
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

In this study, the authors present a systematic benchmarking of six tools for the detection of CpG 

methylation using Nanopore sequencing. Based on the evaluation, they also proposed a consensus 

approach (METEORE) to improve accuracy over individual tools. The benchmarking includes evaluation 

using individual reads, control mixtures of methylated and unmethylated reads, and Cas9-targeted 

sequencing and whole-genome bisulfite sequencing. The evaluation of the tools can help understand 

and improve the prediction of CpG methylation using Nanopore reads. I have two major concerns: 

Major Concerns:: 

1. The performance of METEORE, which combined DeepSignal and Megaloddon, did not improve much 

comparing with those of original DeepSignal and Megaloddon tools. 

2. The evaluation of the correlation of CpG prediction using WGBS data and different coverages of 

Nanopore reads did not make sense. What the authors used is of the different levels of coverages, but 

the coverage > minimum coverage. Figure 4, supplemental Figure 9 and 10 using “Nanopore 

coverage” as X-axis is confusing. With more coverage of Nanopore reads, the correlation of CpG 

prediction using WGBS and Nanopore reads should increase. The performance decreasing in Figure 4, 

supplemental Figure 9, and 10 are due to the fewer CpG reads covered by high coverage reads. To 

demonstrate the correlation of CpG prediction using WGSB and different coverage of Nanopore reads, 

the authors should sample different coverage of Nanopore reads and make the prediction, as did in 

DeepSignal paper. 

 

some minor comments: 

1. On page 4 “p-value < 2.2.e-16 for all tools”, how were the p-values calculated? 

2. On page 4, “Supp. Table 2” was quoted 2 times, and it seems that either the two quotes are the 

same (there is no need to quote/repeat the sentence twice), or one of them is not quoted 

appropriately. 

3. On page 17, “bi-sulfite” should be “bisulfite”, to be consistent with the whole manuscript. 

4. On page 18, the methylation LLR threshold of Nanopolish has changed from 2.5 to 2.0 since 

v0.12.0. The authors should check the actual threshold used in their analysis. 

5. The analysis results of Megalodon in Supp. Fig. 8b and Supp. Table 7 are not the same. The authors 

should check which one is right. 

6. How did the N in Table 1 obtain? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

I have no comments on the paper. Its a nice study on comparison of tools for detection of methylation 

using nanopore sequencing data. The findings are reasonable and I believe would be useful to 

sequencing centers and researchers in this area. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

In this manuscript, the authors set out to benchmark software for calling 5-methylcytosine (5mC) 

base modifications from Nanopore data. They compare six state-of-the-art software tools, and, 

unsatisfied with the accuracy provided, created their own 5mC calling pipeline (METEORE) by 

combining two or more of these six tools. Then then went on to evaluate this against the other tools in 

both the E. coli genome and targeted locations in the human genome. 

 

Notably, the authors: 



A. Created a pipeline that standardizes inputs and outputs so that different tools can be easily 

compared. This also helps METEORE to be more effectively used in the future. 

B. Created a clever test set for their bakeoff analyses but using publicly available “100% methylated” 

reads to create different methylated proportions. 

C. Performed comparisons between the tools including how different methylation calling cutoffs affect 

tool performance. 

D. Applying their tool and their analyses to human data. 

 

However, I still have some significant problems with the analysis: 

1. Small point - megalodon is also a neural net based model - after anchoring the data to the 

reference, the tool uses the neural net Guppy output and viterbi decoding to find the best path to 

classify modifications (if I’m not mistaken) 

2. Figure 2 was . . . hard to parse, I think because of the number of different things being plotted on 

the same graph. 2A for example it is easy to see the dispersion (of nanopolish for example), but hard 

to see the linearity. I’d consider breaking this into separate plots for clarity, or putting some of it in 

the supplement to make the most critical points. A box-plot instead of violin may allow more clarity. 

2b-d I’d suggest some sort of ecdf plot or other line based plot instead of bars - the bars just take up 

space when you could have lines to show the data just as well. 

3. Are the authors using map quality scores for filtering the aligned reads - this is a stringent cutoff in 

some tools, but not in others and could easily affect the quality of the resulting calls. 

4. Choice of CpGs for analysis: 

a. The majority of the benchmarking in the manuscript is based on 100 “random” CpGs from the E. 

coli genome. As the authors are no doubt aware, nanopore sequencing derives its signal from a k-mer 

based model, with (presumably) some k-mers performing better than others. The size of the signal 

window is even different between the different tools. This can result in some tools performing better 

and worse in different areas. This is exemplified by the fact that the authors found different numbers 

on the second set of 50 CpGs, but the k-mer contexts of these CpGs are not clear(comparing Figure 

2A to Figure 3E). 

b. While some of these differences are small, the authors use small differences to claim that their tool 

outperforms all other tools (“METEORE RF combining Megalodon and DeepSignal achieved lower RMSE 

compared with the individual tools (Fig. 3e)”; page 9). For example the difference between 

DeepSignal for mixture 1 and mixture 2 is larger than the difference between METEORE RF and 

Megalodon in mixture 2. It is not clear to me why the authors can’t analyze the entire singleton set of 

the E. Coli genome? 

c. The CGs discussed are also profiled by Illumina bisulfite sequencing data in Simpson et al, with that 

data provided in ENA, the authors should consider examining the exact bisulfite provided methylation 

levels rather than estimating since they are looking at specific CGs. 

d. Failing this, or even in preference to it, Simpson et al also contains a PCR amplified and M.SssI 

treated GM12878 control set which could provide another control set with even more k-mer contexts. 

