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General 27 

A real-world example of passive and active approach-avoidance decisions 28 

The relation between defensive freezing and the passive and active approach-avoidance decisions 29 

that we implement in our study maps not only to decisions of first-responders and anxiety patients, 30 

but also to approach-avoidance conflict decisions in situations that most of us face in daily life. Think 31 

for example of the decisions involved when partaking in a virtual conversation. One could approach 32 

such a situation either by actively unmuting themselves or by passively awaiting their turn. Avoiding 33 

such involvement, however, could be achieved either by actively turning off the camera or by 34 

keeping silent and unengaged. 35 

Supplementary Methods 36 

PAT trial procedure 37 

Each trial started with a variable inter-trial interval (ITI) of 9-11 s period to allow a return to baseline 38 

for all psychophysiological measures1. Next, participants were faced with the stimulus screen 39 

including the player and target icons, and the corresponding levels of potential money (green €-icons 40 

indicating 1 Euro each), and electric shock amounts (lightning bolts indicating 1 shock each). The 41 

player icon was a white square and was always positioned in the lower center of the screen. The 42 

target was represented by a grey circle positioned in the center of the screen. The icons indicating 43 

the money and shock amounts were always presented at the top of the screen and ranged from 1 to 44 

5. For the main analysis there were 25 possible combinations of money and shock levels (5 money x 45 

5 shocks) which were repeated four times (i.e., 100 trials in total). For these trials, the entire 46 

stimulus screen was presented for a variable stimulus-to-movement interval (SMI) of 6-7 s. This 47 

length was chosen because of the slow development of the psychophysiological signals2–5. To ensure 48 

prolonged anticipation of the upcoming target movement we also included 30 trials with shorter 49 

SMIs of 0.5-6 s which were not included in the analysis. Lastly, we also included 20 trials with 0-50 

money or 0-shock amounts which served as a manipulation check to assess whether participants 51 

were paying attention to the task. Logically, participants should not approach when no reward can 52 
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be obtained and vice versa for shocks. Indeed, participants avoided 0-money trials and approached 53 

0-shock trials (proportion approaches M±SD0-money = .09%±.14; M±SD0-shocks =.90%±.17). After the SMI, 54 

to enable passive vs. active action contexts, the target gradually moved to one of two possible 55 

locations: either downward towards the player (passive context) or away from the player icon (i.e., 56 

left or right [randomized across trials]; active context). These locations were indicated onscreen by 57 

grey placeholder bars. Each action context (i.e., passive and active) made up 50% of the trials (i.e., 58 

there were 50 active and 50 passive trials). While the target was moving (duration of 700 ms), 59 

participants had to either approach or avoid the target by positioning themselves at the same 60 

location as the target (i.e., approach) or at the other location (i.e., avoid). Depending on the target 61 

movement direction, this required an active response by moving the player icon to the other 62 

location (i.e., via a button press), or a passive response by leaving the player icon where it was (i.e., 63 

no button press). This led to four different response types: active approach and passive avoid when 64 

the target moved away from the player icon (active context) and active avoid and passive approach 65 

when the target was moving towards the player icon (passive context). Responses were only 66 

recorded as active when they occurred during the target movement phase. Note that not pressing a 67 

button during that phase would be recorded as a passive response. 68 

As soon as the target stopped moving, the outcome was indicated by color coding of the target as 69 

green (i.e., money), yellow (i.e., shocks) or grey (i.e., no outcome). The task was probabilistic 70 

meaning that if the participant approached, there was a 40% chance of receiving money, 40% 71 

chance of receiving electric shocks, and a 20% chance of receiving nothing. If they avoided, there 72 

was still a 10% chance of receiving money, 10% of receiving electric shocks, and an 80% chance of 73 

receiving nothing. The 10% payout chance of money and shocks for avoid choices was added to 74 

make the task more threatening and thus increase anticipatory freezing, and the 20% chance of no 75 

outcome for approach choices was added to match the outcome uncertainty between the two 76 

choice options (i.e., 3 possible outcomes per choice, see Fig. 1). The electric shocks were 77 

administered immediately at the end of each trial, to ensure acute threat. Choices were incentivized 78 



