SUPPLEMENTARY INFORMATION

Sugar phosphate activation of the stress sensor eIF2B

Qi Hao¹, Jin-Mi Heo^{1,2}, Boguslaw P. Nocek³, Kevin G. Hicks⁴, Vincent S. Stoll³, Clint Remarcik¹, Sean Hackett¹, Lauren LeBon¹, Rinku Jain³, Dan Eaton¹, Jared Rutter^{4,5}, Yao Liang Wong^{1*}, Carmela Sidrauski^{1*}

¹ Calico Life Sciences LLC, South San Francisco, CA, USA

² Present address: Loxo Oncology at Lilly, South San Francisco, CA, USA

³ Research & Development, AbbVie, 1 North Waukegan Road, North Chicago, IL, USA

⁴ Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA

⁵ Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA

These authors contributed equally: Qi Hao and Jin-Mi Heo These authors jointly supervised this work: Yao Liang Wong and Carmela Sidrauski

* Correspondence: yao@calicolabs.com, carmela@calicolabs.com

CONTENTS Supplementary Figures 1-11. Supplementary Tables 1-2.

Supplementary Figure 1. Interactions of elF2B α with sugar phosphates. a Differential scanning fluorimetry of elF2B α in combination with selected metabolites in dose-response. Metabolite binding increased the T_m of elF2B α . Bars are mean ± standard deviation of n=4 independent experiments. b K_d of the elF2B α -M6P interaction measured by ITC. The upper subpanel shows the baseline-subtracted thermogram. The bottom subpanel represents the binding isotherm, with the red line indicating the fit curve.

Supplementary Fig. 2. **Structure and resolution determination of eIF2B-F6P. a** Per-particle distribution over azimuth and elevation angles using cryoSPARC v2. **b** Gold-standard Fourier shell correlations for the final density map, with a resolution of 2.9 Å. **c** Samples of 736,044 particle images selected by template matching after 2D classification, acquired at different orientations and 0° or 30° tilt. **d** Flowchart summary of cryo-EM processing steps from frame alignment to 3D reconstruction. C2 symmetry was imposed during homogenous refinement after two rounds of 3D classification and at all subsequent refinement steps.

Supplementary Figure 3. **Cryo-EM density maps for selected regions of eIF2B.** Cryo-EM density is depicted by the gray surface and the atomic model as green sticks. Density for F6P bound to the eIF2B α subunits is shown in the bottom right. Density for the two eIF2B ϵ subunits is significantly lower resolution than the overall value of 2.9 Å. Cryo-EM density for F6P and neighboring amino acids is well-resolved, allowing placement of a few solvent molecules (red spheres).

Sugar coordination Phosphate coordination

Tk RBPI	131 THCH SKAAISVMKTAWEQGKDIKVIVTETRPKWQG-KITAKELASYGIPV 179
Hs MTNA	166 THCN TGALATAGYGTALGVIRSLHSLGRLEHAFCTETRPYNQGARLTAFELVYEQIPA 223
Sc eIF2Bα	128 VHGYSRAVFSLLNHAANKFIRFRCVVTESRPSKQG-NQLYTLLEQKGIPV 176
Hs eIF2Bα	127 THAYSRVVLRVLEAAVAAKKRFSVYVTESQPDLSG-KKMAKALCHLNVPV 175
Hs eIF2Bβ	167 TIGFSRTVEAFLKEA-ARKRKFHVIVAECAPFCQG-HEMAVNLSKAGIET 214
Hs eIF2Bδ	335 VYGCSSLVSRILQEAWTEGRRFRVVVVDSRPWLEG-RHTLRSLVHAGVPA 383
Tk RBPI	180 I YVVDSAARHYMKM TDKVVMGADS I TVNGAV I NKIGTAL I ALTAKEHRVWTMI AAE 235
Hs MTNA	224 TL I TDSMVAAAMAHRGVSAVVVGADRVVANGDTAN KVGTYQLA I VAKHHG I PFYVAAP 281
Sc eIF2Bα	177 TL I VDSAVGAVI DK VDKVFVGAEGVAESGGI I NLVGTYSVGVLAHNARKPFYVVTE 232
Hs eIF2Bα	176 TVVLDAAVGYI MEK ADLVI VGAEGVVENGGI I NKIGTNQMAVCAKAQNKPFYVVAE 231
Hs eIF2Bβ	215 TVMTDAAI FAVMSR VNKVI I GTKTI LANGALRAVTGTHTLALAAKHHSTPLI VCAP 270
Hs eIF2Bδ	384 SYLLI PAASYVLPE VSKVLLGAHALLANGSVMSRVGTAQLALVARAHNVPVLVCCE 439
<i>Tk</i> RBPI	236 TYK FHPETMLGQLVEIEMRDPTEVIPEDELKTWPKNIEVWNPAFDVTPPEYV 287
<i>Hs</i> MTNA	282 SSSCDLRLETGKEIIIEERPGQELTDVNGVRIAAPGIGVWNPAFDVTPHDLI 333
<i>Sc</i> eIF2Bα	233 SHKFVRMFPLSSDDLPMAGPPLDFTRRTDDLEDALRGPTIDYTAQEYI 280
<i>Hs</i> eIF2Bα	232 SFKFVRLFPLNQQDVPDKFKYKADTLKVAQTGQDLKEEHPWVDYTAPSLI 281
<i>Hs</i> eIF2Bβ	271 MFKLSPQFPNEEDSFHKFVAPEEVLPFTEGDILEKVSVHCPVFDYVPPELI 321
<i>Hs</i> eIF2Bδ	440 TYKFCERVQTDAFVSNELDDPDDLQCKRGEHVALANWQNHASLRLLNLVYDVTPPELV 497