This might be useful to demonstrate the performance on a human genome - the putative end goal. I 

know the authors used the targeted human data later to evaluate, but this is not the same as a more 

agnostic evaluation (more on the targeted data later) 

e. The authors specifically test the performance of their tool on singleton CGs, i.e. CGs with no other 

CG within 10 bases up or downstream. This is fair to eliminate signal from other nearby CGs, but 

presumably is a very different evaluation than operation on a human genome, with relatively dense 

CGs in CGI (for example). 

f. This all fits into the point: Identifying k-mers where a tool performs better or worse would be very 

useful. 

5. The authors have developed a combination of tools to call methylation - trying to improve on the 

weaknesses of any given tool with either linear regression or random forest on the outputs. Ideas like 

this already exist for structural variants (e.g. Parliament), but in theory this could provide improved 

accuracy in methylation calling. But the authors do not assess concerns of runtime/resources; many of 

the tools the authors list already have substantial runtime/hardware requirements - running more 

than one provides an additional burden. And seemingly for a small incremental improvement over 



megalodon alone. The authors need to make a clear point that adding another tool (even just deep 

signal) is “worth” the effort, because that isn’t clear from the current results. This should _especially_ 

be benchmarked on larger genomes - though the targeted sequencing is certainly a valuable 

application, whole genome methylation will also likely be an important application. 

6. I am confused by the optimum cutoff settings, especially in terms of Megalodon (the tool with the 

closest performance to METEORE). While the cutoffs improved general metrics of methylation calling, 

when you compare methylation percentages outside of the windows in Fig. 3f to Supplemental Fig. 

3c/3d, the optimized cutoffs for many of these tools made the tools _worse_ than default settings. 

Can you explain how an “optimized” setting would make the calls worse? It would be a worthwhile 

point to explain this in the paper as well. 

7. It is not 100% clear, but it seems in the bisulfite work that the authors are no longer requiring that 

the CGs be distant from each other? Given that it is more relevant to plot local CG density rather than 

just GC% per se. 

8. I like the comparison of METEORE to WGBS. However, I again believe that the authors should 

expand the analysis on the data at hand and dig into _where_ (i.e. what k-mers) have differences 

beyond just correlation and broad patterns at promoters. This would likely be very informative for 

those in the community going forward to understand the limitations of these tools. In this vein, it 

would be worthwhile to better visualize WGBS methylation percentages in Figures 5 and Supplemental 

11/12. It is difficult to see (grey lines) and that is probably the most relevant comparison in those 

figures. 

9. I’d be more interested in a faceted scatter plot of methylation versus bisulfite than the overall 

“binned” methylation shown in Figure 4a - I think the bins lose subtlety. 

10. On 4b: It seems like using the “filtered” read coverage for nanopolish and tombo provides a bit of 

a skewed picture of the coverage required to achieve correlation, since in reality you need a higher 

coverage (~60X) to get the 35X nanopolish coverage reported? I would suggest reporting the 

coverage of data _input_ into nanopolish instead. 

11. More on 4b - it seems that there is a big dip in correlation of both METEORE modes at 55X - and 

generally that higher coverage gives worse results? The authors do not offer an explanation for this, 

but I’d suggest this indicates some sort of further read quality or map quality filtering scheme should 

be applied for METEORE to prevent this. 

12. It’s somewhat surprising that nanopolish and METEORE (RF) (which uses megalodon and 

deepsignal) report higher methylation at the CGI for TPO than the other tools. Why don’t megalodon 

or deepsignal report higher methylation - I thought they were driving the METEORE results heavily. A 

zoom in of individual methylation calls in this region might be informative. A cursory examination 

suggests this could be allele-specific methylation in this region (0.5 methylation frequency). 

13. The authors should also plot WGBS coverage in these regions - WGBS is far more subject to 

variable coverage than the nanopore sequencing because of the resulting GC bias, especially (I 

believe) the older WGBS dataset they are drawing from. 

14. Small point - I wonder about the bandwidth of the loess being used in Figure 5, since the curves 

look . . . pretty smooth. I’d be interested in seeing the points. 



ANSWERS TO REVIEWERS’ COMMENTS (in blue) 
 
Reviewer #1 (Expertise: Nanopore technologies for DNA sequencing/DNA modification 
prediction): 
 
In this study, the authors present a systematic benchmarking of six tools for the detection of 
CpG methylation using Nanopore sequencing. Based on the evaluation, they also proposed a 
consensus approach (METEORE) to improve accuracy over individual tools. The benchmarking 
includes evaluation using individual reads, control mixtures of methylated and unmethylated 
reads, and Cas9-targeted sequencing and whole-genome bisulfite sequencing. The evaluation 
of the tools can help understand and improve the prediction of CpG methylation using Nanopore 
reads. I have two major concerns: 
 
Major Concerns: 
 
1. The performance of METEORE, which combined DeepSignal and Megaloddon, did not 
improve much comparing with those of original DeepSignal and Megaloddon tools. 
 
We agree that this is true for Megalodon. However, Megalodon is much slower than the other 
methods on a CPU. In contrast, Nanopolish and Tombo are the fastest 5mC callers on a CPU, 
but their individual accuracy is low.  
 
Nanopolish is very popular because it only requires the fastq file after basecalling, which is 
readily produced by the Minknow software. This ease-of-use is contrasted with a low accuracy, 
as we have shown in the manuscript. The advantage of METEORE is that this low accuracy can 
be improved when combined with a second method. METEORE also provides snakemake 
pipelines to make it easy to run all the methods.  
 