4 
 

by paying out the summed monetary outcome of three randomly selected trials after the 79 

experiment. Participants were fully instructed about the outcome probability distributions and about 80 

how and when shocks and bonus money would be paid out. 81 

Electrical stimulation procedure 82 

Each shock had a duration of 200 ms (consisting of 250 µs pulses at 150 Hz) and an intensity varying 83 

in 10 steps between 0-40 V/0-80 mA across 500 Ω. We used a standardized shock adjustment 84 

procedure6–8 in which participants iteratively received a shock, after which they had to rate its 85 

intensity between 1 and 5 (1=not at all painful, 5=very painful). After each rating of a shock, the 86 

shock strength was adjusted with the aim that after 5 shocks the intensity was rated at a level of 4 87 

out of 5 (i.e., as ‘uncomfortable but not painful’; the average final shock intensity was M±SD = 88 

4.43±1.81 steps, range 1-10). 89 

Stabilometric platform 90 

The platform was calibrated before each participant so that the amount of pressure was evenly 91 

distributed among all four sensors. Participants were instructed to move as little as possible and to 92 

stand in a stable position with their feet positioned approximately 30 cm apart (exact locations were 93 

signed on the platform, see Ly et al.9).  94 

Psychophysiological pre-processing details 95 

All psychophysiological data were collected at a sampling rate of 5000 Hz (no online filters), and 96 

preprocessed and analyzed using MATLAB 2018b and R10–12. The raw electrocardiogram signal was 97 

downsampled to 250 Hz and filtered with a Butterworth bandpass filter (0.5-10 Hz)3,13. Next, R-Peaks 98 

were detected using an in-house built peak detection algorithm, and were visually inspected trial-by-99 

trial and manually corrected if necessary. Trials were excluded from analysis if peaks could not be 100 

reliably detected within a time window of 1 second pre-trial onset (baseline window) until 6 seconds 101 

after the trial onset (earliest possible onset of target movement in long stimulus-to-movement-102 

interval trials). Short and medium SMI trials were never included. Changes in heart rate were 103 
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calculated in beats per minute (BPM) based on the beat-to-beat inter-beat intervals, and baseline 104 

corrected relative to the average heart rate during the 1 second window before trial onset. 105 

The raw signal of the stabilometric platform was also downsampled to 250 Hz and filtered with a 106 

Butterworth bandpass filter (0.01-10 Hz)13. The body sway signal was calculated as the standard 107 

deviation of the center of pressure in the anterior-posterior (AP) direction within (overlapping) 1000 108 

ms time windows surrounding each sample2. This was done for each sample from 1000 ms pre-trial 109 

onset until 6000 ms post-trial onset (i.e., covering the baseline window and the entire anticipation 110 

period). The signal of each trial was baseline corrected relative to the 1 second pre-trial window. 111 

Since there are no clear pre-existing exclusion criteria for body sway signals and we wanted to 112 

exclude as few trials as possible, trials were only excluded if more than 50% of all samples within 113 

that trial deviated more than 3 SD’s from the trial mean. Since this is a relatively conservative 114 

exclusion criterion and we still wanted to ensure a reliable signal that’s robust to the remaining 115 

outliers, we computed the median rather than the mean body sway for later summary statistics. In 116 

total, we excluded an average of 3.34% of trials per participant (SD = 3.58%, range 0-19%) due to bad 117 

heart rate or body sway data. For plotting purposes only, the heart rate and body sway signals 118 

displayed in main text Figure 3a and Supplementary Figure S3a were smoothed using robust loess 119 

regression.  120 

The raw electrodermal activity signal was low-pass filtered (2 Hz) and smoothed using a moving-121 

average filter (window of 0.25 s/50 samples). Skin conductance responses (SCRs) were for each trial 122 

determined as the largest SCR amplitude within a latency window from 0.5 to 6 seconds after trial 123 

onset with a max. base-to-peak rise time of 6 seconds, using the software package Autonomate in 124 

