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S1 Dual-transcriptional regulators controlling nutrient uptake in E. coli

Supplementary Table 1: Table of dual-transcriptional regulators controlling nutrient uptake in E.
coli. Examples from EcoCyc [1], that all share the same chemical interaction network as that illustrated in Fig. 1A.

TF Name Autoregulation Inhibited gene of uptake en-
zyme

Inducing nutrient

BetI Betaine inhibitor Negative bet Choline

FadR Fatty acid degradation
regulon

Negative fadD Oleic acid (long
chain FAs)

GalR Galactose repressor Positive (repressed by
complex)

galP and mglBAC operon D-
galactopyranose

GlcC GlcC-glycolate DNA-
binding regulator

Positive (repressed by
complex)

glcA from glcDEFGBA
operon

Glycolate

LldR Lactate regulator Negative and positive lldP from lldPRD operon S-lactate

NagC N-acetylglucosamine
regulator

Negative chbBCARFG operon N,N’-
diacetylchitobiose

NanR N-acetyl-neuraminic
acid regulator

Constitutive nanT from nanATEK-yhcH
operon

N-
acetylneuraminate

RbsR Ribose repressor Negative rbsACB from rbsDACBKR
operon

D-ribose

RutR Pyrimidine utilization,
rut repressor

Negative rutG from rutABCDEFG
operon

Thymine

TyrR Tyrosine repressor Negative tyrP symporter L-tyrosine
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S2 Model of fatty acid uptake and its control on growth and production

Here we describe our model of the regulation of fatty acid uptake in E. coli, and its application to switch from
growth to production for inductions of oleic acid. We list the key assumptions underlying the formulation
of our model equations, describe the biological interpretation of each model parameter, and define their
respective value and source.

S2.1 Assumptions

i) Gene fadE is knocked out. Why? This means less consumption of acyl-CoA, and as shown in the
study of Hartline et al. [2] E. coli DH1∆fadE strain reverts back from the induced to uninduced state
more slowly than its parent strain DH1. Implication? Since our aim is to develop a control system that
cannot revert back to the uninduced state, studying the regulation of fatty acid uptake in DH1∆fadE
strain is a good starting point.

ii) FadD expression is only controlled by FadR. Why? In its native host, FadD expression is co-
regulated by FadR and the complex CRP-cAMP (EcoCyc), during mid-exponential growth, in aerobic
conditions (our growth condition of interest). FadD expression is activated by CRP-cAMP levels, but
inhibited by FadR. The problem is that a common carbon source for many products of interest is glucose,
and in its presence CRP-cAMP level, and so FadD expression, is very low. To make FadD expression
independent of the media we therefore assume that the fadD promoter is replaced with a synthetic
promoter that has an RNAP binidng site without the need for CRP-cAMP and an operator site for
FadR inhibition. Implication? Engineering the expression of FadD in this way widens its application.

iii) The production phenotype is defined by the concentration of controller FadR. Why? Ex-
pression of the product synthesis enzyme(s) and synthesis of the product itself is dependent on controller
FadR, and so we define the production phenotype by the concentration of FadR only. Implication?
We can assess the system behaviour independent of the product of interest.

iv) Growth rate is linearly dependent on growth-associated enzyme Eg. Why? The study of Usui
et al [3] reported that for decreases in the expression of glucose-6-phosphate isomerase (Pgi) in upper
glycolysis, cell growth rate was decreased in an approximately linear fashion (Supplementary Fig. 1(a)).
Implication? We capture this phenomenon and use a linear model of growth rate as a function of Eg:Supplementary Figure 1
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a  Data of growth rate (λ) dependence on enzyme (Eg).
Source: Usui et al. (2012)

b  Plot illustrating phenomenological model 
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a  Global sensitivity: 1st-order sensitivities using eFAST analysis.
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Supplementary Figure 1: Data-driven model of growth dependence on enzyme level. a. Plot of the
data averages and standard deviations taken form Usui et al. [3], based on n = 3 biologically independent culture
experiments, showing the relation between the measured specific growth rate and concentration of a key metabolic
enzyme glucose-6-phosphate isomerase, Pgi. Inset table of the raw values extracted from [3] using WebPlotDigitizer
[8]. b. We assume the growth-enzyme relation can be phenomenologically modelled by a linear equation, and plot
this model for varying sT, representing the severity of growth attenuation or proportional drop in growth rate.

λ(Eg) = λmax · (EgsT − sT + 1) , (1)
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where sT = 1− λmin

λmax
represents the severity of drop in growth rate when Eg is no longer expressed, and

λmin, λmax represent growth rates at zero and maximum expression of Eg (Supplementary Fig. 1(b)).

v) We can model enzyme expression rates in the form of a Hill function. Why? To reduce
the number of free parameters in our model we assume that translation is the rate limiting step of gene
expression and that ribosome-mRNA complex is at quasi-steady state. It can be shown that expression of

the gene product then takes the form of a Hill function [4], either as a·(K·T )n

1+(K·T )n for T -activated expression

or a
1+(K·T )n for T -inhibited expression, where a is the maximum expression rate, K is the affinity of TF

T to bind to operator and control expression, and n is the Hill coefficient. Implication? We then have
a reduced model that captures the important dynamics of the system.

vi) No active degradation of enzymes or transcription factors. Why? As far as we are aware, the
proteins in the system we study are not actively degraded and stable. Within the time length of cell
doubling, dilution of proteins by cell growth and division is the primary means by which proteins are
lost from the system. Implication? We model decay of protein E say as dilution by growth: λ · E.

S2.2 Equations

Our model of the endogenous system (Fig. 1(a), endogenous system) is adopted from Hartline and Mannan
et al. [2], which models the rate of expression of TF FadR (rx,R) and uptake enzyme FadD (rx,D) as Hill
functions, and the reaction kinetics of FadD (rD) and acyl-CoA-consuming reaction PlsB (rB) as Michaelis-
Menten equations, to give:

rx,R = bR + PR(R), rx,D = bD +
aD

1 + (KDR)2
,

rD =
kcat,D·OA

Km,D+OA
·D, rB =

kcat,B ·A
Km,B +A

·B.