Additionally, for methylation mixes, the combination with METEORE (DeepSignal + Megalodon) 
had the lowest proportion of sites outside the 10% window (Fig. 3f), and much lower than 
DeepSignal or Megalodon individually. This is important, as intermediate methylation levels are 
hard to predict in general.  
 
In our manuscript, we argue that METEORE provides a way to combine fast CPU-based 
methods to reach an accuracy comparable to Megalodon. We have tried to make this point 
more clear in the discussion section. 
 
 
2. The evaluation of the correlation of CpG prediction using WGBS data and different coverages 
of Nanopore reads did not make sense. What the authors used is of the different levels of 
coverages, but the coverage > minimum coverage. Figure 4, supplemental Figure 9 and 10 
using “Nanopore coverage” as X-axis is confusing. With more coverage of Nanopore reads, the 
correlation of CpG prediction using WGBS and Nanopore reads should increase. The 
performance decreasing in Figure 4, supplemental Figure 9, and 10 are due to the fewer CpG 



reads covered by high coverage reads. To demonstrate the correlation of CpG prediction using 
WGSB and different coverage of Nanopore reads, the authors should sample different coverage 
of Nanopore reads and make the prediction, as did in methyltransferase paper. 
 
In our original analysis, we tried to provide useful information about how to select the sites 
based on the measured coverage in an experiment. We agree that the suggested analysis is 
better to obtain a balanced estimate of the accuracy in terms of coverage. We thus performed 
the suggested analysis using the data from Gilpatrick et al. We subsampled reads to build 
datasets with coverage 5x, 10x, 20x, 50x for the CpG sites. As suggested by the reviewer, the 
correlation improves with coverage. The results of this analysis are now shown in Supp. Table 
8: 
 
Supp. Table. 8. Pearson correlation values of methylation frequencies obtained from Nanopore 
reads and bisulfite sequencing under different read coverages. 

 5x 10x 20x 50x 

Nanopolish 0.7307 0.7719 0.7828 0.7905 

DeepSignal 0.7851 0.8149 0.8206 0.8294 

Megalodon 0.7999 0.8226 0.8292 0.8371 

Guppy 0.6757 0.7161 0.7432 0.7545 

Tombo 0.6281 0.6655 0.6892 0.7028 
 
Furthermore, to improve the clarity of our figures, the labels for the x-axis for Fig. 4b, 4c, Supp. 
Fig. 9b, 9c and 10 were changed to “Minimum nanopore input coverage” (see also answer to 
reviewer 3’s point 10). 
 
some minor comments: 
1. On page 4 “p-value < 2.2.e-16 for all tools”, how were the p-values calculated? 
 
We used the cor.test() function in R which outputs both the correlation coefficient and the p-
value (significance level) of the correlation. The p-value is calculated using the t-test for N-2 
degrees of freedom, where N represents the number of points. This is the level of resolution of 
the test. We are indicating that the p-value is smaller than that. 
 
cor.test() is part of the stats package from R, so we cited the R project in the paper: 
R Core Team (2020). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.  
 
2. On page 4, “Supp. Table 2” was quoted 2 times, and it seems that either the two quotes are 
the same (there is no need to quote/repeat the sentence twice), or one of them is not quoted 
appropriately. 



 
We have deleted one of the sentences.  
 
3. On page 17, “bi-sulfite” should be “bisulfite”, to be consistent with the whole manuscript. 
 
We have corrected this typo.  
 
4. On page 18, the methylation LLR threshold of Nanopolish has changed from 2.5 to 2.0 since 
v0.12.0. The authors should check the actual threshold used in their analysis. 
 
We repeated the analysis of the mixture dataset 1 with Nanopolish using the 2.0 threshold. 
There are almost no differences in the results in comparison with the 2.5 threshold (see new 
Supp. Fig. 19). In particular, the high dispersion and high false positive rate observed before 
remains present with the 2.0 threshold. Accordingly, a change to 2.0 would not affect our 
conclusions. For this reason, and to keep it consistent with earlier published analyses, we have 
maintained the 2.5 threshold. We have indicated this explicitly in the Methods section.  
 
We have indicated in Methods that the default threshold has changed, and that we did not see 
major differences between both thresholds.  
 
5. The analysis results of Megalodon in Supp. Fig. 8b and Supp. Table 7 are not the same. The 
authors should check which one is right. 
 
Supp. Table 7 is the correct one. We have updated the results of Megalodon in Supp. Fig 8b.  
 
6. How did the N in Table 1 obtain? 
 
N is the number of observations in x and y variables and they were obtained from the correlation 
test ( cor.test() function in R), where N = degrees of freedom + 2. 
 
We have added a reference from R in the method section. 
 
Reviewer #2 (Expertise: Nanopore technologies for DNA sequencing/DNA modification 
prediction): 
 
I have no comments on the paper. Its a nice study on comparison of tools for detection of 
methylation using nanopore sequencing data. The findings are reasonable and I believe would 
be useful to sequencing centers and researchers in this area. 
 
We thank the reviewer for the positive and supportive comments. 
 
Reviewer #3 (Expertise: Nanopore technologies for DNA sequencing/DNA modification 
prediction): 
 



In this manuscript, the authors set out to benchmark software for calling 5-methylcytosine (5mC) 
base modifications from Nanopore data. They compare six state-of-the-art software tools, and, 
unsatisfied with the accuracy provided, created their own 5mC calling pipeline (METEORE) by 
combining two or more of these six tools. Then then went on to evaluate this against the other 
tools in both the E. coli genome and targeted locations in the human genome. 
 