MATLAB12,14. Trials in which no response was detected were given a SCR value of 0, and responses 125 

were square root transformed before statistical analysis. 126 

 127 

 128 
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Quantification of freeze measures 129 

Based on heart rate patterns in previous studies4, we preregistered to average over a time-window 130 

of 2 seconds before the target movement initiation for each trial. Inspection of the actual data 131 

however indicated we had to make the following minor adaptation. When considering the time 132 

window based on each trial specific target movement onset, we realized that in this specific task the 133 

trial-by-trial extracted signal could potentially be confounded by the delay of the movement onset 134 

(e.g., a lower average heart rate could be due to a delayed movement onset in that trial instead of 135 

stronger freezing). This is dealt with by setting it to a fixed post-trial onset time window for all 136 

trials1,3. Previous studies most similar to ours showed most robust threat effects on heart rate and 137 

body sway during the very final stage of anticipation, i.e., after the 5 second mark3,13. Therefore, we 138 

decided the 5-6 s window provides a more precise index of freeze-related heart rate deceleration 139 

and body sway reduction. 140 

Behavioral analysis – mixed model specifications 141 

Bayesian mixed-effect models were fitted such that all continuous predictors were zero-centered 142 

and scaled, and categorical predictors were coded using sum-to-zero contrasts15. The freezing 143 

indices bradycardia (HR) and body sway (BS) were entered into the models as continuous predictors 144 

that interacted with all other main-effects and two-way interactions apart from any effect that 145 

involved the other freezing index (i.e., HR never interacted with any effect that involved BS, and vice 146 

versa). Dependent variables choice (approach/avoid) and response type (active/passive) were 147 

modelled with Bernoulli distributions (logit link), and response times were modelled using a shifted 148 

lognormal distribution (identity link). 149 

We used the default brms priors which are improper flat priors for population-level (i.e., fixed) 150 

effects, weakly informative Student-t priors for group-level effects (i.e., random intercepts and 151 

slopes), and LKJ-Correlation priors for random correlations16,17. All models were fit with 6000 152 



7 
 

samples (3000 warm-up) across 6 chains, of which all converged to a solution without warnings (i.e., 153 

all R-hats between 0.99 and 1.01). 154 

Computational modeling - fitting and comparison procedures 155 

Computational models were fitted per participant using maximum likelihood estimation (bbmle18 156 

package) and the L-BFGS-B optimization method to allow for box constraints on free parameters19. 157 

To prevent converging to local minima in the parameter space, we repeated the fitting procedure for 158 

1500 iterations per participant with starting parameters randomly sampled from normal 159 

distributions (i.e., Ν(0, 42) and Ν(1, 22) for multiplicative and exponential parameters respectively) 160 

and selected the best fitting iteration for each model and participant based on the AIC (Akaike 161 

Information Criterion20). Parameter boundaries were set at -100 to 100 for all free parameters 162 

(except , which had a lower bound of 0.001 before being fixed). The fitted parameter estimates of 163 

the best fitting model (for both bradycardia and body sway) did not contain any boundary solutions 164 

(see Supplementary Table S1 in the Supplementary computational modeling results below). 165 

To compare candidate models across participants, we computed per model the sum of the individual 166 

model fits across participants. Like in the model fitting procedure, we used the AIC as a goodness-of-167 

fit measure because the BIC (Bayesian Information Criterion21) assumes that the real data-generating 168 

model is in the candidate set22, which is not an assumption we want to make. Two additional 169 

participants were excluded from model comparison because of a strong lack of variability in their 170 

choice data (i.e., fewer than 5 avoid or approach choices) which may result in improper parameter 171 

estimates, leaving 40 participants.  172 

Onscreen task instructions 173 

For reproducibility, we below report the onscreen instructions as they were given to the participant 174 

prior to the start of the main task. 175 

“In this experiment you will Approach or Avoid moving targets in a series of rounds. We will 176 

now explain what will happen in each round.  177 
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The target will move either towards your location (lower center), or to the side (left or 178 

right). As soon as the target starts to move, you have to decide whether you want to Approach 179 

it, or Avoid it. An Approach means that you end up at the same location as the target, whereas 180 

an Avoid means that you end up at the other one (you literally avoid the target). You can 181 

indicate this decision in the following way: press the Blue button (button 1) to move yourself 182 