Here, the expression of FadR is modelled as a function of itself to capture either its native negative autoreg-
ulation (NAR), or positive autoregulation (PAR), as engineered in [2]:

NAR : PR(R) =
aR

1 +KRR
, (2)

PAR : PR(R) =
aRKRR

1 +KRR
. (3)

We model the sequestration of FadR by two molecules of acyl-CoA with the following mass-action kinetics:

rseq = rf − rr = kfA
2R− krC. (4)

We now extend the model of Hartline and Mannan to model its application for oleic acid-inducible control
on growth and production. The expression of product synthesis enzymes and the product itself does not
feedback to affect the rest of the control system. Since it is exclusively dependent on FadR, we do not model
production explicitly and instead define the production phenotype by a low set concentration value of FadR
R ≤ 0.0033µM, which means the growth phenotype is defined as R > 0.0033µM (assumption (iii)).

We do however need to model control on growth as this feeds back to affect dilution of all intracellular
species. We exploit that FadR is natively a dual transcriptional regulator [5], and model FadR-activated
expression rate of a growth-associated enzyme Eg as a Hill function (assumption (v)):

rx,Eg =
agKgR

1 +KgR
.

To model how growth rate is in turn affected by Eg we used experimental data from Usui, et al. [3] to
derive a linear model that captures the linear dependence of growth rate on Eg (Supplementary Equation
(1), assumption (iv)).

We now write down the system of ordinary differential equations that model the rate of change of FadR
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(R), FadD (D), acyl-CoA (A), sequestered complex (C) and growth-associated enzyme (Eg):

dR

dt
= rx,R − rseq − λ(Eg)R,

dD

dt
= rx,D − λ(Eg)D,

dA

dt
= rD − rB − 2 · (rseq)− λ(Eg)A,

dC

dt
= rseq − λ(Eg)C,

dEg

dt
=

agKgR

1 +KgR
− λ(Eg) · Eg,

(5)

where λ(Eg) is given in Supplementary Equation (1).

S2.3 Parameters

The model parameters are taken from the Hartline and Mannan et al. model [2], but a full description of
parameters, their values, and underlying assumptions explaining why we chose those values are detailed in
Supplementary Table 2. It is important to note that to allow a fair comparison between the systems with
NAR and PAR, we have to chose parameters so the steady state concentration of FadR prior to induction
is the same in both circuits. To ensure this we scaled FadR’s affinity by 7-fold to activate its own promoter
(KR in Supplementary Equation (3)) (see Supplementary Table 2).

Supplementary Table 2: Parameters of the model of the system shown in Fig. 1(a). Description
and values of the parameters of our model of the control system illustrated in Fig. 1(a). The values are based on
characterised parts from the literature, with reference to the source. † indicates parameters of FadR expression when
under PAR.

Parameter description Term Value Units Reference
Growth rate λmax 0.1818 h−1 [2], E. coli DH1∆fadE strain.
Proportional drop in growth sT 0.7 - Determined from [3], pgi down-regulation.
FadR leaky expression (NAR) bR 0.0007 µM· h−1 [2]
FadR promoter strength (NAR) aR 0.0131 µM· h−1 [2]
FadR affinity to own promoter
(NAR)

KR 4.3222 µM−1 [2]

FadR leaky expression (PAR) bR 0.0007 † µM· h−1 Assumed same as params for FadR with NAR.

FadR promoter strength (PAR) aR 0.0131 † µM· h−1 Assumed same as params for FadR with NAR.

FadR affinity to own promoter
(PAR)

KR 4.3222 †

× 7
µM−1 Assumed same as for FadR with NAR, except

scaled so steady state FadR approx same as sys-
tem with NAR before induction (OA = 0µM).

FadD leaky expression bD 0.0108 µM· h−1 [2]
FadD promoter strength aD 0.0517 µM· h−1 [2]
FadR affinity to fadD KD 305.95 µM−1 [2]
FadD turnover rate kcat,D 49 h−1 [2]
Michaelis constant Km,D 0.0672 µM [2]
PlsB turnover rate kcat,B 192.91 h−1 [2]
Michaelis constant Km,B 45429 µM [2]
PlsB concentration B 0.1369 µM [2]
Forward sequestration kf 612.55 µM−2·h−1 [2]
Reverse sequestration kr 900.73 h−1 [2]
Eg promoter strength ag λmax µM· h−1 This study, to ensure full expression at λmax.

FadR affinity to Eg promoter Kg =KR=
4.9114

µM−1 In this study †Supplementary Note S7.2, from
fitting of data from [2]. Assumed designed with
same promoter as fadR with PAR, for FadR-
activated expression.

Affinity of FadR for prod synthesis
enzyme Ep

Kp =KD=
305.95

µM· h−1 Assume designed with FadR operator site from
fadD promoter; value from [2].
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S2.4 Determining the steady states and their stability

To characterise the control system behaviour we look at the dose-response, that is the system steady state
achieved at different inducer concentrations. Here we describe how we determine the steady state(s) for a
given inducer concentration and its stability.

To determine the steady states, we evaluate the system when all derivative become zero. Evaluating
dEg/dt = 0, dC/dt = 0 and dD/dt = 0 it can be shown that the steady states of Eg, C and D are:

Eg(R) =
λmax(sT − 1) +

√
λ2
max(sT − 1)2 +

4λmaxsTagKgR

1+KgR

2λmaxsT
, (6)

C(A,R) =
kfA

2R

krλ(R)
, (7)

D(R) =
1

λ(R)
·
(
bD +

aD
1 + (KDR)2

)
, (8)

where λ(R) is defined in Supplementary Equation (1). Evaluating dR/dt = 0, we derive first nullcline N1:

N1(A,R) : (bR + PR(R)− λ(R)R) ·
(
kr + λ(R)

kfλ(R)R

)
−A2 = 0, (9)

where PR(R) is defined in Supplementary Equation (6). Evaluating dA/dt = 0 derived second nullcline N2:

N2(A,R) :
kcat,D ·OA ·D
Km,D + OA

− kcat,B ·A ·B
Km,B +A

− 2 ·
(
kfA

2Rλ(R)

kr + λ(R)

)
− λA = 0. (10)

The steady states of our system lie at the intersections of the two nullclines, which are functions completely
in terms of FadR R (noting that A = A(R) from N1). Therefore, the steady state of all other species can be
derived from the steady state of R. It is difficult to derivate an analytical form of the steady state of R only
in terms of the parameters, and so we solve for it numerically using MATLAB R2018a.

However, in an effort to limit the search space over which to solve for R, we look for an expression of its
maximum value. R is maximum in the absence of OA, so when OA = 0µM then A = 0µM, and so N2 = 0
and N1 gives us (bR + PR(R)− λ(R)R) = 0. We solved this equation using local optimization solver fminbnd
in MATLAB to give us an estimate for the maximum possible value of R ∈ (0, 1000], for a given set of
parameter values.