Notably, the authors: 
A. Created a pipeline that standardizes inputs and outputs so that different tools can be easily 
compared. This also helps METEORE to be more effectively used in the future. 
B. Created a clever test set for their bakeoff analyses but using publicly available “100% 
methylated” reads to create different methylated proportions. 
C. Performed comparisons between the tools including how different methylation calling cutoffs 
affect tool performance. 
D. Applying their tool and their analyses to human data. 
 
We appreciate the reviewer’s positive evaluation of the value of our work and the helpful 
comments to improve the analysis and presentation of the data. 
 
However, I still have some significant problems with the analysis: 
1. Small point - megalodon is also a neural net based model - after anchoring the data to the 
reference, the tool uses the neural net Guppy output and viterbi decoding to find the best path to 
classify modifications (if I’m not mistaken) 
 
We have added this in the Methods section in the paragraph about Megalodon.  
 
2. Figure 2 was . . . hard to parse, I think because of the number of different things being plotted 
on the same graph. 2A for example it is easy to see the dispersion (of nanopolish for example), 
but hard to see the linearity. I’d consider breaking this into separate plots for clarity, or putting 
some of it in the supplement to make the most critical points. A box-plot instead of violin may 
allow more clarity.  
 
We consider that violin plots are more adequate to show distributions than boxplots in this case, 
as they capture better the density of points along the distribution. Fig. 2a shows in a succinct 
way several relevant features in the prediction of methylation. One of them is the high 
dispersion shown by most of the tools, which has been widely underappreciated in the context 
of methylation prediction with Nanopore reads.  
 
For improved clarity, we have included an additional plot (Supp. Fig. 2) only showing the 
correlation lines. 
 
2b-d I’d suggest some sort of ecdf plot or other line based plot instead of bars - the bars just 
take up space when you could have lines to show the data just as well. 
 



As Figures 2c and 2d depict the proportions of true negatives and false positives, respectively, 
for an increasing value of a threshold (methylation frequency), we agree that these are better 
represented as Empirical (or Estimator) of the Cumulative Distribution Function (ECDF) plots. 
The data from Figures 2c and 2d are now represented as ECDF plots, as suggested: 
 

 
 
We did not show an ECDF plot for Figure 2b as this data is not related to a changing threshold, 
i.e. there is not a changing range of values defined by a sliding cut-off to use for the cumulative 
distribution. It is rather showing a percentage in each individual mixture dataset.  
 
3. Are the authors using map quality scores for filtering the aligned reads - this is a stringent 
cutoff in some tools, but not in others and could easily affect the quality of the resulting calls. 
 
We are not imposing any additional filtering cutoff. All the tools used for benchmarking are using 
minimap2 as default aligner and we did not change the default setting for the tools. Although the 
discrepancy in the filtering criteria by the tools may affect the quality of the methylation call, we 
considered that each tool should address this in their underlying algorithm. For example, Tombo 
does not perform any filtering but does the requiggle with the raw signals and only considers the 
best matched reads. We run the tools with the default setting exactly as the typical user will do.  
 
This is how each tool processes the read data: 

● Nanopolish uses a mapping quality >=20 
● Tombo does not filter out any reads, but it performs a re-squiggling. 
● DeepSignal uses the re-squiggling algorithm from Tombo 
● Megalodon has no filter  
● Guppy filters based on the read alignment. From the documentation: “The minimum read 

coverage required to consider alignment a success. No alignment results below this 
threshold will be output. The default value is 0.6. If the aligner reports more than one 
possible alignment, only the best one is output. An alignment that covers less than 60% 
of the read or of the reference will be rejected.” 

● DeepMod uses a mapping quality >10 
 
 
4. Choice of CpGs for analysis: 
a. The majority of the benchmarking in the manuscript is based on 100 “random” CpGs from the 
E. coli genome. As the authors are no doubt aware, nanopore sequencing derives its signal 



from a k-mer based model, with (presumably) some k-mers performing better than others. The 
size of the signal window is even different between the different tools. This can result in some 
tools performing better and worse in different areas. This is exemplified by the fact that the 
authors found different numbers on the second set of 50 CpGs, but the k-mer contexts of these 
CpGs are not clear(comparing Figure 2A to Figure 3E). 
 
To study how sequence context might influence the prediction of methylation in datasets 1 and 
2, we first built sequence logos for each of these two sets of CG sites. Both datasets show 
similar sequence biases around the CG sites: 
 

Dataset 1 

 
Dataset 2 

 
 
These SeqLogos show the probability of each base (left panels) and the information content 
(right panels) for each position around the selected CGs, and have been added in the new 
Supplementary Figure 1.  
 
Although there is a difference in performance between the datasets 1 and 2, not all methods 
show decrease in performance for dataset 2 with respect to dataset 1. DeepSignal, which uses 
17-mers, shows a decrease in performance. Tombo and Nanopolish use 5-mers, and whereas 
Tombo has a slightly higher correlation in dataset 2, Nanopolish shows a marginal decrease. In 
contrast, Megalodon does not show differences between Datasets 1 and 2. To further 
investigate how sequence may affect the prediction accuracy, we have carried out a thorough 
analysis that is described under the points 4c and 4f below. 
 
 
b. While some of these differences are small, the authors use small differences to claim that 
their tool outperforms all other tools (“METEORE RF combining Megalodon and DeepSignal 
achieved lower RMSE compared with the individual tools (Fig. 3e)”; page 9). For example the 
difference between DeepSignal for mixture 1 and mixture 2 is larger than the difference between 
METEORE RF and Megalodon in mixture 2. It is not clear to me why the authors can’t analyze 
the entire singleton set of the E. Coli genome? 