(the white square) to the other location, or don't press the button to stay at your current 183 

location. Depending on where the target is moving, a buttonpress can thus lead to both an 184 

Approach and an Avoid.  185 

You can only give a response during the time that the target is actually moving. This 186 

movement only takes less than a second, so if you want to press the button try to do so as 187 

quickly as possible.  188 

You can base your decision to Approach/Avoid on the possible outcomes that are 189 

associated with the target of that particular round. These possible outcomes are indicated by 190 

green money and yellow electrical stimulation icons at the top of the screen (see examples 191 

above). The number of icons indicates the magnitude of the outcome (the amount of 192 

money/number of electrical stimulations you can receive, where each money icon is worth 1 193 

euro. Both icons have a minimum of 0 (zero) and a maximum of 5.  194 

The probability of receiving an outcome depends on whether you Approach or Avoid 195 

the target. If you Approach, there's a 40% probability of receiving electrical stimulation, a 40% 196 

probability of receiving the money, and a 20% probability that nothing happens. If you Avoid, 197 

there's an 80% probability that nothing happens, but still a 10% probability of receiving 198 

electrical stimulation, and a 10% probability of receiving the money. The outcome that is 199 

selected will be paid out immediately after the target stops moving and is indicated by a 200 

change of the target color into either green (money) or yellow (stimulation).  201 

Finally, after the experiment we will completely randomly select 3 rounds for actual 202 

payout. That is, the sum of the money that you received on those rounds will then be paid out 203 
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as a bonus on top of your standard fee. Thus, your efforts to Approach will actually be 204 

rewarded!” 205 

This was followed by a short onscreen summary: 206 

• “In each round you have to decide whether to Approach or Avoid a target.” 207 

• “You can do this by either pressing the Blue button to move, or by not pressing the button to stay. 208 

Again, please note that a buttonpress moves yourself from the center to the other location, which 209 

can be both an Approach and an Avoid depending on where the target goes.” 210 

• “You can only give a response during the 1 sec. when the target is moving to its new location. 211 

Pressing the button before the target starts moving will not do anything.” 212 

• “If you Approach, there's a 40% chance of receiving stimulation, 40% chance of getting the money, 213 

and 20% chance that nothing happens.” 214 

• “If you Avoid, there's an 80% chance that nothing happens, a 10% chance that you receive the 215 

stimulation, and 10% chance that you get the money.” 216 

Supplementary Results 217 

Supplementary behavioral results 218 

To test the action invigoration effect observed in main text Figure 2b we conducted a second 219 

Bayesian mixed model, directly investigating active versus passive responses (dependent variable) as 220 

a function of choice, money, shocks, and heart rate. In this model we confirm a significant increase 221 

in active responses for greater money amounts (Bmoney = 0.11, 95% CI = [0.04, 0.19], pp<0 = .002) and 222 

a significant increase in passive responses for increased shock amounts (Bshocks = -0.09, 95% CI = [-223 

0.16, -0.02], pp>0 = .007). There were no additional interaction effects, nor any effects of heart rate. 224 

Testing task effects on response times (RT; active responses only), a Bayesian mixed-effects model 225 

with categorical predictor choice (approach/avoid) and continuous predictors money, shocks, and 226 

heart rate revealed a marginally significant effect of choice on RT, showing on average marginally 227 

faster RTs for avoid compared to approach choices (Bchoice = -0.03, 95% CI = [-0.066, 0.001], pp>0 = 228 
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.028; remember that α = .025). This relationship was further moderated separately by money and 229 

shock amounts: participants became faster for approach decisions as the amount of money 230 

increased, but faster for avoid decisions as the number of shocks increased, suggesting motivation-231 

related action invigoration by reward and threat (Supplementary Fig. S1a & b, Bchoice:money = 0.04, 232 

