Supplementary Table 1

Selected enrichment terms p-value
Mitochondrion (GO:0005739) 1.28E-117
Oxidative phosphorylation_mmu00190 (KEGG) 1.01E-36
Mitochondrial translation (GO:0032543) 1.11E-32
Citrate cycle (TCA cycle)_mmu00020 (KEGG) 6.16E-17
Muscle contraction (GO:0006936) 9.49E-03
Pyruvate metabolism_mmu00620 (KEGG) 5.05E-07
Amino Acid metabolism_WP662 (Wiki) 2.57E-04
Fatty Acid Beta Oxidation_ WP 1269 (Wiki) 6.53E-03
Glycolysis / Gluconeogenesis_ mmu00020 (KEGG) 3.73E-02
Protein folding_Metacore Process Networks 2.133E-04

Supplementary Table 1: Curated gene enrichment list of upregulated terms comparing 9 months A226Y
versus WT (p<0.05); FDR adjusted p-values are shown.



Supplementary Table 2

Selected upregulated enrichment terms p-value
Ubiquitin-dependent protein catabolic process (GO:0006511) 2.43E-23
Proteasome_mmu03050 (KEGG) 7.25E-15
Autophagy_mmu04140 (KEGG) 1.22E-09
Mitophagy_mmu04137 (KEGG) 1.19E-08
Spliceosome_mmu03040 (KEGG) 1.01E-26
RNA transport_mmu03013 (KEGG) 1.54E-22
rRNA processing (GO:0006364) 1.16E-21
Cell cycle_Mitosis_Metacore Process Networks 5.32E-06
DNA damage_DBS repair_Metacor Process Networks 1.32E-04
Cell cycle_mmu04110 (KEGG) 1.70E-03

Selected downregulated enrichment terms p-value
Glycine, serine and threonine metabolism_mmu00260 (KEGG) 1.38E-08
Arginine and proline metabolism_mmu00330 (KEGG) 5.06E-05
Tryptophan metabolism_mmu00380 (KEGG) 8.01E-05
Arginine biosynthesis_mmu00220 (KEGG) 0.005535

Supplementary Table 2: Curated gene enrichment list of regulated terms comparing 15 months A226Y versus
WT (p < 0.05); FDR adjusted p-values are shown.



Supplementary Figure 1

Avrll Awvrll
a
ATG : St
B Rps2 WT allele
hg9Snhgd i Ndufb10 gene
7Akb :
- Ext 5° probe
Avrll Avrll
loxP-STOP-loxP
Rnf15 e '3?3 Stop Rps2 allele
__E_E_ L //
2 ! 1 | 7
Snhg Snhg9 ke loxP Ndufb10 gene
9.0 kb :
Avrll Awrll
ATG EXS Stop A226Y
L Rps2 allele
SnhgosSnhg9yp . i Ndufb10 gene
59 kb i
WT/WT I0XP/WT A226YIWT
b Rps2 Rps2 Rps2
ACACTTCA.CCNGAQQM ACACTTC CA|BGCC|A GGAGGTCTG C TACACTTCA?(:%AGAGGCTG
R 2 A226Y/WT
ps 4
(o] = d > °
kb = g
S 2 0.3+
D-U—
w < 90kb <0 .
8 €S 02 2° _}
-«— 7.1kb > 5 %
©o Q .. A
<—59kb N
6 < % 0.1
QY =
o ]
g
0.0 I I I
(4] Q X
@\p& &« W°

Supplementary Figure 1: Construction of the RpszA226Y mouse model (a) Schematic representation of WT,
loxP A226Y X X flox/WT A226YWT |
Rps2  and Rps2 alleles. (b) Representative cDNA sequence analysis of WT, Rps2 , and Rps2 mice.

W
(c) Southern blot analysis of RpsZA226Y ! mice genomic DNA compared to C57BL/6 wild-type DNA (WT). The Avrll
digested DNA was blotted and hybridized with the external 5’ probe. The 7.1 kb fragment indicates the wild-type allele,

226
the 9.0 kb fragment the loxP allele and the 5.9 kb fragment the RpsZA Y allele. (d) Relative mRNA gquantities (RT-
PCR) of mutant Rps2 A226Y mRNA compared to endogeneous wild-type Rps2 mRNA in muscle, liver, and brain of

A226Y/wt |
heterozygous Rps2 mice. Mean + SE (3<N<5).



Supplementary Figure 2
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Supplementary Figure 2: Segregation breeding scheme (a) Breeding of heterozygous floxed Rps2'**""' mice

A226YWT
2

with the CMV-Cre mice (b) Segregation breeding of partially excised Rps mice

with wild type animals.



Supplementary Figure 3
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Supplementary Figure 3: Hematology measurements Graphs show mean, SE and individual data points. WT (N=9)
and Rps2 A226Y (N=7). No siginificant differences between A226Y and WT.