Supplementary Figure 4. Sequence alignment of elF2B α and its homologs supports the structural model of residues critical for metabolite binding. a Protein sequences of human elF2B α , elF2B β and elF2B δ were aligned with human methylthioribose-1-phosphate isomerase (MTNA), *T. kodakarensis* ribose-1,5-bisphosphate isomerase (RBPI) and *S. cerevisiae* elF2B α using MUSCLE. Only the region immediately encompassing the elF2B α ligand-binding pocket is shown. Sugar-coordinating and phosphate-coordinating residues based on the elF2B-F6P structure are indicated in green and orange, respectively. **b** elF2B($\beta\delta\gamma\epsilon$) does not interact with F6P, as measured by ITC. **c** elF2B α does not interact with G1P, as measured by ITC. In **b** and **c**, the upper subpanel shows the baseline-subtracted thermogram. The bottom subpanel represents the binding isotherm. No curves were fit due to lack of detectable binding.

Supplementary Figure 5. **2Fo-Fc density for M6P bound to eIF2B** α **.** Density is shown at 1 σ (purple mesh) for all chains in the asymmetric unit of the unit cell.

Supplementary Figure 6. 2.7 Å X-ray crystal structure of elF2B α in complex with M6P (PDB 7MKA). a Overall structure of the elF2B α -M6P complex, with each protomer bound to one molecule of M6P. One elF2B α protomer is colored teal and the second protomer is colored cyan. The α -helical domain and the Rossmann fold-like domain are indicated. M6P is shown as space-filling spheres. **b** M6P recognition through H-bonds contributed by surround-ing residues. M6P is shown as green sticks. The residues coordinating M6P are represented as cyan sticks, with H-bonds represented by dashed yellow lines.

Supplementary Figure 7. Superposition of sugar phosphate-bound elF2B structures with apo structures. a Apo elF2B α (PDB 3ECS) aligned to our structure of M6P-bound elF2B α (PDB 7KMA) with rmsd = 0.44 Å. M6P is shown in stick representation and SO₄ molecules occupying the sugar phosphate binding site in the apo structure are shown as spheres. **b** M6P-bound elF2B α aligned to elF2B α from the holoenzyme structures (our F6P-bound structure; PDB 7KMF and the apo holoenzyme; PDB 7D46) with rmsd < 0.9 Å. **c** Zoomed-in view of the β -sheet rich domain of one elF2B ϵ subunit, showing an inward movement towards the elF2B α subunit (shown in surface representation) in the F6P-bound structure.

Supplementary Figure 8. Sugar phosphate identity dictates its ability to enhance eIF2B decamer formation and activity. a GDP release $t_{1/2}$ in a GEF assay using recombinant wild-type eIF2B. Activity is stimulated by ISRIB (red), but not G1P (blue). Bars are mean ± standard deviation of n=3 independent experiments of 3 technical replicates each. Statistical significance was tested by one-way ANOVA with Dunnett's multiple testing correction. b eIF2B complex assembly from wild-type HEK293T lysate treated with G1P was monitored by sucrose gradient centrifugation. Fractions from the sucrose gradient were subjected to SDS-PAGE followed by immunoblotting with the indicated antibodies. eIF3a was used as an internal control. c Quantification of b normalized by total intensity of each subunit in its respective gradient. Data shown are representative of 2-3 replicates of each experiment. In b and c, dashed red lines demark the boundary of the decameric eIF2B peak. G1P did not promote eIF2B decamer formation. d K_d of the eIF2B α^{E198K} -F6P interaction measured by ITC. The upper subpanel shows the baseline-subtracted thermogram. The bottom subpanel represents the binding isotherm, with the red line indicating the fit curve. e Antibody-based quantification of eIF2B subunits from HEK293T lysates of wild-type and eIF2B α^{E198K} cells. For each subunit, the signal was normalized to wild-type subunit levels. Data from 2 biological replicates are shown.