95% CI = [0.02, 0.07], pp<0 < .002; Bchoice:shocks = -0.03, 95% CI = [-0.06, -0.01], pp>0 < .002). These 233 

results remained intact after accounting for choice difficulty. This was done by including the absolute 234 

subjective difference between the potential money and shock amounts (extracted from the best-235 

fitting computational model, see main text Results) on each trial as an additional fixed effect23 (no 236 

random slope). Importantly, in this analysis we also observed a significant trial-by-trial relationship 237 

between response times and general heart rate deceleration (Supplemental Fig. S2a; BHR = 0.03, 95% 238 

CI = [0.01, 0.06], pp<0 < .006). 239 

 240 
Supplementary Figure S1. Task effects on response times. Overall, average response times were 241 

marginally faster for avoid choices (a, b). Interestingly, increased money was associated with faster 242 

responses for approach choices (a), whereas an increase in shocks was associated with faster avoid 243 

choices (b). 244 

 245 

 246 

 247 
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Supplementary psychophysiological results 248 

As mentioned in the main text, the mixed-effects model on response times discussed above also 249 

revealed a significant trial-by-trial relationship between response times and bradycardia 250 

(Supplementary Fig. S2a; BHR = 0.03, 95% CI = [0.01, 0.06], pp<0 < .007). 251 

To investigate the sensitivity of body sway to reward and punishment, we analyzed the body sway 252 

(BS) signal using a mixed-effects model with main and interaction effects of money and shock 253 

amounts. This showed a significant general decrease of BS in the time window of interest, relative to 254 

baseline (Supplementary Fig. S3a; BIntercept = -0.25, 95% CI = [-0.31, -0.19], pp>0 < .001). This reduction 255 

was however not moderated by money (95% CI = [-0.05, 0.03], pp<0 = .688) or shock amounts (95% 256 

CI = [-0.06, 0.01], pp>0 = .096).  257 

Finally, trial-by-trial bradycardia was significantly correlated to trial-by-trial body sway reduction (BBS 258 

= 0.61, 95% CI = [0.81, 1.08], pp<0 < .003; Supplementary Fig. S2b). 259 

 260 

Supplementary Figure S2. Physiological correlates. Bradycardia relative to pre-trial baseline (see main 261 

text Fig. 3a) was associated with faster response times (a). Moreover, trial-by-trial bradycardia and 262 

body sway reductions were positively related (b). Solid vs. dashed regression lines reflect significant vs. 263 

non-significant relationships. More negative heart rate differences reflect stronger bradycardia, and 264 

more negative body sway differences reflect stronger postural freezing. 265 
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Supplementary computational modeling results 266 

Robustness check – computational modeling of approach-avoidance choices with body sway  267 

To check the robustness of the model comparison procedure, the same models as described in the 268 

main text were fitted again with body sway as alternative freeze index. This yielded the same 269 

winning model as when using bradycardia as index (Supplementary Fig. S3b). 270 

 271 
Supplementary Figure S3. Postural freezing results. Body sway reduced significantly (i.e., postural 272 

freezing) during anticipation of approach-avoidance decisions (a). Using body sway as an index of 273 

freezing in our computational models yielded the similar results; the winning model was the same as 274 

when using bradycardia (b). 275 

Simulation of approach-avoidance choices 276 

We performed simulations of approach-avoidance choices (Supplementary Fig. S4) to further 277 

understand the positive relationship between bradycardia and the βSV:AC parameter (main text Fig. 278 

3c). To this end, we let the SV+AC+SV:AC model predict choices (approach/avoid) for all money, 279 

shock, and action context (passive/active) conditions while systematically varying the value of the 280 

