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Supplementary Figure 1. Schematic layout of the six neuro-cognitive assessment tasks in which all 
participants engaged on day 1, day 15, and day 30. A) Snapshot of computerized assessment with EEG; (B) 
Inhibitory control task; (C) Interference processing task; (D) Working memory task; (E) Emotion bias task; (F) 
Internal attention task with no-onscreen stimuli; and (G) Reward processing task.  
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Supplementary Table 1: Summary of 43 features used in the study for personalized mood prediction. 
 

# Feature Name Feature Description 

1 anxious EMA-based 1-7 ratings of “How relaxed versus anxious do you feel right 
now?” acquired 4x per day alongside the depressed mood ratings 

2 Mean Breathing Time Mean breathing time of the 30-sec active stress assessment acquired 4x per 
day alongside the depressed mood ratings 

3 Consistency 
Consistency of breathing (1 – coefficient of variation) of the 30-sec active 
stress assessment acquired 4x per day alongside the depressed mood 
ratings 

4 past day fats Total fatty items consumed in the 24 hours prior to each depressed mood 
rating 

5 past day sugars Total sugary items consumed in the 24 hours prior to each depressed mood 
rating 

6 past day caffeine Total cups of caffeine consumed in the 24 hours prior to each depressed 
mood rating 

7 heart rate Smartwatch-based heart rate as the mean heart rate in the ±30 minute 
window around each depressed mood EMA 

8 ppg_std 
Heart Rate Variability from the Tizen® Photoplethysmography data as the 
standard deviation within the ±15 minute window around each depressed 
mood EMA 

9 cumm_step_count Cumulative step count taken as the mean value from the past 12 hours of 
each depressed mood rating 

10 cumm_step_calories Cumulative step calories burnt taken as the mean value from the past 12 
hours of each depressed mood rating 

11 cumm_step_distance Cumulative step distance taken as the mean value from the past 12 hours of 
each depressed mood rating 

12 cumm_exercise_calories Cumulative exercise calories burnt taken as the mean value from the past 24 
hours of each depressed mood rating 

13 cumm_exercise_duration Cumulative exercise duration taken as the mean value from the past 24 hours 
of each depressed mood rating 

14 prev_night_sleep Number of hours of sleep the previous night of each depressed mood rating 

15 time_of_day Time of the day when a particular depressed mood rating was taken: (6:00, 
10:00], (10:00, 14:00], (14:00, 18:00], (18:00, 23:59] 

16 GW Consistency Consistency of responses in the Go Wait inhibitory control task implemented 
at pre-, mid-, post- 30-day EMA monitoring 

17 GW Efficiency Performance Efficiency in the Go Wait inhibitory control task implemented at 
pre-, mid-, post- 30-day EMA monitoring 

18 MF Consistency Consistency of responses in the Middle Fish interference processing task 
implemented at pre-, mid-, post- 30-day EMA monitoring 

19 MF Efficiency Performance Efficiency in the Middle Fish interference processing task 
implemented at pre-, mid-, post- 30-day EMA monitoring 

20 LS Span Working memory span 1-8 in the Lost Star working memory task implemented 
at pre-, mid-, post- 30-day EMA monitoring  

21 LS Consistency Consistency of responses in the Lost Star working memory task implemented 
at pre-, mid-, post- 30-day EMA monitoring 

22 LS Efficiency Performance Efficiency in the Lost Star working memory task implemented at 
pre-, mid-, post- 30-day EMA monitoring 

24 FO Consistency Consistency of responses in the Face Off emotion bias task implemented at 
pre-, mid-, post- 30-day EMA monitoring 

25 FO Efficiency Performance Efficiency in the Face Off emotion bias task implemented at pre-
, mid-, post- 30-day EMA monitoring 



26 Mean Breathing Time TT Mean breathing time on the Two Tap internal attention to breath task 
implemented at pre-, mid-, post- 30-day EMA monitoring 

27 Consistency TT Consistency of breathing on the Two Tap internal attention to breath task 
implemented at pre-, mid-, post- 30-day EMA monitoring  

28 LD_GL_bias Bias towards frequent gain vs. loss in the Lucky Door reward task 
implemented at pre-, mid-, post- 30-day EMA monitoring 

29 LD_RareG_diff 
Preference for rare gain choices when these choices have greater vs. equal 
expected value in the Lucky Door reward task implemented at pre-, mid-, 
post- 30-day EMA monitoring 

30 gw_leftDLPFC Neural activity in the left DLPFC brain region evoked to the Go Wait inhibitory 
control task implemented at pre-, mid-, post- 30-day EMA monitoring 