We determined the stability of steady states by looking at the signs of the eigenvalues of the Jacobian
evaluated at the steady state, by solving its characteristic polynomial. To find the Jacobian of our system,
we first wrote down our model substituting λ with λ(Eg) = λmax · (EgsT − sT + 1) from Supplementary
Equation (8) into Supplementary Equation (5). We then evaluated the partial derivatives and found our
Jacobian as:

J =



P ′R − kfA
2 − λ(Eg), 0, −2kfAR, kr, −λmaxRsT

− 2aDK
2
DR

(1+(KDR)2)2
, −λ(Eg), 0, 0, −DλmaxsT

−2kfA
2,

kcat,DOA

Km,D+OA
, − kcat,BBKm,B

(Km,B+A)2
− 4kfAR− λ(Eg), 2kr, −AλmaxsT

kfA
2, 0, 2kfAR, −kr − λ(Eg), −CλmaxsT

agKg

(1+KgR)2
, 0, 0, 0, −2λmaxEgsT + λmax(sT − 1)


, (11)

where λ(Eg) = λmax · (EgsT − sT + 1) , and P ′(R) is:

P ′(R) = − aRKR

(1 +KRR)2
, for NAR; and P ′(R) =

aRKR

(1 +KRR)2
, for PAR.
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S3 Sensitivity analysis of dose-response to model parameters

Supplementary Figure 1

Supplementary Figures
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a  Data of growth rate (λ) dependence on enzyme (Eg).
Source: Usui et al. (2012)

b  Plot illustrating phenomenological model 
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a  Global sensitivity: 1st-order sensitivities using eFAST analysis.
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Supplementary Figure 2: Global and local sensitivity analysis of dose-response to parameter varia-
tions. a. Plots of average and standard deviation (error bars) of first-order sensitivity indices, together with their
values found at each of the n = 3 replicates of 100 parameters sets (dots), using GSA method eFAST [6]. eFAST was
implemented in MATLAB R2018a and explored values of parameters bR, aR,KR, bD, aD,KD between 10% to 500% of
their respective nominal values in Supplementary Table 2. sT was varied between 0.1–0.9. We highlight those param-
eters that dose-response of both circuits was most sensitive to. b. Plots of how dose-response changed for changes
in proportional drop in growth rate during induction (sT), for sT = (0.23,0.49,0.75). c. Plots of how dose-response
changed for changes in one parameter at a time. We sampled nine, log-spaced values of each parameter, from 10% to
1000% of their nominal value from Supplementary Table 2. Blue curve is of nominal value.
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S4 Mathematical analysis: reversion rate depends on mode of autoregulation

Simulations of the induction dynamics showed the control systems were converging back towards the unin-
duced state after a temporary induction, what we refer to as reversion. We observed that reversion of the
system with FadR PAR takes longer than system with FadR NAR (Fig. 2b).

Aim: To understand, if the slower reversion is a fundamental property of the system with
PAR vs NAR, as opposed to simply a parameter choice.

To address this aim, we looked for an analytical expression of the rate of convergence to the uninduced steady
state of the two systems. We define this as the least negative eigenvalue of the Jacobian of the system evalu-
ated at the uninduced steady state, where the Jacobian is defined in Supplementary Equation (11). We define
the uninduced state as that steady state where oleic acid OA = 0µM and (R,D,A,C,Eg) = (R,D, 0, 0, 1).
Here, the concentrations of R and D are > 0, but those of A and C are 0µM. Also, Eg is fully expressed,
and so its relative level is 1. Since the analysis of the eigenvalues is close to the uninduced steady state, we
assume that there is insignificant change in growth for small enough perturbations, and so fix sT = 0 and

λmax = λ̃.

Evaluating the Jacobian J in Supplementary Equation (11) at the uninduced steady state and fixed growth
rate, gives:

J =


P ′R − λ̃, 0, 0, kr, 0

− 2aDK
2
DR

(1+(KDR)2)2
, −λ̃ 0 0 0

0, 0, − kcat,BB
Km,B

− λ̃ 2kr 0

0 0 0 −kr − λ̃ 0
agKg

(1+KgR)2
0 0 0 −λ̃

 .

Solving for the eigenvalues of the system with NAR (eNAR) and PAR (ePAR), we find:

eNAR =

(
−λ̃,−λ̃,−λ̃− kr,−λ̃−

aRKR

(1 +KRR)2
,−λ̃− kcat,BB

Km,B

)T
,

ePAR =

(
−λ̃,−λ̃,−λ̃− kr,−λ̃+

aRKR

(1 +KRR)2
,−λ̃− kcat,BB

Km,B

)T
.

We find the least negative eigenvalues of the systems with NAR and PAR are:

LNEN = −λ̃; and LNEP = −λ̃+
aRKR

(1 +KRR)2
.

Since LNEP < LNEN for non-zero parameters, then reversion rate of the system with PAR is always slower
than that of the system with NAR. This phenomenon is thus a fundamental property of the circuit topology,
as opposed to a choice of parameters.
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S5 How tuning control parameters affects performance of induction dynamics
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Supplementary Figure 3: Effect of varying some control parameters on induction process perfor-
mance. Plots of curves showing the performance of the induction dynamics, that is how total OA used and switch
times, changed for variations in OA feed-in flux from 0.25–5µM· h−1, as measured from simulations of the induction
dynamics over 100 hours of the process. Different curves are generate by scaling each control circuit parameter of
the circuit with NAR (red) and PAR (blue), by (0.01,0.03,0.01,0.3,1) time their respective nominal values from Sup-
plementary Table 2 (from most faint to most opaque curves). The five different curves are difficult to see for some
parameter values as they did not change much (on top of one another).
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S6 Mathematical analysis: modifying params or autoregulation only cannot
enable irreversible behaviour

Aim: To determine if any of the control circuit designs considered (Supplementary Fig. 4(a)–
(c)) can be engineered as an irreversible switch, that is can we find a parameter regime for
this, if at all.
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Supplementary Figure 4: Control circuits in the absence of inducer. Schematics of the control circuit with
negative autoregulation (a), positive autoregulation (b) and where FadR is constitutively expressed (c). To elucidate
the steady state of the system in absence of inducing oleic acid (OA), we highlight only that part of the system that
needs to be considered (black lines and text), which effectively becomes independent of the other parts (grey lines
and text). d. To determine if our system can be engineered to behave irreversibly we look at the dose-response and
identify the number of steady states when OA = 0µM, i.e. cross the y-axis. If the switch is irreversible then there is
at least two steady states (red and black, or red and green dots), otherwise there is only one (only red dot). e. Sketch
of the system nullclines indicates the existence of a single steady state, as proved below.