AC and SV:AC parameters. More specifically, AC was varied to simulate active (AC = -0.8) and passive 281 

(AC = 0.8) subjects, for both negative (-1) and positive (1) values of SV:SC, resulting in four separate 282 

simulations. For simplicity, all other parameters were set to have no influence on the choice (i.e.,  = 283 

1, m = 1, s = 1, m:s = 0).  284 
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Supplementary Figure S4. Simulation of approach-avoidance choices. Approach-avoidance choices 286 

were simulated for active (a, b) and passive tending (c, d) subjects, and for negative vs. positive 287 

subjective value by action context interactions (SV:AC). Panels in the left column (i) plot the predicted 288 

probability to approach as a function of the total subjective value per trial, with each dot 289 

representing the average choice for a certain subjective value across subjects, plotted separately for 290 

active (orange) and passive action contexts (green). The middle and right columns (ii, iii) display the 291 

simulated proportion of approach choices as a function of varying money and shock amounts (1-5; ii) 292 

and action context (passive vs. active; iii). Error bars represent one standard error of the mean (SEM).  293 

Inspection of fitted parameter estimates 294 

The fitted computational models produced no boundary fits, as is demonstrated in Supplementary 295 

Table S1.  296 

Supplementary Table S1 297 

Summarized parameter estimates of the best fitting model (SV+Fr+AC+SV:AC) 298 

Parameter Constraint 
Median 
HR | BS 

Interquartile range 
HR | BS 

Min – Max 
HR | BS 

m -100 – 100 0.31 | 0.32 0.28 | 0.26 -0.30 – 2.13 | 0.001 – 2.10 

s -100 – 100 0.39 | 0.37 0.43 | 0.42 -0.16 – 1.53 | -0.14 – 1.40 

m:s -100 – 100 0.10 | 0.08 0.41 | 0.40 -0.93 – 2.55 | -0.93 – 1.31 

Fr -100 – 100 0.003 | -0.02 0.02 | 0.09 -0.04 – 0.07 | -0.27 – 0.22 

AC -100 – 100 -0.37 | -0.02  0.19 | 0.18 -2.05 – 0.30 | -0.89 – 0.22 

SV:AC -100 – 100 0.40 | -0.09 4.60 | 5.53 -11.55 – 80.84 | -83.90 – 61.66 

Note. Interquartile range is computed as the difference between the 3rd and 1st quantile. HR = bradycardia, BS 299 

= body sway, m = money, s = shocks, Fr = umbrella term for freeze indices: either HR or BS, SV = subjective 300 

value, AC = action context. 301 

The relationship between approach-avoidance choices and reported attractiveness ratings 302 

Since we deem it relevant to compare observed choice behavior with subjective reports, we have 303 

asked participants, after the experiment, to rate for each choice option its attractiveness (i.e., for all 304 

money-by-shock combinations we asked “Please indicate how attractive (Very Unattractive to Very 305 

Attractive) you find this scenario”, on a scale of 0 [‘Very unattractive’] to 100 [‘Very attractive’]). 306 

Interestingly, these attractiveness ratings show a similar pattern to the behavioral data 307 

(Supplementary Fig. S5). Indeed, participants’ trial-by-trial approach-avoidance choices were 308 
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significantly related to their trial-wise attractiveness ratings (B = 0.07, p < .0001). Thus, the more 309 

attractive a participant rated the option, the more often they approached the option in the 310 

experiment. 311 

  312 

Supplementary Figure S5. Subjective attractiveness ratings (a) and observed approach-avoidance 313 

choices (b) for varying levels of money (blue lines) and shock amounts (x-axis). 314 

Supplementary control analyses 315 

Manipulation check – effect of potential reward and threat on physiological arousal 316 

