stained. Proteins 
in gel slice of ~170 kd were excised, digested with trypsin and analyzed by mass spectrometry. 
Contaminant signals were removed and only proteins with 2 or more peptides detected are shown.  
 
 

Protein IDs Peptides 
detected 

Sequence 
length 

SET domain-containing protein 5 12 1442 
Histone-lysine N-methyltransferase G9a 7 1210 
Alpha-enolase 3 434 
Histone H2A type1-J 3 128 
Heterogeneous nuclear ribonucleoproteins A2/B1 2 353 
Histone H2B type F-S 2 126 
Moesin 2 577 
Plastin-2 2 627 

 
  