To address our aim, it is sufficient to consider the number of steady states of the system possible in the
absence of oleic acid. We define an irreversible switch as that which has at least two steady states when
OA = 0µM (Supplementary Fig. 4(d)). No oleic acid also means no acyl-CoA or sequestered complex too
(A = C = 0µM). So, the dynamics of the system can be collapsed to considering only the dynamics of FadR
(R) and growth associated enzyme (Eg), which we model as:

dR

dt
= bR + PR(R)− λmax(EgsT − sT + 1)R,

dEg

dt
=

agKgR

1 +KgR
− λmax(EgsT − sT + 1)Eg,

where we define PR(R) for the systems with negative autoregulation (NAR, Supplementary Fig. 4(a)),
positive autoregulation (PAR), Supplementary Fig. 4(b) and constitutive expression of FadR (CON, Supple-
mentary Fig. 4(c)) as:

PR,NAR =
aR

1 +KRR
; PR,PAR =

aRKRR

1 +KRR
; PR,CON = 0.

We now determine the nullclines of this reduced system and identify the number of times they intersect, that
is defined as the number of steady states.

To determine the nullclines we evaluate the system at steady state. It can be shown that from an eval-
uation of dR

dt = 0 we derived the first nullcline N1

N1(R) = Eg(R) =
bR + PR(R)

λmaxsTR
− 1

sT
+ 1, (12)

and from an evaluation of
dEg

dt = 0 we derived the second nullcline N2:

N2(R) = Eg(R) =
λmax(sT − 1) +

√
λ2
max(sT − 1)2 +

4λmaxsTagKgR

1+KgR

2λmaxsT
. (13)

We now take a geometric approach to proving that the nullclines intercept exactly once, using Theorem 1.
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Theorem 1. Let f(x) and g(x) be continuous and differentiable functions on the interval [a, b]. If
f(a) < g(a) and f(b) > g(b), and f ′(x) > 0 and g′(x) < 0 (are monotonic) for x ∈ [a, b], then f(x)
and g(x) intercept exactly once.

Proof. Let’s define h(x) = f(x)−g(x), so h(x) is also continuous and differentiable on interval [a, b].
Evaluating the function at the interval ends we have:

h(a) = f(a)− g(a) < 0,

h(b) = f(b)− g(b) > 0.

By the intermediate value theorem ∃ at least one root of h(x) ∈ (a, b).

Let’s now suppose that there exists at least two roots, and we define two of these as c and d, so
h(c) = 0 and h(d) = 0 for {c, d} ∈ (a, b). By Rolle’s theorem, for some point c̃ ∈ (c, d), h′(c̃) = 0.

However, h′(x) = f ′(x) − g′(x) > 0, meaning h(x) is monotonically increasing in [a, b]. Since
c̃ ∈ (c, d) ⊂ (a, b), then:
=⇒ h′(c̃) 6= 0;
=⇒ ∃ exactly one root of h(x) = 0 in (a, b) =⇒ f(x) and g(x) intercept exactly once. (QED)

To apply Theorem 1, we must first determine the properties of the two nullclines. We state that the nullclines
N1(R) and N2(R), defined in the domain R ∈ (0,∞), are continuous and differentiable.

We first evaluate their derivatives, and after some manipulations it can be shown that:

dN1

dR
=


− bR
λmaxsTR

2 < 0, for system with CON,

− bR(1+KRR)2+2aRKRR+aR
λmaxsTR

2(1+KRR)2
< 0, for system with NAR,

− bR(1+KRR)2+aRK
2
RR

2

λmaxsTR
2(1+KRR)2

< 0, for system with PAR,

dN2

dR
=

agKg

(1 +KgR)2
√
λ2
max(sT − 1)2 +

4λmaxsTagKgR

1+KgR

> 0, ∀ R ∈ (0,∞).

We then evaluate the nullclines at the limits of the domain, and find:

lim
R→0

N1 → ∞,

lim
R→0

N2 = 1− 1

sT
≤ 0, for sT ∈ (0, 1],

lim
R→∞

N1 = 1− 1

sT
≤ 0,

lim
R→∞

N2 =
λmax(sT − 1) +

√
λ2
max(sT − 1)2 + 4λmaxsTag

2λmaxsT
> 0, for sT ∈ (0, 1].

So in summary, we have:

lim
R→0

N2 < lim
R→0

N1,

lim
R→∞

N2 > lim
R→∞

N1,

N ′1 < 0 irrespective of the circuit topology,

N ′2 > 0.

Then by Theorem 1, N1 and N2 intercept exactly once in the domain R ∈ (0,∞). Therefore, there is only and
exactly one steady state of FadR (R) when OA = 0µM, and so control circuits illustrated in Supplementary
Fig. 4(a), (b) and (c) cannot be engineered to behave as irreversible switches. Our sketch of the nullclines
on the (R,Eg)-plane is given in Supplementary Fig. 4(e), and shows existence of the single steady state.
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S7 Modelling proposed control circuit and how to tune it to behave irreversibly

S7.1 Model formulation

We extend our mathematical model to now include the mutual inhibition between FadR and TetR (Fig.
3(a)). We make two modifications: (i) we include the dynamic expression of TetR, which we express as a Hill
function of FadR, and (ii) modify the formula of the expression of FadR PR(R, T ), which is now a function
of both TetR and FadR. Our model is now:

dR

dt
= bR + PR(R, T )− kfA2R+ krC − λR,

dD

dt
= bD +

aD
1 + (KDR)2

− λD,

dA

dt
=

kcat,D ·OA

Km,D + OA
·D − kcat,B ·A

Km,B +A
·B − 2 ·

(
kfA

2R− krC
)
− λA,

dC

dt
= kfA

2R− krC − λC,

dEg

dt
=

agKgR

1 +KgR
− λEg,

dT

dt
= bT +

aT
1 + (KRiR)2

− λT,

(14)

where growth rate λ is given by Supplementary Equation (1), and the final ODE in Supplementary Equation
(14) models the dynamics of TetR expression.

For the second modification to our model, we consider how FadR expression is controlled, and derive the
subsequent formula for PR(R, T ). There are three possible ways in which FadR expression is regulated by
itself and TetR: (i) where there is no FadR PAR and FadR expression is only inhibited by TetR (NoPAR);
(ii) where the operators for FadR binding to active its expression and TetR binding to inhibit its expression
are arranged so their binding is competitive (Comp) or (iii) their binding is non-competitive (NonComp)
(Fig. 3(a)).