Supplementary Figure 4
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Supplementary Figure 4: Learning, memory, exploration and anxiety Graphs show untransformed mean, SE and
individual data points (grey = wild-type mice, red = A226Y mice). ***p<0.001, **p<0.01, *p<0.05, ~p<0.1, ns p=0.1. (a)
Escape latency during acquisition (day 1-3) and reversal training (day 4-5) in the water-maze place navigation task. There
was a significant decrease of escape latency during both training phases without evidence for a mutation effect on
performance level or learning rate. (day F4,64=13.48 p<.0001 n%=.46, genotype F1,16=0.004 ns, genotype x day
F4,64=0.596 ns, Box-Cox A 0.5). (b) Goal proximity (average distance to goal) during acquisition and reversal training in
the water-maze place navigation task. Proximity improved during acquisition and reversal learning, and worsened
transiently on day 4 in response to goal relocation. There was no evidence for a mutation effect on level or improvement
rate. (day F4,64=7.665 p<.0001 n?=.32, genotype F1,16=1.983 ns, genotype x day F4,64=0.580 ns, Box-Cox A 0.0). (c)
There was no evidence for a mutation effect on proximity to the previously trained goal during the water-maze probe trial,
suggesting intact spatial retention (genotype F1,16=0.253 ns, Box-Cox A -2.0). (d) Freezing response to context (context
re-exposure 24h post training versus pre-training baseline) during Pavlovian fear conditioning. There was no evidence for
an effect of the mutation on the freezing response, indicating intact contextual memory (trial F1,16=35.33 p<.0001 n?=.69,
genotype F1,16=0.050 ns, genotype x trial F1,16=0.050 ns). (e) Freezing response to tone (pre-tone versus tone re-
exposure in novel context 24h post training) during Pavlovian fear conditioning. There was no evidence for an effect of the
mutation on the freezing response, pointing to an intact conditioned response to the tone cue (trial F1,16=18.97 p<.0001
n?=.54, genotype F1,16=1.840 ns, genotype x trial F1,16=0.013 ns, Box-Cox A 0.0). (f) Average distance moved per min
observation time in a large open field arena (2x20 min on subsequent days) appeared unaffected by the mutation
(genotype F1,16=0.191 ns). There was also no evidence for a mutation effect on any of the assessed exploration and
anxiety-related measures: (g) Time spent outside the 7cm wall zone of the large open field arena (genotype F1,16=1.297
ns), (h) Average fraction of the large open field arena explored during 2x20 min of observation (genotype F1,16=1.705
ns), (i) Fraction of time spent inside the home box during 30 min observation in the small open field (genotype
F1,16=0.016 ns, Box-Cox A 0.0), (j) Fraction of time spent inside the dark compartment during the light-dark transition test
(genotype F1,16=0.873 ns), (k) Fraction of entries to open sectors during the elevated O-maze test (genotype
F1,16=0.126 ns).



Supplementary Figure 5
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Supplementary Figure 5: Transcriptome overview of 9 and 15 months A226Y vs WT mouse muscle. (a) Volcano plot
illustrating the differentially expressed genes. (b) Number of significantly differently expressed genes by p-value and fold-
change. (c) Plots showing total Rps2 mRNA counts for each mouse from WT and mutant groups, and expression level of
Rps2 A226Y in mutants as a percentage of total Rps2 (red); there is no difference in total Rps2 expression between
mutant and WT groups. Plots show mean and SD.



Supplementary Figure 6
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Supplementary Figure 6: Aging related transcriptomic changes in WT mice (a) Curated gene enrichment list of
downregulated terms comparing 15 months WT versus 9 months WT (p<0.05); FDR adjusted p-values are shown. (b)
BGA plot showing distribution of wild-type C57B/6 mice samples from the current study (9 and 15 months) compared to
a previous study of 3 months and 19 months animals Shcherbakov et al. submitted for publication, number of genes =

7500. The horizontal axis corresponds to the age axis.



Supplementary Figure 7
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Supplementary Figure 7: PGCla regulation in 9 and 15 months A226Y and WT mice (a) Heatmap representing
genes regulated by PGC1a (31) including only genes with p<0.05 from 9 months A226Y vs WT (18/24). (b) Differential
gene expression of PGCla regulated genes in 9 months A226Y versus WT. FDR adjusted p-values and log?2 ratio are

shown.



Supplementary Figure 8
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Supplementary Figure 8: Heatmap of significantly upregulated (FDR < 0.05) glucocorticoid receptor signalling
responsive genes, in 15 months WT and A226Y. Genes identified in the available literature (1, 2, 3). Table shows the
differential expression between A226Y and WT groups for these genes, in both 9 months and 15 months mice. FDR

adjusted p-values are shown.