31 gw_dACC Neural activity in the dACC brain region evoked to the Go Wait inhibitory 
control task implemented at pre-, mid-, post- 30-day EMA monitoring 

32 mf_leftDLPFC 
Neural activity in the left DLPFC brain region evoked to the Middle Fish 
interference processing task implemented at pre-, mid-, post- 30-day EMA 
monitoring 

33 mf_dACC 
Neural activity in the dACC brain region evoked to the Middle Fish 
interference processing task implemented at pre-, mid-, post- 30-day EMA 
monitoring 

34 ls_leftDLPFC Neural activity in the left DLPFC brain region evoked to the Lost Star working 
memory task implemented at pre-, mid-, post- 30-day EMA monitoring 

35 ls_dACC Neural activity in the dACC brain region evoked to the Lost Star working 
memory task implemented at pre-, mid-, post- 30-day EMA monitoring 

36 fo_leftDLPFC   Neural activity in the left DLPFC brain region evoked to the Face Off emotion 
bias task implemented at pre-, mid-, post- 30-day EMA monitoring 

37 fo_dACC Neural activity in the dACC brain region evoked to the Face Off emotion bias 
task implemented at pre-, mid-, post- 30-day EMA monitoring 

38 TT_left DLPFC 
Neural activity in the left DLPFC brain region during the Two Tap internal 
attention to breath task implemented at pre-, mid-, post- 30-day EMA 
monitoring 

39 TT_dACC Neural activity in dACC brain region during the Two Tap internal attention to 
breath task implemented at pre-, mid-, post- 30-day EMA monitoring 

40 GLbias_left DLPFC 
Neural activity in the left DLPFC brain region corresponding to bias for 
frequent gains vs. losses on the reward task implemented at pre-,  mid-, post- 
30-day EMA monitoring 

41 GLbias_dACC 
Neural activity in the dACC brain region corresponding to bias for frequent 
gains vs. losses on the reward task implemented at pre-,  mid-, post- 30-day 
EMA monitoring 

42 diff_rareLG_left DLPFC 
Neural activity in the left DLPFC brain region corresponding to choices made 
on the reward task with a contrast of expected values, implemented at pre-, 
mid-, post- 30-day EMA monitoring 

43 diff_rareLG_dACC 
Neural activity in the dACC brain region corresponding to choices made on 
the reward task with a contrast of expected values, implemented at pre-, mid-, 
post- 30-day EMA monitoring 

 
 
 
  



Supplementary Methods 
ML Pipeline: Nested CV. This algorithm is used to perform hyperparameter tuning and model selection by 
attempting to overcome the problem of overfitting the training dataset85,86. It involves treating model 
hyperparameter tuning as part of the model itself and evaluating it within the broader k-fold CV procedure for 
evaluating models for comparison and selection. The k-fold CV procedure for model hyperparameter 
optimization is nested inside the k-fold CV procedure for model selection. Given that the procedure uses two 
CV loops it is also called double CV. Typically, the k-fold CV procedure involves fitting a model on all folds 
but one and evaluating the fit model on the holdout fold. Nested CV estimates the generalization error of the 
underlying model and its hyperparameter search. By choosing the parameters that maximize non-nested CV,  
biases the model to the dataset, yielding an overly-optimistic score. Model selection without nested CV uses 
the same data to tune model parameters and evaluate model performance. Information may thus "leak" into 
the model and overfit the data. The magnitude of this effect is primarily dependent on the size of the dataset 
and the model's stability. To avoid this problem, nested CV effectively uses a series of train/validation/test 
set splits. In the inner loop, the score is approximately maximized by fitting a model to each training set and 
then directly maximized in selecting hyperparameters over the validation set. In the outer loop, generalization 
error is estimated by averaging test set scores over several dataset splits. Under this procedure, the 
hyperparameter search does not have an opportunity to overfit the dataset as it is only exposed to a subset 
of the dataset provided by the outer CV procedure. This reduces, if not eliminates, the risk of the search 
procedure overfitting the original dataset and should provide a less biased estimate of a tuned model’s 
performance on the dataset. In this way, the performance estimate includes a component properly accounting 
for the error introduced by overfitting the model selection criterion. As far as model selection is concerned, a 
nested CV scheme produces k-surrogate “best” models out of which one has to be chosen based on a 
stability measure, which will then be refitted onto the dataset for intervention purposes.  
A repeated k-fold CV repeats k-fold n times with different randomization in each repetition. This ensures the 
robustness and stability of the model. We used a repeated 4-fold CV scheme with ten repeats as the inner 
CV strategy and a simple 4-fold CV scheme as the outer CV strategy for the overall nested CV scheme. The 
overall best model selection of the ten surrogate best models that the inner CV scheme produces is made 
and refitted over a repeated 4-fold CV. Now, every ML hyperparameter optimization and training method 
needs a criterion over which optimization takes place. It is imperative to choose a metric per the data and the 
target which the ML model is trying to predict. We have not used traditional regression optimization such as 
mean absolute error and mean squared error for prediction purposes due to the sole reason that these 
metrics are not adequately sensitive in predicting depression states between Likert scale categories of 1 to 
7. We instead used the mean Tweedie deviation function of negative power100–102. The Tweedie distributions 
are defined as a subfamily of exponential dispersion models, with a special mean-variance relationship. While 
the exact details on finding mean Tweedie deviance are outside the scope of this paper, we care about how 
it penalizes ML models' output with respect to the target variable that is the depressed mood state. For 
instance, let us consider a fitted ML model is used to predict test data points. Please refer to the following 
table that compares the penalization of a mean Tweedie function of negative power and a mean absolute 
deviation function for a hypothetical set of predicted and actual target variables' values.  
 