 
Dataset 2 is used to perform an independent validation of the best combination of tools, which is 
estimated (i.e. “learned”) from dataset 1. The use of an independent dataset is needed here to 
validate the hypothesis that a specific combination of two tools improve over the individual tools.  
 
Dataset 2 is also used as an independent validation set for testing the new scores cut-offs 
(different from the default ones) that were estimated from the dataset 1.  
 
Megalodon shows a consistent accuracy across both sets, whereas other tools like Nanopolish 
and DeepSignal are not as consistent. However, the relevant comparison in relation to the 
accuracies of the methods is within each dataset rather than across datasets. In this regard, we 
show that using METEORE, DeepSignal accuracy can be improved when combined with a 
second tool. In fact, except for Megalodon, which already shows a high accuracy in both 
datasets, a combination of two methods improves over individual methods in general. 
 
We also considered the possibility that the M.Sssl treatment is not 100% effective, hence it may 
cause the observed variability. The analyses below (see answers for point 4c below) show that 
the prediction methods present high variability even at sites where methylation treatment 
(positive cases), or lack of methylation treatment (negative cases), is most efficient.  
 
c. The CGs discussed are also profiled by Illumina bisulfite sequencing data in Simpson et al, 
with that data provided in ENA, the authors should consider examining the exact bisulfite 
provided methylation levels rather than estimating since they are looking at specific CGs. 
 
To clarify the reviewer’s comment, in the paper we did not estimate or simulate the methylation 
levels. The control mixtures (datasets 1 and 2) were built using nanopore reads from two 
different sample controls, one unmethylated (PCR) and one that had been treated with M.Sssl 
(PCR+M.Sssl) (methylated) from Simpson et al. Therefore, in the paper we are not estimating 
the methylation level. Instead, we are using the individual reads from the two methylation 
controls to generate a ground truth for testing the tools.  
 

 
 
The unmethylated sample has a conversion rate of ~0.26% in the sites from the datasets 1 and 
2. The methylated sample shows an average conversion rate of >94% in both datasets. This 
suggests that not all sites may have 100% efficiency for M.Sssl treatment. To test whether this 



may explain the dispersion shown by the methods for dataset 1 and 2, we performed an 
additional experiment. We used reads from the unmethylated sample and considered only those 
sites that showed exactly 0% methylation in the bisulfite sequencing (in the same sample). 
These were considered to be the most reliable sites for 0% methylation. Similarly, we used 
reads from the methylated sample and only considered the sites that showed exactly 100% 
methylation in the bisulfite sequencing (in the same sample). These were considered to be the 
most reliable sites for 100% methylation. We calculated these two sets of sites for dataset 1 and 
dataset 2. For each one, we thus obtained two sets of reads and sites: one set of unmethylated 
reads and the most reliable sites for 0% methylation, and one set of methylated reads and the 
most reliable sites for 100% methylation. We then plotted the methylation frequency predicted 
by each method from these reads: 
 

 
We found that the tested methods showed a similar behaviour as in our analysis using all sites: 
Nanopolish and Tombo showed a high number of false positives but high recall for fully 



methylated sites, whereas Guppy and Megalodon had low false positive rates but high false 
negative rates; and all methods showed a high dispersion. This analysis has been added to the 
revised manuscript, and the plots above are now shown in Supp. Fig. 18.  
 
d. Failing this, or even in preference to it, Simpson et al also contains a PCR amplified and 
M.SssI treated GM12878 control set which could provide another control set with even more k-
mer contexts. This might be useful to demonstrate the performance on a human genome - the 
putative end goal. I know the authors used the targeted human data later to evaluate, but this is 
not the same as a more agnostic evaluation (more on the targeted data later) 
 
We have added a comprehensive analysis of k-mers and G+C content in relation to accuracy 
for each method in our answer to point 4f below.  
 
e. The authors specifically test the performance of their tool on singleton CGs, i.e. CGs with no 
other CG within 10 bases up or downstream. This is fair to eliminate signal from other nearby 
CGs, but presumably is a very different evaluation than operation on a human genome, with 
relatively dense CGs in CGI (for example). 
 
For the control mixture datasets (1 and 2) we analysed singleton CpG sites. However, for the 
comparison with bisulfite sequencing using nCATS, we used all the CpG sites regardless of 
context.  
 
Below, next to each graph shown in Fig. 5 with a CpG island (CGI), we show the LOESS 
smoothing line plots of the CGI region, and the SeqLogo for the sequence context of the CpG 
sites:  



 
 
---- 



 
---- 



 
---- 



 
 
These plots have been added as Supplementary Figure 15.  
 
f. This all fits into the point: Identifying k-mers where a tool performs better or worse would be 
very useful. 
 
To address this question, we calculated for each method the absolute value of the difference 
between the prediction made from the Nanopore reads and the WGBS for each CpG site, i.e. 
|Nanopore − WGBS|. In the plot below we show the mean absolute difference for each method 
(y-axis) for all different 8-mer sequences with a CpG in the center (XXXCGXXX) (x-axis), ranked 
from left-to-right in ascending order according to the average value across methods.   
 
!



 
 
This plot clearly indicates that there is a subset of CG-containing 8-mers in which all methods 
agreed with the WGBS (left side of the x axis), and a different subset where all methods most 
disagreed with WGBS (right side of the x axis). We selected the top and bottom 40 8-mers 
according to the average discrepancy across methods and found that Nanopore and WGBS 
disagreed the most at AT-rich k-mers (see the sequence logo below).  