Supplementary Figure 9
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Supplementary Figure 9: Hindlimb muscle histology in age-matched wild-type (WT; column left) and A226Y mutant
mice (right column). No abnormalities were noted on the morphological level (hematoxylin-eosin; H&E). Fibre type
distribution (as judged by ATPase stains at pH 4.2 and 9.4), oxidative phosphorylation (assessed by COX-staining), and
lysosomal activity (stains for acidic phosphatase; AP) were all normal. Likewise, no differences between genotypes were
found in storage of glycogen (PAS) and neutral lipids (ORO). Scale bar, 50um.
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Supplementary Figure 10: Western blots of polyubiquitylated proteins Graphs show mean, SE and individual
data points. (a) Western blot and densitometry of K48-linked polyubiquitin in 9 months WT and A226Y mice muscle
tissue (N=3). Tubulin as loading control. (b) Western blot of K48-linked polyubiquitin in MG-132 treated HEK-293 cell
culture (incubation with MG-132 at serial concentrations for 4 hours). MG-132 treatment was used as a positive

control for the detection of K48-linked polyubiquitin.



Supplementary Figure 11
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and A226Y mice muscle tissue (N=5). Tubulin as loading control. (b) Western blots and densitometry of GSK3B and

specific phosphorylated protein in 15 months WT and A226Y mice muscle tissue (N=5). Tubulin as loading control.
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Supplementary Figure 12: Full gel images with corresponding molecular size markers from (a) Figure 2¢
(b) Figure 2f. Equal amounts of protein were loaded onto an SDS gel, run and transferred onto a NC membrane.
HEK 293 cells were used as a control where indicated. Tubulin as loading control. ‘X’ marks where the membrane

was cut to separate Tubulin for simultaneous detection.



Supplementary Figure 13
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Supplementary Figure 13: Full gel images with corresponding molecular size markers from Figure 2e.
Protein was loaded onto an SDS gel, run and transferred onto a NC membrane. HEK 293 cells and control mouse

muscle tissue were used as controls where indicated. Tubulin as loading control.
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Supplementary Figure 14: Full gel images with corresponding molecular size markers from Figure 2e.
Protein was loaded onto an SDS gel, run and transferred onto a NC membrane. Control mouse muscle tissue was

used as a control where indicated. Tubulin as loading control. ‘X’ marks where the membrane was cut to separate

Tubulin for simultaneous detection.
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Supplementary Figure 15: Full gel images with corresponding molecular size markers from (a) Figure 3c (b)
Figure 3e. Equal amounts of protein were loaded onto an SDS gel, run and transferred onto a NC membrane. HEK
293 cells, HEK 293 cells treated with Insulin (200nM, 30 minutes, following 12 hours serum starvation), and control
mouse muscle tissue were used as controls where indicated. Tubulin as loading control. ‘X’ marks where the

membrane was cut to separate Tubulin for simultaneous detection.
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Supplementary Figure 16: Full gel images with corresponding molecular size markers from Figure 4b.
Equal amounts of protein were loaded onto an SDS gel, run and transferred onto a NC membrane. HEK 293 cells
treated with Insulin (200nM, 30 minutes, following 12 hours serum starvation) and control mouse muscle tissue
were used as controls where indicated. Tubulin as loading control. ‘X’ marks where the membrane was cut to

separate target proteins for simultaneous detection.
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Supplementary Figure 17: Full gel images with corresponding molecular size markers from Figure 4c.
Equal amounts of protein were loaded onto an SDS gel, run and transferred onto a PVDF membrane. Control

mouse muscle tissue was used as a control where indicated. Tubulin as loading control.
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Supplementary Figure 18: Full gel images with corresponding molecular size markers from Supplementary
Figure 10. Equal amounts of protein as measured by BCA were loaded onto an SDS gel, run and transferred onto
a PVDF membrane. HEK 293 cells treated with MG-132 as a control for K48-linked polyubiquitin (concentration

labelled, 4 hours). Control mouse muscle tissue was used as a control where indicated. Tubulin as loading control.
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Supplementary Figure 19: Full gel images with corresponding molecular size markers from Supplementary
Figure 11a. Full gel images with corresponding molecular size markers. Equal amounts of protein were loaded onto
an SDS gel, run and transferred onto a NC membrane. HEK 293 cells, HEK 293 cells treated with Insulin (200nM,
30 minutes, following 12 hours serum starvation) or control mouse muscle tissue were used as controls where
indicated. Tubulin as loading control. ‘X’ marks where the membrane was cut to separate proteins for simultaneous

detection.
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Supplementary Figure 20: Full gel images with corresponding molecular size markers from
Supplementary Figure 11b. Equal amounts of protein were loaded onto an SDS gel, run and transferred onto a

NC membrane. HEK 293 cells were used as a control where indicated. Tubulin as loading control.
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