Although skin conductance was initially only measured for control analyses (see below), we 317 

performed a manipulation check to see whether our money and shock manipulations affected 318 

psychophysiological arousal. To that end, we ran a mixed-effects model on the skin conductance 319 

response (SCR) as a function of the potential money and shock amounts, and their interaction. To 320 

accommodate for the non-normal and zero-inflated shape of the SCR distribution, we used a hurdle 321 

model with a lognormal distribution to separately estimate the effect of our predictors on the 322 

probability of a non-zero response (i.e., the hurdle), and the amplitude of the SCR when it is non-323 

zero. 324 

This analysis revealed that both higher money and shock amounts led to increased probabilities of 325 

evoking a non-zero response (Bhu_money = -0.14, 95% CI = [-0.24, -0.05], pp>0 < .004; Bhu_shocks = -0.27, 326 
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95% CI = [-0.38, -0.15], pp>0 < .001) as well as increased skin conductance responses in general 327 

(Supplementary Fig. S6; Bmoney = 0.04, 95% CI = [0.01, 0.06], pp<0 < .007; Bshocks = 0.06, 95% CI = [0.03, 328 

0.09], pp<0 < .001). Our money and shock manipulations thus successfully invoked 329 

psychophysiological arousal. 330 

 331 
Supplementary Figure S6. Effects of potential money and shock amounts on psychophysiological 332 

arousal. Increased potential money (a) and shock (b) amounts are both associated with greater skin 333 

conductance responses (SCR). Lines and large dots represent overall means per money and shock 334 

amount; small dots represent individual subject means. 335 

Control mixed-effects models – sympathetic influence and covariates 336 

To assess the robustness of our findings, we performed some control analyses. For the mixed-effects 337 

models, we first wanted to control for potential sympathetic influences on our dependent variables. 338 

To that end, we re-ran the three main mixed-effects models (on choice, response type, and response 339 

time) with skin conductance (SCR) as an additional fixed effect (no random slope). The results of 340 

these models were qualitatively identical to those reported in the main text. Then, as a general 341 

robustness check, we re-ran the same models after excluding two participants that showed very 342 

little variability in their choice data (i.e., <5 approach or avoid choices) and while controlling for trait 343 

anxiety and depression scores24,25 and gender (female/male). These models again yielded the same 344 

conclusions as reported above, except for one effect: the trend effect of choice on response time 345 
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now became significant (i.e., faster response times for avoid compared to approach choices; Bchoice = 346 

-0.04, 95% CI = [-0.07 -0.002], pp>0 = .02, note that critical α = .025). There were no effects of trait 347 

anxiety, depression, or gender.  348 

For the computational models, we also controlled for potential sympathetic influence by running the 349 

same models with SCR as an extra predictor. This yielded the same conclusions with regards to the 350 

best fitting model. 351 

Together, these control analyses confirm the robustness of the results reported in the main text. 352 

Supplementary results - pilot sample 353 

We here provide a short description of the results of a behavioral pilot data set we collected before 354 

the current study to develop our novel task (N=17). To summarize, the pilot data showed main 355 

effects of both money and shocks amounts on approach-avoidance choice behavior (B = 1.84 and -356 

1.16 respectively, both p < .001), indicating higher proportions of approach choices for increased 357 

money, and lower proportions of approach choices for more shocks (Supplementary Fig. S7a). 358 

Additionally, there was a small main effect of the action context, showing overall more approaches 359 

in active contexts compared to passive contexts (B = -0.28, p = .03; Supplementary Fig. S7b). In 360 

short, these data made us confident that our experimental paradigm was well able to let participants 361 

trade-off money and shocks without inducing floor or ceiling effects, since if that were the case, 362 

there would be no (or only small) effects of money and shocks on choice behavior. 363 
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 364 
Supplementary Figure S7. Approach-avoidance decisions in the pilot data set. The proportion of 365 

approach choices is plotted as a function of money and shock amounts (a), and the passive vs. active 366 

action context (b). 367 

References 368 

1. Klumpers, F., Kroes, M. C. W., Baas, J. M. P. & Fernández, G. How human amygdala and bed 369 

nucleus of the stria terminalis may drive distinct defensive responses. J. Neurosci. 37, 9645–370 