Supplementary Figure 9. **F6P only enhances elF2B complex stability in the presence of elF2B** α , whereas **ISRIB functions in the absence of elF2B** α . **a** Size-exclusion chromatograms of purified recombinant elF2B($\beta\delta\gamma\epsilon$) in the absence or presence of ISRIB (blue) or F6P (green). The elution positions of the ($\beta\delta\gamma\epsilon$)₂ octamer and ($\beta\delta\gamma\epsilon$) tetramer are indicated. **b** Size-exclusion chromatograms of purified recombinant elF2B($\beta\delta\gamma\epsilon$) + elF2B α_2 in the absence or presence of ISRIB or F6P. The elution positions of the ($\alpha\beta\delta\gamma\epsilon$)₂ decamer, ($\beta\delta\gamma\epsilon$) tetramer and α_2 dimer are indicated. In **a** and **b**, traces are representative examples of at least 2 experiments. **c** GDP release $t_{1/2}$ in a GEF assay using recombinant wild-type elF2B. Activity is stimulated by ISRIB and F6P, but the combination of both (orange) is not additive. Bars are mean ± standard deviation of n=3 independent experiments of 3 technical replicates each. Statistical significance was tested by one-way ANOVA with Dunnett's multiple testing correction.

Supplementary Figure 10. **ISRIB, but not F6P, antagonizes p-eIF2** α **binding to eIF2B. a** Co-immunoprecipitation of phospho-eIF2 α from HEK293T cells endogenously expressing FLAG-tagged eIF2B β and stressed with thapsigargin (Tg). Ligand incubations were performed at 4°C for 2 hours. Immunoprecipitation was performed against the FLAG epitope. Western Blots of the indicated proteins are shown. **b** Quantification of co-immunoprecipitation experiment. Densitometric measurements were abundance-normalized to eIF2B β -FLAG, then normalized again to the Tg condition. Each bar represents mean ± standard deviation of n=4 independent experiments. Statistical significance was tested by one-way ANOVA with Sidak's multiple testing correction.

Supplementary Figure 11. Sugar phosphate binding is abolished by the elF2B α^{N208Y} mutant but maintained in the elF2B α^{V183F} mutant. a elF2B α^{N208Y} does not interact with F6P or M6P. b elF2B α^{V183F} interacts with F6P similar to wild-type elF2B α . In a and b, the upper subpanel shows the baseline-subtracted thermogram. The bottom subpanel represents the binding isotherm, with the red line indicating the fit curve, if available. c Sucrose gradient centrifugation of elF2B α^{V183F} HEK293T lysate treated with ISRIB (blue), F6P (green) or both (orange). Fractions from the sucrose gradient were subjected to SDS-PAGE followed by immunoblotting with the indicated antibodies. elF3a was used as an internal control. d Quantification of c normalized by total intensity of each subunit in its respective gradient. Data shown are representative of 3 replicates of each experiment. In c and d, dashed red lines demark the boundary of the decameric elF2B peak. e Size-exclusion chromatograms of purified recombinant elF2B($\beta\delta\gamma\epsilon$) + elF2B α^{V183F} in the absence or presence of ISRIB or F6P. The elution positions of the ($\alpha\beta\delta\gamma\epsilon$)₂ decamer, ($\beta\delta\gamma\epsilon$) tetramer and α^{V183F} monomer are indicated. Supplementary Table 1. Cryo-EM data collection, refinement and validation statistics

	eIF2B-F6P
	(EMD-22924)
	(PDB 7KMF)
Data collection and processing	
Magnification	130,000
Voltage (kV)	300
Electron exposure (e–/Å ²)	44.33
Defocus range (µm)	-1.0 to -2.4
Pixel size (Å)	1.04
Symmetry imposed	C2
Initial particle images (no.)	736,044
Final particle images (no.)	73,704
FSC threshold	0.143
Map resolution range (Å)	2.9 - 6.0
Refinement	
Initial model used (PDB code)	6CAJ
Model Resolution (Å)	3.0
FSC threshold	0.143
Model resolution range (Å)	2.9
Map sharpening <i>B</i> factor ($Å^2$)	-106.6
Model Composition	
Non-hydrogen atoms	22875
Protein residues	3005
Ligands	2
<i>B</i> factors (Å ²)	
Protein	104.02
Ligand	82.94
R.m.s. deviations	
Bond lengths (Å)	0.009
Bond angles (°)	1.066
Validation	
MolProbity score	1.88
Clashscore	7.69
Poor rotamers (%)	0.21
Ramachandran plot	
Favored (%)	92.76
Allowed (%)	7.24
Disallowed (%)	0

	eIF2Bα-M6P
	(PDB 7KMA)
Data collection	
Space group	P 1 21 1
Cell dimensions	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	71.2, 155.5, 140.1
α, β, γ (°)	90, 103.89, 90
Resolution (Å)	55.61 – 2.7 (2.797 – 2.70)
$R_{\rm sym}$ or $R_{\rm merge}$	0.0364 (0.3218)
Ι/σΙ	13.35 (2.51)
Completeness (%)	93.72 (99.64)
Redundancy	1.9 (1.9)
Refinement	
Resolution (Å)	2.7
No. reflections	76117 (8075)
R _{work} / R _{free}	0.1907/0.2381
No. atoms	
Protein	16887
Ligand/ion	132
Water	153
<i>B</i> -factors	
Protein	68.36
Ligand/ion	55.65
Water	55.45
R.m.s. deviations	
Bond lengths (Å)	0.008
Bond angles (°)	0.93

Supplementary Table 2. X-ray data collection and refinement statistics (molecular replacement)

*Values in parentheses are for highest-resolution shell.