For configuration NoPAR, we assume that TetR binds to two tetO operator sites, one between the -35
and -10 RNAP binding sites and the other towards the start codon, as arranged in the PA promoter from
[7]. Writing down the dynamics of DNA availability, binding of TetR to operators, mRNA synthesis, and
FadR synthesis as mass-action kinetics, but then assuming constant total DNA and rapid binding-unbinding
of DNA and TetR, i.e. quasi-steady state of the bound complex, we can derive the FadR synthesis rate from
first principles, which can be shown to be:

NoPAR : PR(T ) =
aR

1 + (KTT )2
. (15)

For the circuitry where both FadR and TetR control the expression of FadR but bind competitively (Comp),
we can write down the dynamics of free DNA (DNA), mRNA (m), the DNA complexes with TetR (cd,t) and
FadR (cd,r), and FadR (R) with mass action kinetics as follows:

dDNA

dt
= −k2f,t · T 2 ·DNA− kf,r ·R ·DNA + kr,t · cd,t + kr,r · cd,r

dm

dt
= sm · cd,r − δm ·m

dcd,t
dt

= k2f,t · T 2 ·DNA− kr,t · cd,t
dcd,r
dt

= kf,r ·R ·DNA− kr,r · cd,r
dR

dt
= sr ·m− δr ·R.

(16)

Similarly, for the circuitry where FadR and TetR binding non-competitively (NonComp), the dynamics of
free DNA (DNA), mRNA (m), the DNA complexes with TetR (cd,t), FadR (cd,r), and now also both (cd,t,r),

11



and FadR (R) can be written down with mass action kinetics as follows:

dDNA

dt
= −k2f,t · T 2 ·DNA− kf,r ·R ·DNA− kf,t,r · T 2 ·R ·DNA + kr,t · cd,t + kr,r · cd,r + kr,t,r · cd,t,r

dm

dt
= sm · cd,r − δm ·m

dcd,t
dt

= k2f,t · T 2 ·DNA− kr,t · cd,t
dcd,r
dt

= kf,r ·R ·DNA− kr,r · cd,r
dcd,t,r
dt

= kf,t,r · T 2 ·R ·DNA− kr,t,r · cd,t,r
dR

dt
= sr ·m− δr ·R.

(17)

Now, given the conservation of DNA, that is dDNA
dt +

dcd,t
dt +

dcd,r
dt = 0, and assuming the rapid kinetics,

thereby invoking the quasi-steady state assumption and solving the steady state concentrations for DNA,
complexes cd,t, cd,r and cd,t,r, and mRNA, it can be shown that the FadR synthesis rate we derived for the
systems with Comp and NonComp are given by:

Comp : PR(R, T ) =
aRKRR

1 +KRR+ (KTT )2
,

NonComp : PR(R, T ) =
aRKRR

(1 +KRR+ (KTT )2 +KT,RT 2R)
=

aRKRR

(1 +KRR)(1 + (KTT )2)
,

(18)

where K2
T =

k2f,t
kr,t

and KR =
kf,r
kr,r

. In assuming that the binding of FadR and TetR do not affect each other

in the circuit with NonComp, then we assume that KT,R = K2
T ·KR, which allowed us to simplify the rate

equation for NonComp as shown in Supplementary Equation (18).

S7.2 Determining parameters for FadR positive autoregulation

For the model parameters, a lot were taken from Supplementary Table 2. However, in the spirit of using
parameter values of characterised parts from the literature, we determined the parameter value representing
the affinity of FadR to bind the operator on its own promoter and activate its expression, i.e. strength of
positive autoregulation (KR) in Supplementary Equation (18), using the dose-response data characterising
the FadR-activated PfadRpo promoter engineered in E. coli DH1 in [2] (Supplementary Fig. 5(a)).
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Supplementary Figure 5: Using literature data to determine parameter KR for FadR PAR Supple-
mentary Equation (18). a. Schematic of the system in E. coli DH1 strain, from the study of [2] where FadR
promoter was engineered so its expression is positively autoregulated. The engineered promoter was named PfadRpo.
b. Plot of the data, i.e. average and standard error of the mean of the dose-response data from [2] (dots and error
bars) as estimated from n = 3 biologically independent samples, and our optimised fitting with model Supplementary
Equation (19) (solid curve). Data was extracted from the supplementary figure in [2] using WebPlotDigitizer [8].

The system in which the PAR was engineered is slightly different to that which we consider, i.e. our system
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of interest has fadE knocked out whereas the engineered system has FadR-regulated expression FadE. We
therefore wrote down a dynamical model of the fadE-present system, and used it to fit the simulated dose-
response to the data. We define this model as:

dR

dt
= bR +

aRKRR

1 +KRR
− kfA2R+ krC − λR,

dD

dt
= bD +

aD
1 + (KDR)2

− λD,

dE

dt
= bE +

aE
1 +KER

− λE,

dA

dt
=

kcat,D ·OA

Km,D + OA
·D − kcat,E ·A

Km,E +A
· E − kcat,B ·A

Km,B +A
·B − 2 ·

(
kfA

2R− krC
)
− λA,

dC

dt
= kfA

2R− krC − λC,

where all variables are as defined in our main model, except the concentrations of FadE is defined by E, and
growth rate is assumed constant and unaffected by the state of the system. We also model the dynamics of
the RFP fluorescent reporter denoted F , as follows:

dF

dt
= s ·

(
bR +

aRKRR

1 +KRR

)
− λF,

for some scaling factor s. It is important to note that the parameters for the expression and regulation of
RFP are the same as those of FadR, as both have same promoters in lab constructs (Supplementary Fig. 5(a)).

To fit this model to the data, we first evaluated our model at steady state for various values of oleic acid,
simulated the dose-response curve Fs(OA), and performed a least-squares fitting to the data Fd(OA) weighted
by the inverse of the error of the ith data point σi. That is we solved the following optimisation problem:

min c =
∑
i

(
Fs(OA(i))− Fd(OA(i))

σi

)2

,

given constraints 0.9 · pH ≤ p ≤ 1.1 · pH,

µλ − 1.96 · σλ ≤ λ ≤ µλ + 1.96 · σλ,

where pH is the vector of parameter values reported in [2], p is the vector of parameters of our model to
be found, and µλ and σλ are the mean and standard deviation of the growth rate reported in [2]. To solve
this problem, we took two steps: (i) solved as a global optimization problem using genetic algorithm (ga
in MATLAB Global optimization toolbox), and after 1000 generations, (ii) used end solution from ga to
initialise and solve with local optimizer fmincon. Supplementary Table 3 summarizes the optimal parameter
set found after 10 iterations of this process.