9656 (2017). 371 

2. Gladwin, T. E., Hashemi, M. M., van Ast, V. & Roelofs, K. Ready and waiting: Freezing as active 372 

action preparation under threat. Neurosci. Lett. 619, 182–188 (2016). 373 

3. Hashemi, M. M. et al. Neural Dynamics of Shooting Decisions and the Switch from Freeze to 374 

Fight. Sci. Rep. 9, (2019). 375 

4. Lojowska, M., Gladwin, T. E., Hermans, E. J. & Roelofs, K. Freezing promotes perception of 376 

coarse visual features. J. Exp. Psychol. Gen. 144, 1080–1088 (2015). 377 

5. Lojowska, M., Ling, S., Roelofs, K. & Hermans, E. J. Visuocortical changes during a freezing-like 378 

state in humans. Neuroimage 179, 313–325 (2018). 379 

6. de Voogd, L. D., Fernández, G. & Hermans, E. J. Awake reactivation of emotional memory 380 

traces through hippocampal-neocortical interactions. Neuroimage 134, 563–572 (2016). 381 



19 
 

7. de Voogd, L. D., Fernández, G. & Hermans, E. J. Disentangling the roles of arousal and 382 

amygdala activation in emotional declarative memory. Soc. Cogn. Affect. Neurosci. 11, 1471–383 

1480 (2016). 384 

8. de Voogd, L. D. et al. The role of hippocampal spatial representations in contextualization and 385 

generalization of fear: Fear memory contextualization. Neuroimage 206, (2020). 386 

9. Ly, V., Huys, Q. J. M., Stins, J. F., Roelofs, K. & Cools, R. Individual differences in bodily freezing 387 

predict emotional biases in decision making. Front. Behav. Neurosci. 8, (2014). 388 

10. R Core Team. R: A language and environment for statistical computing. (2019). 389 

11. RStudio Team. RStudio: Integrated Development for R. (2019). 390 

12. The Mathworks. MATLAB. (2018). 391 

13. Hashemi, M. M. et al. Human defensive freezing is associated with acute threat coping, long 392 

term hair cortisol levels and trait anxiety. bioRxiv (2019). doi:10.1101/554840 393 

14. Green, S. R., Kragel, P. A., Fecteau, M. E. & LaBar, K. S. Development and validation of an 394 

unsupervised scoring system (Autonomate) for skin conductance response analysis. Int. J. 395 

Psychophysiol. 91, 186–193 (2014). 396 

15. Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Third Edition. (2019). 397 

16. Bürkner, P.-C. brms: An R Package for Bayesian Multilevel Models Using Stan. J. Stat. Softw. 398 

80, 1–28 (2017). 399 

17. Bürkner, P.-C. Advanced Bayesian Multilevel Modeling with the R Package brms. R J. 10, 395–400 

411 (2018). 401 

18. Bolker, B. & R Core Team. bbmle: Tools for General Maximum Likelihood Estimation. (2017). 402 

19. Byrd, R. H., Lu, P., Nocedal, J. & Zhu, C. A Limited Memory Algorithm for Bound Constrained 403 



20 
 

Optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995). 404 

20. Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Automat. Contr. 19, 405 

716–723 (1974). 406 

21. Schwartz, G. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978). 407 

22. Wagenmakers, E. J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 408 

11, 192–196 (2004). 409 

23. Krajbich, I., Bartling, B., Hare, T. & Fehr, E. Rethinking fast and slow based on a critique of 410 

reaction-time reverse inference. Nat. Commun. 6, 1–9 (2015). 411 

24. Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R. & Jacobs, G. A. Manual for the State-412 

Trait Anxiety Inventory. (Consulting Psychologists Press, 1983). 413 

25. Beck, A. T., Steer, R. A. & Brown, G. K. Manual for the Beck Depression Inventory-II. 414 

(Psychological Corporation, 1996). 415 

 416 