Sr No. Actual Values Predicted Values Mean Absolute Error Mean Tweedie Deviation 
1 [1, 2, 3, 4, 5, 6, 7] [1, 2, 3, 4, 5, 6, 7] 0.0 1.54e-15 
2 [1, 2, 3, 4, 5, 6, 7] [1, 2, 3, 4, 5, 6, 6] 0.14 0.36 
3 [1, 2, 3, 4, 5, 6, 7] [1, 2, 3, 4, 5, 6, 5] 0.29 1.36 
4 [1, 2, 3, 4, 5, 6, 7] [1, 2, 3, 4, 5, 5, 5] 0.43 1.69 
5 [1, 2, 3, 4, 5, 6, 7] [5, 5, 5, 5, 5, 5, 5] 1.86 10.08 
6 [1, 2, 3, 4, 5, 6, 7] [1, 2, 3, 4, 5, 6, 3] 0.57 4.73 
7 [1, 2, 3, 4, 5, 6, 7] [2, 3, 4, 5, 6, 7, 7] 0.85 1.70 
8 [1, 2, 3, 4, 5, 6, 7] [1, 1, 2, 3, 4, 5, 6] 0.85 1.63 
9 [1, 2, 3, 4, 5, 6, 7] [3, 4, 5, 6, 7, 7, 7] 1.57 6.22 

Notice from the examples shown above that the mean Tweedie deviance function of negative power is more 
sensitive to small changes in mood states and is better at penalizing the model for incorrect outputs than the 
mean absolute function. Using a mean Tweedie function is better suited to work as an optimization metric 
during hyperparameter tuning and model training.  
 



ML Pipeline: ML Strategies. We used seven ML strategies for each subject (Figure 1). The pipeline was 
implemented in Python and details for each strategy used including Elastic Net, Support Vector, Poisson 
Regressor and Ensemble methods including Random Forest, Gradient Boost, Adaptive (Ada) Boost, and 
finally, the Voting Regressor are provided below103.  
Elastic Net Regression is a linear regression with combined l1 and l2 priors as regularizers104,105. Elastic 
Net has two hyperparameters: a and l1-ratio (r). a is a constant that multiplies the penalty terms. a = 0 is 
equivalent to an ordinary least square. r is the mixing parameter, with 0 <= r <= 1. If r = 0, the penalty is an 
l2 penalty, and if r = 1, then it is an l1 penalty. For 0 < r < 1, the penalty is a combination of l1 and l2. 
To summarize, it optimizes the following cost function: 
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Support Vector Machines (SVMs) are a set of supervised learning methods for regression that are: a) 
effective in high dimensional spaces, b) effective in cases where the number of dimensions is comparable to 
the number of samples, c) only uses a subset of training points in the decision function (called support 
vectors), so it is also memory efficient and d) versatile as different kernel functions can be specified for the 
decision function106,107. It has three significant hyperparameters kernel, C, and g. Kernel refers to the type of 
kernel, namely linear, polynomial, or rbf, that is to be used, C is inversely related to the strength of 
regularization, and g is the kernel coefficient.  
Poisson Regressor is a Generalized Linear Model with a Poisson distribution108,109. The only 
hyperparameter in the case of a Poisson Regressor is a which defines the amount of regularization. 
Ensemble Learning methods are a set of non-linear ML techniques that combine the predictions of several 
base estimators built with a given learning algorithm to improve generalizability or robustness over a mono-
estimator. Due to this enhanced generalizability, ensemble learning methods are usually more immune to 
overfitting than other methods. More importantly, ensemble learning methods are more transparent than most 
ML methods as one can establish a relationship between the input and output almost as easily as in the case 
of a linear model.  
There are two families of ensemble methods: 
• Averaging Methods: the driving principle is to build several estimators independently and then to average 

their predictions. On average, the combined estimator is usually better than any of the single base 
estimator because its variance is reduced. 