Supplementary Table 3: Optimal parameters for PAR. From fitting model to dose-response data in Sup-
plementary Fig. 5.

λ (h−1) bR (µM· h−1) aR (µM· h−1) KR (µM−1) bD (µM· h−1) aD (µM· h−1) KD (µM−1)
0.4427 0.00049 0.1409 4.9115 0.0111 0.0542 249.7274

bE (µM· h−1) aE (µM· h−1) KE (µM−1) B (µM) kcat,D (h−1) Km,D (µM) kf (µM−2·h−1)
0.0046 47.7611 0.00034 0.1369 41.8052 0.0778 612.5518

kr (h−1) s kcat,E (h−1) Km,E (µM) kcat,B (h−1) Km,B (µM)
900.7349 128550 4.4324 0.102 194.1591 843790

S7.3 Model parameters and proposal for engineering an irreversible switch

Please see Supplementary Table 4.
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Supplementary Table 4: Parameters for model of irreversible switch and example engineering for its
creation in lab. Parameters values of the model of the control circuit illustrated in main text Fig. 3(a). Parameter
values in the second column are based on characterised parts from the literature, with the source references in fifth
column. The two last columns detail an example proposal for how to modify key system parameters our model analysis
presented in the third results subsection predicts will achieve an irreversible switch.

Characterized parts from literature Engineering irreversibility
Name Term Value Units Source Param

scaling
How

Growth rate λmax 0.1818 h−1 [2], E. coli DH1∆fadE
strain.

1 -

Scaled drop in
growth

sT 0.7 - Determined from [3], pgi
down-regulation.

1 -

FadR leaky expres-
sion

bR 0.0005 † µM· h−1 Determined in
Supplementary Note S7.2,
based on dose-response
data of PA-FadR reporter
strain from [2].
† Values are an average
from 20 iterations of the
fitting.

1 -

FadR promoter
strength

aR 0.1409 † µM· h−1 3.1623 Replace RNAP
binding site with
T7 phage promoter
PA1, as in [4].
Then mutate to
scale down to right
strength.

FadR affinity to own
promoter

KR 4.9114 † µM−1 1 -

FadD leaky expres-
sion

bD 0.0108 µM· h−1 [2] 1 -

FadD promoter
strength

aD 0.0517 µM· h−1 [2] 1 -

FadR affinity to
fadD

KD 305.95 µM−1 [2] 1 -

FadD turnover rate kcat,D 49 h−1 [2] 1 -
Michaelis constant Km,D 0.0672 µM [2] 1 -
PlsB turnover rate kcat,B 192.91 h−1 [2] 1 -
Michaelis constant Km,B 45429 µM [2] 1 -
PlsB concentration B 0.1369 µM [2] 1 -
Forward sequestra-
tion

kf 612.55 µM−2·h−1 [2] 1 -

Reverse sequestra-
tion

kr 900.73 h−1 [2] 1 -

Eg promoter
strength

ag λmax µM· h−1 This study, to ensure full
expression at λmax.

1 -

FadR affinity to Eg

promoter
Kg = KR =

4.9114
µM−1 Assume designed with

FadR operator side on fadD
promoter; value from [2]

1 -

TetR leakiness bT = bR =
0.0108

µM· h−1 Assumed designed with
fadD RNAP sites; value
from [2].

1 -

TetR promoter
strength

aT = aR =
0.0517

µM· h−1 Assumed designed with
fadD RNAP sites; value
from [2].

5.0119 Replace RNAP
binding sites with
phage T7 pro-
moter, PA1 from
[4], then mutate to
scale down to right
strength.

FadR affinity to tetR KRi =KD=
305.95

µM−1 Assume designed with oper-
ator site for FadR on fadD ;
value from [2].

0.1259 Mutate operator to
reduce affinity to
right scale.

TetR affinity to fadR KT 5600 µM−1 [9] 0.0040 Mutate operator to
reduce affinity to
right scale.

S7.4 Determining the steady states and their stability

To determine steady states, we evaluated Supplementary Equation (14) and Supplementary Equation (1) at
derivates equal to zero, and derived the nullclines:
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N1 : A2 = (bR + PR(R, T )− λR) · kr + λ

kfRλ
(19)

N2 : 0 =
kcat,D ·OA

Km,D + OA
·D(R)− kcat,B ·B

Km,B +A
·A− 2 · kfA

2Rλ

kr + λ
− λA, (20)

where D(R) =
1

λ
·
(
bD

aD
1 + (KDR)2

)
. (21)

The steady states lie at the intersection between the two nullclines, which we determined numerically using
MATLAB 2018a.

To determine the stability nature of each of the steady states, we evaluate the Jacobian matrix at the
steady state and solve for the eigenvalues. If the real part of all eigenvalues is negative or zero, with at least
one non-zero, then we define that steady state to be stable. If at least one eigenvalue has a non-zero positive
real part, we define that steady state to be unstable. It can be shown that the Jacobian matrix of our system
illustrated in main text Fig. 3(a) is:

J =



∂PR
∂R
− kfA2 − λ, 0, −2kfAR, kr, −λmaxsTR

∂PR
∂T

− 2aDK
2
DR

(1+(KDR)2)2
, −λ, 0, 0, −DλmaxsT 0

−2kfA
2,

kcat,DOA

Km,D+OA
, − kcat,BBKm,B

(Km,B+A)2
− 4kfAR− λ, 2kr, −AλmaxsT 0

kfA
2, 0, 2kfAR, −kr − λ, −CλmaxsT 0

agKg

(1+KgR)2
, 0, 0, 0, −2λmaxEgsT + λmax(sT − 1) 0

− 2aTK
2
RiR

(1+(KRiR)2)2
, 0, 0, 0, −λmaxsTT −λ


, (22)

where λ is given by Supplementary Equation (1) and ∂PR

∂R and ∂PR

∂T are the partial derivates of PR(R, T ) in
Supplementary Equation (15) and Supplementary Equation (18).

S7.5 Determining which parameters affect the ability of the system to behave irreversibly

Having redesigned the control circuit, we want to understand how to tune its parameters to achieve an
irreversible switch. Not all parameters may need to be modified, so we ask which parameters affect the
ability of the system to behave irreversibly? Mathematically, the switch is irreversible if it can achieve at
least two stable steady states when there is no inducer. To address our question we therefore evaluate the
nullclines of our system, Supplementary Equation (19)–(21), at OA = A = C = 0µM. It can be shown that
this gives:

0 = bR + PR(R, T (R))− λR, (23)

where:

PR is as given in Supplementary Equation (15) and (18),

T (R) =
1

λ
·
(
bT

aT
1 + (KRiR)2

)
,

λ =
1

2
·

(
λmax(1− sT) +

√
λ2
max(1− sT)2 +

4λmaxsTagKgR

1 +KgR

)
.