 
This figure shows in the form of two SeqLogo’s, the sequence biases associated to the “bad” 
sites (upper panel) and “good” sites (lower panel), and indicates the sites that have a significant 
enrichment in any of the two sets with respect to the other one (read line). This was performed 
with the tool pLogo (O'Shea et al., 2013). The statistical comparison indicated that Nanopore 
and WGBS tend to disagree most at CG sites that occur in AT-rich 8-mer context (i.e. 
XXXCGXXX). 
 
To investigate the specific biases for each tool, we categorized the k-mers into “good” or “bad” 
for each tool based on their specific distributions of absolute values. We defined as good sites 
those with absolute difference of 0, whereas sites with absolute difference > 0.5 were 
considered bad.  

 
In the right panel of the figure, we show in the form of two SeqLogo’s, the sequence biases 
associated to the bad sites (upper panel) and good sites (lower panel). The statistical 
comparison showed no significant biases in relation to the discrepancy with WGBS. However, 
the test indicated that Nanopolish predictions agree most with WGBS when there is a G 
preceding the CG, i.e. XXGCGXXX. 
 



 
A similar comparison for DeepSignal showed that bad predictions are significantly associated 
with a T at position 1 of the 8-mers and with an A at position 8 of the 8-mer. 
  

 
For Megalodon, no significant association was found, although the logos indicate a possible 
association of an A at position 8 of the 8-mer with bad prediction, similarly to DeepSignal.  
 
 

 
Tombo showed a clear association of T+A rich sequences with bad predictions, and a clear bias 
for 8-mers of the form XXGCGCXX for good predictions.  



 

Guppy showed a significant association with T at position 1 and with G at position 6 for bad 
predictions, and an association to XXXCGCXX for good predictions.  
 

 
DeepMod showed a strong bias for T+A rich sequences in bad predictions, with significant 
enrichment at several positions.  
 

 



 
METEORE-RF and METEORE-REG, as used in the manuscript, show no significant biases. 
Only a trend of bad predictions in 8-mers with an A in the position 8, similar to Megalodon. 
 
These plogo plots have been added as Supplementary Figure 17. 
 
To further assess how the accuracy depends on the nucleotide content of the CG context, we 
separated all 8-mers into four groups according to the percentage of C or G (%C+G). We then 
plotted the distributions of the absolute differences, comparing the Nanopore prediction with the 
WGBS value, for each tool in each of these 8-mer groups:  

 
This plot indicates that for most of the tools, there are no strong biases with C+G content, 
except for Guppy and DeepMod, which we already observed in the analyses above. This plot 
has been included as Supp. Fig. 16. 
 
We performed a similar analysis using the actual sign of the difference (Nanopore - WGBS) 
rather than the absolute value. In this way, a positive value indicates the Nanopore methylation 
tool overpredict and a negative value indicates the tool underpredict compared with WGBS. 
Overall, the results were very similar to those reported above. We ranked the k-mers according 



to the average differences across methods: 

 
Overall there were more 8-mers with overpredictions, i.e. difference of Nanopore - WGBS > 0.5, 
than with underprediction, i.e. difference of Nanopore - WGBS < -0.5. The exception was 
Guppy, which had more 8-mers with underpredictions than overpredictions.  
 
Again, we identified statistically significant k-mers using pLogo (O'Shea et al., 2013). However, 
in some cases there were not enough occurrences of overprediction/underprediction for some 
tools to perform the test, so the sequence logos are not available in these cases. 



 
Nanopolish showed no significant biases comparing overprediction or underprediction vs good 
8-mers. 
 
 

 
DeepSignal showed a significant association with an A at position 8 for overpredictions. 
However, there were only 4 8-mers for underpredictions (difference between -0.5 and -1), so we 
could not perform the analysis.  



 
Overpredictions for Megalodon showed no significant biases, but the same high frequency of A 
at position 8 as before. There were only 2 8-mers of underprediction (between -0.5 and -1) so 
we could not perform the analysis.  
 

 

 
Tombo overpredictions showed the same biases found before. For underpredictions no 
significant biases were found. 



 
Guppy underpredictions showed a significant association with a G at position 6 and with a T at 
position 1. There were only two 8-mers with overprediction (>0.5 difference), so we could not 
make the statistical assessment.  
 
 

 

 
As before, METEORE (RF) and METEORE (REG) showed no biases. The underpredictions did 
not have enough 8-mers to perform the calculation.   
 
 



As before, we plotted the differences Nanopore - WGBS for four different 8-mer bins according 
to %C+G: 

 
There was a greater variability for DeepMod and Guppy across the bins, with a strong bias 
towards under prediction. Although there seemed to be more outliers for all tools at higher 
%C+G, the distributions appeared to be also narrower. 
 
Overall, we found that sequence biases associated with worse predictions are generally related 
to the overpredictions in comparison with WGBS, except for Guppy, which are linked to 
underprediction. Overall, most methods tend to overpredict methylation with respect to WGBS, 
and the majority of methods (DeepMod, Tombo, Guppy, DeepSignal) show some sequence 
bias.  
 
5. The authors have developed a combination of tools to call methylation - trying to improve on 
the weaknesses of any given tool with either linear regression or random forest on the outputs. 
Ideas like this already exist for structural variants (e.g. Parliament), but in theory this could 
provide improved accuracy in methylation calling. But the authors do not assess concerns of 
runtime/resources; many of the tools the authors list already have substantial runtime/hardware 
requirements - running more than one provides an additional burden. And seemingly for a small 
incremental improvement over megalodon alone. The authors need to make a clear point 
that adding another tool (even just deep signal) is “worth” the effort, because that isn’t 
clear from the current results. This should _especially_ be benchmarked on larger genomes - 
though the targeted sequencing is certainly a valuable application, whole genome methylation 
will also likely be an important application. 
 