• Boosting Methods: the base estimators are built sequentially, and one tries to reduce the bias of the 
combined estimator. The motivation is to combine several weak models to produce a powerful ensemble. 

In Random Forests, each tree in the ensemble is built from a sample drawn with replacement (i.e., a 
bootstrap sample) from the training set110,111. Furthermore, when splitting each node during a tree's 
construction, the best split is found from all input features. The trainable hyperparameters include the number 
of trees/estimators, maximum depth of decision trees, maximum no. of features used for predicting 
dependent variable, the minimum number of samples required to split an internal node, and the minimum 
number of samples required to be at a leaf node. The purpose of these two sources of randomness is to 
decrease the variance of the forest estimator. Indeed, individual decision trees typically exhibit high variance 
and tend to overfit. The injected randomness in forests yields decision trees with somewhat decoupled 
prediction errors. By taking an average of those predictions, some errors can cancel out. Random forests 
achieve a reduced variance by combining diverse trees, sometimes at the cost of a slight increase in bias. In 
practice, the variance reduction is often significant hence yielding an overall better model.  
The core principle of Ada Boost Trees is to fit a sequence of weak learners (i.e., models that are only slightly 
better than random guessings, such as small decision trees) on repeatedly modified versions of the data108-
109. The predictions from all of them are then combined through a weighted majority vote (or sum) to produce 
the final prediction. The data modifications at each so-called boosting iteration consist of applying weights to 
each of the training samples. Initially, those weights are all set to 1/N, so that the first step trains a weak 
learner on the original data. For each successive iteration, the sample weights are individually modified, and 
the learning algorithm is reapplied to the reweighted data. At a given step, those training examples that were 
incorrectly predicted by the boosted model induced at the previous step have their weights increased, 
whereas the weights are decreased for those that were predicted correctly. As iterations proceed, examples 



that are difficult to predict receive ever-increasing influence. Each subsequent weak learner is thereby forced 
to concentrate on the examples missed by the previous ones in the sequence. 
Gradient Boosted Decision Trees (GBDT) is a generalization of boosting to arbitrary differentiable loss 
functions109–111. GBDT is an accurate and effective off-the-shelf procedure used for regression and 
classification problems in diverse areas, including Web search ranking and ecology. Each tree's size can be 
controlled either by setting the tree depth or setting the number of leaf nodes. The learning rate is a 
hyperparameter in the range (0.0, 1.0] that controls overfitting via shrinkage.  
Voting Regressors can be considered a composite ensemble learning method112. The idea behind the 
Voting Regressor is to combine conceptually different ML regressors and return the average predicted 
values. Such a regressor can help a set of different ML models to balance out their individual weaknesses. 
The only hyperparameter in case of a voting regressor is weights. These weights are used to take a weighted 
average of the different ML models fed into a voting regressor. There are different strategies for assigning 
weights, such as giving more weight to one model than the other, giving different weights to the ensemble 
and non-ensemble learning models, and giving equal weights to all the models. 
 
 
Supplementary Table 2 
 
Correlations between Actual and Predicted Depression States in Each Subject 

Subject ID coefficient p-value low high 
P-1 0.4512 7.518E-07 0.2884 0.5887 
P-10 0.3848 1.110E-05 0.2230 0.5260 
P-12 0.3559 2.786E-04 0.1715 0.5163 
P-14 0.4470 8.041E-03 0.1282 0.6821 
P-15 0.5601 9.496E-09 0.3993 0.6874 
P-18 -0.3253 6.048E-02 -0.5977 0.0145 
P-19 0.7504 2.061E-22 0.6586 0.8202 
P-20 0.3395 5.292E-03 0.1062 0.5374 
P-21 0.6159 8.956E-14 0.4903 0.7165 
P-23 0.4439 2.974E-06 0.2729 0.5876 
P-24 0.0987 2.836E-01 -0.0820 0.2731 
P-26 0.1922 4.233E-02 0.0069 0.3648 
P-28 0.4642 6.091E-07 0.2992 0.6023 
P-29 0.2878 1.914E-02 0.0491 0.4953 

OVERALL 0.6661 2.895E-167 0.6347 0.6953 

Spearman rank correlation coefficients with p-values and 95% confidence interval bounds are reported for 
correlations across time between actual depressed states and those predicted from the personalized ML 
pipeline. Correlations were performed in each subject separately as well as overall by concatenating the data 
across all subjects. All correlations were significant except in P-18 and P-24. 
 
 
 
 
 
 
 
 
 
 
 