Though it is difficult to solve this expression analytically to find the steady states of FadR (R) in terms of only
the system parameters, we note that their determination is not dependent on all model parameters. We infer
that if more than two stable steady states can be achieved, then that depends only on engineering the system
to find the correct parameter regime from amongst the following parameters bR, aR,KR, bT, aT,KRi,KT.
Though there is also a dependence on parameters ag,Kg, λmax, sT, it is difficult to experimentally tune these.
For the purposes of our analysis in the paper, we assume these latter parameters to be fixed.
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S8 Local sensitivity analysis of irreversible switch dose-response to parameters
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Supplementary Figure 6: Projection of the design space where the switch with given circuit topology
can be irreversible, for control circuit where FadR and TetR bind non-competitively to fadR promoter (a), and
where FadR is not positively autoregulated (b). All parameters are tuned at the same time
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S9 How Pareto of induction regimes is affected by tuning parameters of irre-
versible switch
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Supplementary Figure 7: a. Effect of ±25% change in experimentally-accessible parameters of our irreversible
switch to the optimal induction performances found on the Pareto front of Fig. 4(b) in main text. b. Effect of
increasing FadD expression leakiness (bD) from 1 to 10 times nominal value, on induction performance objectives. We
indicate the optimal performance closest to the ideal point (0,0) by a red dot and report the performance objective
values. There is a fundamental minimum of around 0.4 hours on the switch time achievable for increases in bD.
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S10 Performance analysis of the genetic toggle-switch and its control on growth

A commonly applied inducible switch is the genetic toggle switch [10]. Here we consider the toggle-switch,
but now only induced with single inducer IPTG as opposed to two inducers IPTG and aTc. We study its
application to control the switch from the growth to production phenotype, as an alternative to the proposed
irreversible metabolic in this study, and present analysis of its performance. Ultimately, though we find that
both switches can be engineered to behave irreversibly, and their performance is similar in terms of total
inducer usage, the fact that IPTG is almost four times higher in cost outweighs the benefits of its application,
relative to the oleic acid-inducible irreversible switch we presented.

S10.1 Model formulation
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Supplementary Figure 8: Schematic of the model of the genetic toggle-switch applied as a dynamic
controller. a. Circuitry we model to control growth and production. b. Highlighting components in relatively
high concentrations (black) when the system is uninduced and induced, exhibiting the growth (left) and production
phenotypes (right).

Equations. We model the genetic toggle switch and its application as a dynamic controller, to switch from
the growth to production phenotype for inductions of IPTG (Supplementary Fig. 8(a)), with the following
set of ordinary differential equations:

dIx
dt

= Ifeed − ki(Ix − I)

dI

dt
= ki · (Ix − I)− 2 · (kfI2L− krC)− λ(Eg)I,

dL

dt
= bL +

aL
1 + (KLT )2

− (kfI
2L− krC)− λ(Eg)L,

dC

dt
= (kfI

2L− krC)− λ(Eg)C,

dT

dt
= bT +

aT
1 +KTL

− λ(Eg)T,

dEg

dt
=

ag
1 + (KgT )2

− λ(Eg) · Eg,

(24)

where λ(Eg) = λmax · (EgsT − sT + 1), as in Supplementary Equation (1), and Ix, I, L, C, T,Eg are concen-
trations, in units of µM, of IPTG in media, IPTG in a cell, LacI, sequestered complex of a LacI dimer to
two IPTGs, TetR, and the growth associated enzyme, respectively. To capture the cooperativity effect of
LacI repression [10], we fixed Hill coefficient of 2 in the third and sixth equations (repression of LacI and Eg

expressions).

Parameters. Please see Supplementary Table 5 for the full list of parameters, their values and units. To
enable a fair comparison between the application of the toggle-switch and the irreversible switch in Sup-
plementary Note S7, we set parameters of the expression of LacI and TetR similar to those defined for the
irreversible switch (see Supplementary Table 4) to achieve similar steady state concentration levels (i.e. sim-
ilar expression burden).
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Supplementary Table 5: Parameters of the toggle-switch model in Supplementary Fig. 8(a), applied
for dynamic control of growth and production.

Name Term Value Units Source
Growth rate λmax 0.1818 h−1 same as Supplementary Table 4.
Scaled drop in growth sT 0.7 - same as Supplementary Table 4.
IPTG feed in flux Ifeed - µM· h−1 to optimise
IPTG feed in time Texp - h to optimise
free diffusion rate ki 3600 h−1 set in this study.
Sequestration fwd rate kf 1057.7 µM−2· h−1 fitting, Supplementary Fig. 9(b)
Sequestration rev rate kr 1292.1 h−1 fitting, Supplementary Fig. 9(b)
LacI leaky expression bL 0.0005 µM· h−1 = bR, Supplementary Table 4.
LacI promoter strength aL 0.5347 µM· h−1 = 0.14 * 3.16 * 1.2, = 1.2 ∗ aR in

Supplementary Table 4.
Affinity of TetR to inhibit
LacI exp

KL 100 µM−1 set in this study.

TetR leaky expression bT 0.0011 µM· h−1 = 0.1∗ bT in Supplementary Table 4.
TetR promoter strength aT 0.2591 µM· h−1 = 0.05 * 5.01 = aT, Supplementary

Table 4.
Affinity of LacI to inhibit
TetR exp

KT 305.95 µM−1 = KRi, Supplementary Table 4.

Eg promoter strength ag λmax µM· h−1 same as Supplementary Table 4.
Affinity of TetR to inhibit
Eg exp

Kg 100 µM−1 = KL, set in this study.