We have expanded on this point in the discussion. The combination of Megalodon and 
DeepSignal presents a good balance for accuracy and running time in the case of GPUs. 
Without GPU support, the combination of Nanopolish and DeepSignal can achieve accuracy 
similar to Megalodon in a CPU-only environment, with good running times. This is based on our 
analyses provided in Supp. Table 13. 
 
6. I am confused by the optimum cutoff settings, especially in terms of Megalodon (the tool with 
the closest performance to METEORE). While the cutoffs improved general metrics of 
methylation calling, when you compare methylation percentages outside of the windows in Fig. 



3f to Supplemental Fig. 3c/3d, the optimized cutoffs for many of these tools made the tools 
_worse_ than default settings. Can you explain how an “optimized” setting would make the calls 
worse? It would be a worthwhile point to explain this in the paper as well. 
 
We have tried to clarify this in the text. We hypothesized that it would be possible to identify 
cutoffs for the tools, different from the default ones, that could improve their accuracy. The first 
strategy used was based on the score distributions and accuracy metrics on dataset 1. We 
identified the single score cutoff that would maximize TPR - FPR, or minimize FPR^2 + (1-
TPR)^2. The word “optimization” was used in the sense of finding this maxima or minima. In 
practice, this approach did not cause an improvement in some of the tools, due to how scores 
were distributed between positive and negative cases. The second strategy used was to identify 
a double cutoff and remove all reads with scores in between these two selected values. Here 
the aim was similar: trying to identify alternative score cutoffs that would improve the accuracy 
of the tools. We have rephrased the text to make it clearer.  
 
7. It is not 100% clear, but it seems in the bisulfite work that the authors are no longer requiring 
that the CGs be distant from each other? Given that it is more relevant to plot local CG density 
rather than just GC% per se. 
 
That’s correct. In the comparison with the bisulfite data, we are using all CG sites. We have 
compared tools across different % C+G as suggested (see our answers to the point 4f). We 
have also added in the Supplementary the plots of the comparisons with the bisulfite data 
indicating the CG sites on those regions. 
 
8. I like the comparison of METEORE to WGBS. However, I again believe that the authors 
should expand the analysis on the data at hand and dig into _where_ (i.e. what k-mers) have 
differences beyond just correlation and broad patterns at promoters. This would likely be very 
informative for those in the community going forward to understand the limitations of these tools. 
In this vein, it would be worthwhile to better visualize WGBS methylation percentages in Figures 
5 and Supplemental 11/12. It is difficult to see (grey lines) and that is probably the most relevant 
comparison in those figures. 
 
We have changed the grey line to black line for WGBS in Fig. 5 and Supplementary Figs.13, 14, 
and 15, for better visualization. Please see our answers to point 4f where we have answered the 
question about the k-mer contexts and GC biases.  
 
9. I’d be more interested in a faceted scatter plot of methylation versus bisulfite than the overall 
“binned” methylation shown in Figure 4a - I think the bins lose subtlety. 
 
We already had the scatter plots comparing the methylation detected by each tool with bisulfite 
(previous Supp. Figs. 6 and 8). We have now added the correlation bands to those plots as 
suggested (now in Supp. Figures 8 and 10). 
10. On 4b: It seems like using the “filtered” read coverage for nanopolish and tombo provides a 
bit of a skewed picture of the coverage required to achieve correlation, since in reality you need 



a higher coverage (~60X) to get the 35X nanopolish coverage reported? I would suggest 
reporting the coverage of data _input_ into nanopolish instead. 
 
For Fig 4b, 4c, Supp. Fig. 9b, 9c, 10a and 10b, we used the coverage data output reported by 
each tool. Some methods discarded sites in reads and so the resulting coverage reported by the 
tool was less than the corresponding coverage of Nanopore reads. We agree that we should 
report the input coverage calculated from the raw coverage per base from the input BAM file (x 
axis) and plot the correlation (y axis) as a function of it for Fig. 4b, Supp. Fig. 9b and 10a. 
Instead of plotting the number of sites in log2 scale on the y axis on Fig. 4c, Supp. Fig. 9c and 
10b, we present the mean coverage reported by each tested tool against the minimum input 
coverage. All these plots have been updated in the manuscript and supp. material.  
 
11. More on 4b - it seems that there is a big dip in correlation of both METEORE modes at 55X - 
and generally that higher coverage gives worse results? The authors do not offer an explanation 
for this, but I’d suggest this indicates some sort of further read quality or map quality filtering 
scheme should be applied for METEORE to prevent this. 
 
The drop in accuracy at high coverage thresholds (minimum coverage requirements) is due to 
the reduced number of sites available. We have added a sentence in the text related to that 
figure. We have also performed an new analysis of the Pearson correlations as a function of the 
coverage maintaining the number of sites constant (see Reviewer 1’s major point 2). These new 
results show that the correlations improve with increased coverage. 
  
12. It’s somewhat surprising that nanopolish and METEORE (RF) (which uses megalodon and 
deepsignal) report higher methylation at the CGI for TPO than the other tools. Why don’t 
megalodon or deepsignal report higher methylation - I thought they were driving the METEORE 
results heavily. A zoom in of individual methylation calls in this region might be informative. A 
cursory examination suggests this could be allele-specific methylation in this region (0.5 
methylation frequency). 
 