We needed to determine the specific kinetics of the reversible binding and sequestration of LacI by IPTG.
It is important to note that we model the expression of LacI as a dimer, and assume that each LacI dimer
binds to a single synthetic operator site, and that two molecules of IPTG bind to sequester each LacI dimer,
emulating the experimental setup in [4]. Supplementary Fig. 9(a) shows the model we used to capture
the dynamics of LacI-IPTG sequestration, and we employed least-squares fitting (using fmincon from the
MATLAB 2018a Optimization Suite) to determine the optimal values of the forward and reverse binding
rates kf and kr, that minimises the Euclidean distance between simulations of the model in (a) (bold line,
Supplementary Fig. 9(b)) and experimental data taken from [11]. Please see Supplementary Fig. 9 caption
for details of experimental data used.
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Supplementary Figure 9: Determining parameters of IPTG sequestration of LacI. a. Chemical and
mathematical equations of LacI sequestration by IPTG, assuming 2 molecules IPTG bind to each dimer of LacI. b.
Least-squares fit of the model to two data sets (gray crosses) reported from single experiments by Xu and Matthews
[11]. Optimal values of forward and reverse sequestration rates were found to be kf = 1057.7 (µM−2·h−1) and
kr = 1292.1 h−1. Left plot shows steady state data of relative fluorescence measured for titrations of IPTG added
to 1.5× 10−7M LacI monomer. Right plot shows decrease in relative fluorescence measured by rapid stop flow after
addition of 0.05mM IPTG to 1×10−6M LacI monomer. Note: it is assumed that relative fluorescence is representative
of the number of free LacI in solution. Data was extracted from plots in [11] using WebPlotDigitizer [8].

19



S10.2 Finding parameter space where toggle switch seems to behave irreversibly

One can modify the toggle-switch behaviour in the lab by modifying promoter strengths of LacI and TetR
(aL and aT) via mutating their RNAP binding sequences, and the affinity they bind to their respective oper-
ators to repress the others expression (KL and KT) via mutating the operator sequences. The study of [10]
reported that for some modifications, the toggle-switch was observed to behave similarly to an irreversible
switch, i.e. the induced state remained stable after a temporal IPTG induction and its washout.To uncover
the parameter space were this is possible we explored the aL, aT,KL,KT-parameter space by scaling their
nominal values in Supplementary Table 5 by 10−3 to 103.

In fact, the dose-response curve of free LacI concentration vs titrations of IPTG inductions based on the nom-
inal parameter values already showed an effectively irreversible toggle-switch (Supplementary Fig. 10(a)).
Projections of the 4D-space of the four parameters explored (Supplementary Fig. 10(b)) unveil similar prin-
ciples of how to engineer the toggle-switch to become irreversible, as those found for the oleic acid-inducible
switch, i.e. stronger promoter strengths but weaker affinities of each TF to inhibit the others expression.
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Supplementary Figure 10: Exploring param space unveils design principles for engineering irre-
versible toggle-switch a. Dose-response curve of the concentration of free LacI for titrations of IPTG, for the
nominal parameter set in Supplementary Table 5. b. Projections of 4D-parameter space onto planes of two parameter
pairs, highlighting parameter regimes where the toggle-switch can behave irreversibly.

S10.3 Optimizing induction regime to minimise inducer use and switch time

Using the parameters that define the irreversible toggle-switch (Supplementary Table 5), we searched for the
optimal induction regime that would minimise the total use of IPTG and switch time, as was sought for the
oleic acid-inducible irreversible switch. That is, we are again solving the multiobjective optimisation defined
as:

min
Ifeed,Texp

(J1, J2) ,

J1 =

∫ 100

t=0

fin(t) dt; J2 = min (t |LacI(t) ≤ 0.05µM) ;

where fin(t) =

{
Ifeed, for t ≤ Texp,

0, for t > Texp,

and subject to

{
1µM · h−1 ≤ Ifeed ≤ 50µM · h−1,

0.1h ≤ Texp ≤ 5h,

(25)
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where we search over the two induction regime tuning dials: flux of IPTG feed-in Ifeed, and time length of
feed in (also referred to as the exposure time) Texp.

In solving Supplementary Equation (4) (using MATLAB 2018a Global Optimization suite solver gamultiobj,
see Methods in main text), we obtained a Pareto front of optimal solutions, as shown in Supplementary Fig.
11(a, left plot), indicative of the trade-off between the two objectives. We find that total IPTG used is of
a similar order of magnitude as total oleic acid used in the oleic acid-inducible switch (Supplementary Fig.
11(a)-left vs Fig. 4(b) in main text). However, interestingly, though reducing primarily IPTG feed in flux
by just less that 40% (without significantly changing exposure time) (Supplementary Fig. 11(a), right) can
reduce total IPTG usage by around 25%, it comes at a substantial cost of increased switch times, by over
300-fold. Looking at the induction dynamics based on the Pareto solution lying closest to the ideal point
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Supplementary Figure 11: Pareto solutions of optimal induction regimes to minimise total IPTG
usage and switch times. a. Pareto front of objective values found (left plot), with plots of the IPTG feed in flux
and exposure times corresponding to each Pareto solution (right plots). The solution lying closest to the ideal point
(0,0) is highlighted as a red dot, and the respective optimal objective values and induction parameter values are shown
in boxes. b. Time course simulations using the optimal induction regime lying closest to the ideal point (red dot in
(a)).

(Supplementary Fig. 11, red dots), we observe the expected accumulation of IPTG during inducer exposure,
but interestingly, it is very slowly diluted away by a non-zero growth rate of the cell (growth reduced to 0.055
h−1). It is also interesting to note that after induction ceases, free LacI concentrations slightly rise before
finally falling due to a combination of increased expression of its repressor TetR and dilution by cell growth.

S10.4 Effect of change in circuit parameters on Pareto front

To understand how the Pareto front is changed for modifications in the circuit parameters, we recomputed
both performance objective values for all solutions along the Pareto front for ±10% change in the following
respective circuit parameters: bL, aL,KL, bT, aT,KT.

As shown in Supplementary Fig. 12(a), if we decrease LacI concentration, by decreasing promoter strength
(aL) or increasing inhibition of its expression by TetR (KL), or increase TetR concentration, by increasing its
expression (aT or bT) or decreasing inhibition of its expression by LacI (KT), then we can drastically decrease
the switch time for many of the Pareto induction regimes. Nevertheless, since this objective is significantly
outperformed by the oleic acid-inducible switch, we find that the advantage of tuning the toggle switch is
being able to reduce total IPTG usage. However, even if we decrease LacI expression (aL) to 10% or increase
TetR expression (aT) by 10 times (Supplementary Fig. 12(b)), there is a fundamental limit to the minimum
total IPTG usage, which is ≈12µM.
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Supplementary Figure 12: Change in Pareto solutions. a. For ±10% change in respective value of
experimentally-accessible circuit parameters. Data in gray, blue and black represent the recalculated objectives after
scaling the respective nominal parameter values shown in Table Supplementary Table 5 by 0.9, 1 and 1.1, respectively.
b. For scaling promoter strengths from 10% to 10 times their nominal values shows limit on minimum achievable
total IPTG use (Obj1) of 11.8µM.
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