The higher values of Tombo, Nanopolish, and METEORE (RF) are likely due to the way their 
particular models handle high dispersion of methylation scores. METEORE (RF) consistently 
gives higher methylation call values than most other callers (see Supp. Fig. 13 and Supp. Fig. 
14). This is likely a combined result of the training data used, plus the number of available 
parameters and depth of the random forest model. Below we show a zoom in of individual 
methylation calls at the CGI for TPO region. 

 



 
 
We observe many outliers with WGBS methylation scores, but these appear evenly distributed 
above and below the LOESS fit line. This high dispersion will force down the average 
methylation frequency reported by WGBS. 
 
13. The authors should also plot WGBS coverage in these regions - WGBS is far more subject 
to variable coverage than the nanopore sequencing because of the resulting GC bias, especially 
(I believe) the older WGBS dataset they are drawing from. 
 
We used WGBS data from ENCODE (GM12878). This is the coverage for our nCATS regions 
we used in our analyses: 
 
 

 
 
This is the coverage for the nCATS regions from Gilpatrick et al. (2020) used in our analyses: 



 
 
 
14. Small point - I wonder about the bandwidth of the loess being used in Figure 5, since the 
curves look . . . pretty smooth. I’d be interested in seeing the points. 
 
We used the geom_smooth() function from ggplot2 that uses a default bandwidth of 80 points, 
and which was also used by Gilpatrick et al. 2020 (see script 
191006_plot_Methylation_flg_min_ill.R in https://github.com/timplab/Cas9Enrichment). 
Smoothing using the default bandwidth value also provides a clear description to the overall 
change of methylation along the regions. However, we are showing the points, as requested by 
the reviewer, in the plots provided in answer to 4e and 12 above (included in Supp. Fig 15). 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I would like to thank the authors for their detailed responses to my comments. The manuscript reads 

much better and is more clear than before. I only have some minor comments. 

1. In supplemental table 8, please also add the performance of METEORE under different levels of 

coverage. 

2. Since METEORE is a combination of DeepSignal and Megalodon, it is unclear how METEORE uses 

less CPU and Memory than both in supplemental Tabel 13. 

 

 

 

Reviewer #3: 

Remarks to the Author: 

The authors have fully addressed all of my major comments and I now support publishing this 

manuscript. The k-mer specific analysis is an especially valuable addition. The results are very 

interesting and we believe that they will be valuable to the community. The way the authors expanded 

upon some of the finer points of the analyses (CPU vs. GPU run time) was also nice. 

 

A few minor points: 

 

1. I would be interested in seeing the underlying data for the kmer analysis, especially for 

Supplemental Figure 16A (8-mers ordered by average dispersion). Can you include that data as a 

table in the Supplementary Data? 

2. Page 10 - “Combining the methylation predictions from both stands on CpG sites showed an 

improved correlation for all tools compared with using the methylation prediction independently for 

each strand (Supplementary Fig. 8). Using the combined methylation from both stands, all tools 

showed a positive correlation of the with WGBS signals (Table 1).” - Make sure “strand” is used 

throughout. It seems like this is the only spot of this error. 

3. Page 23 - Change “Bi-sulfite” to “bisulfite” - Double check all of these. It seems like this is the only 

remaining one. 



REVIEWERS' COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 
I would like to thank the authors for their detailed responses to my comments. The 
manuscript reads much better and is more clear than before. I only have some minor 
comments. 
1. In supplemental table 8, please also add the performance of METEORE under different 
levels of coverage. 
 
We have added the performance of METEORE (RF) and METEORE (REG) to the 
Supplementary Table 8. 
 
2. Since METEORE is a combination of DeepSignal and Megalodon, it is unclear how 
METEORE uses less CPU and Memory than both in supplemental Tabel 13. 
 
The CPU time and memory in Supplementary Table 13 is only the run of Meteore on two 
data files. We have clarified in the legend: “For METEORE, we only recorded the time 
needed for running a single Python script to make the per-read consensus predictions, which 
was independent of the two methods being combined. Here we used METEORE combining 
DeepSignal and Megalodon using a random forest (RF) (parameters: max_depth=3 and 
n_estimator=10) and a regression (REG) model, where both models took per-read prediction 
outputs generated from the selected tools. To estimate the overall CPU time and memory 
used, any two tools can be considered, plus the overhead of an additional step of 
METEORE.” 
 
 
Reviewer #3 (Remarks to the Author): 
 
The authors have fully addressed all of my major comments and I now support publishing 
this manuscript. The k-mer specific analysis is an especially valuable addition. The results 
are very interesting and we believe that they will be valuable to the community. The way the 
authors expanded upon some of the finer points of the analyses (CPU vs. GPU run time) 
was also nice. 
 
A few minor points: 
 
1. I would be interested in seeing the underlying data for the kmer analysis, especially for 
Supplemental Figure 16A (8-mers ordered by average dispersion). Can you include that data 
as a table in the Supplementary Data? 
 
It is provided in Supplementary Data 13.  
 
2. Page 10 - “Combining the methylation predictions from both stands on CpG sites showed 
an improved correlation for all tools compared with using the methylation prediction 
independently for each strand (Supplementary Fig. 8). Using the combined methylation from 
both stands, all tools showed a positive correlation of the with WGBS signals (Table 1).” - 
Make sure “strand” is used throughout. It seems like this is the only spot of this error. 



 
Thanks for pointing this out. We have corrected them. 
 
3. Page 23 - Change “Bi-sulfite” to “bisulfite” - Double check all of these. It seems like this is 
the only remaining one. 
 
Thanks for pointing this out. We have corrected it.  
 
 


