

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202004315

2D WSe₂ Flakes for Synergistic Modulation of Grain Growth and Charge Transfer in Tin-based Perovskite Solar Cells

Tianyue Wang, Fangyuan Zheng, Guanqi Tang, Jiupeng Cao, Peng You, Jiong Zhao, and Prof. Feng Yan*

Supporting Information

2D WSe $_2$ flakes for synergistic modulation of grain growth and charge transfer in tinbased perovskite solar cells

*Tianyue Wang, Fangyuan Zheng, Guanqi Tang, Jiupeng Cao, Peng You, Jiong Zhao, and Feng Yan**

T. Y. Wang, F. Y. Zheng, G. Q. Tang, J. P. Cao, P. You, J. Zhao, Prof. F. Yan Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong E-mail: apafyan@polyu.edu.hk

Figures:

Figure S1 Representative AFM images of a) MoS_2 , b) WS_2 and c) WSe_2 flakes deposited on Si substrates. Scale bar: 300 nm. The height profiles on the right were extracted from the indicated blue lines in the AFM images.

Figure S2 SEM images of as-exfoliated a) MoS_2 , b) WS_2 and c) WSe_2 flakes spin-coated on Si-substrates. Lateral size distributions of d) MoS_2 , e) WS_2 and f) WSe_2 flakes extracted from a-c).

Figure S3 Statistical grain size distribution of $FASnI_3$ films deposited on a) NiO_x/ITO , as well as b) MoS_2 , c) WS_2 , and d) WSe_2 modified NiO_x/ITO .

Figure S4 Simulated transmission electron diffraction of FASnI₃ single crystal from view direction of indices [100]. The simulation was performed by CrystalMaker and SingleCrystal Softwares according to the CIF of FASnI₃ (orthorhombic Amm2 space group).

Figure S5 Transmittance spectra of $NiO_x/ITO/glass$ substrates processed w/o and with MX₂ interlayer.

Figure S6 Atomic crystal structure of the (110) plane of WSe₂ from the top view.

Figure S7 Typical J-V curves of the control PSC and MX_2 - incorporated PSCs prepared by spin-coating MX_2 dispersions for different times.

Figure S8 a) Near E_f region and b) the secondary electron cutoff region of UPS spectra of the FASnI₃ perovskite film.

Figure S9 a) Near E_f region and b) the secondary electron cutoff region of UPS spectra of the NiO_x layer and MX₂ modified NiO_x layers.

Figure S10 Dark I-V curves of the hole-only devices w/o and with WSe₂ incorporation.

Note: Hole-only devices with a structure of $ITO/NiO_x/w/o$ or with $WSe_2/FASnI_3/P3HT/Au$ were used to measure the dark I-V curves. The trap density (N_t) in the perovskite film can be calculated by the equation:

$$N_t = \frac{2\varepsilon\varepsilon_0 V_{TFL}}{qL^2}$$

where V_{TFL} is the trap filled limit voltage, ε is the relative dielectric constant of FASnI₃ (~5.7), ε_0 is the vacuum permittivity, q is the electron charge, and L is the perovskite film thickness.

Figure S11 Long-term stability of the WSe₂ incorporated PSC (unencapsulated) when stored in the air with a relative humidity (RH) about 20% and measured in the ambient condition (RH≈45%).

Tables:

Table S1 Photovoltaic parameters of MX_2 processed PSCs (MX_2 dispersions were spin-coated for different times) extracted from Figure S7.

	$V_{OC}(v)$	J_{SC} (mA cm ⁻²)	FF (%)	PCE (%)
Control	0.59	19.44	70.0	8.03
MoS ₂ -1	0.59	20.02	71.0	8.39
MoS ₂ -2	0.58	20.67	70.4	8.44
MoS ₂ -3	0.57	21.75	68.7	8.52
MoS ₂ -4	0.54	20.40	67.8	7.47
WS ₂ -1	0.61	20.32	69.8	8.65
WS ₂ -2	0.58	21.44	70.4	8.75
WS ₂ -3	0.58	20.71	69.9	8.39
WSe ₂ -1	0.61	20.27	70.0	8.66
WSe ₂ -2	0.63	21.14	71.9	9.56
WSe ₂ -3	0.63	21.82	72.0	9.90
WSe ₂ -4	0.62	21.54	72.4	9.67

Table S2 Efficiencies of $FASnI_3$ –based PSCs in literature.					
Composition	Device structure		Ref		
		(%)			
$FASnI_3(SnF_2)$	FTO/c-TiO ₂ /mp-TiO ₂ /perovskite/spiro-OMeTAD/Au	2.1	[1]		
$FASnI_3$ (SnF ₂ , N ₂ H ₅ Cl)	ITO/PEDOT:PSS/perovskite/PCBM/BCP/Ag	5.4	[2]		
FASnI ₃ (SnF ₂)	ITO/PEDOT:PSS/perovskite/C ₆₀ /BCP/Ag	6.22	[3]		
FASnI ₃ (SnF ₂ , TMA)	ITO/PEDOT:PSS/perovskite/C ₆₀ / bis-C ₆₀ /Ag	7.09	[4]		
FASnI ₃ (SnF ₂ , pyrazine)	FTO/c-TiO ₂ /mp-TiO ₂ /perovskite/spiro-OMeTAD/Au	4.8	[5]		
FASnI ₃ (SnF ₂ , EDAI ₂)	ITO/PEDOT:PSS/ perovskite/C ₆₀ /BCP/Ag	8.9	[6]		
FASnI ₃ (SnF ₂ , PTN-Br)	ITO/PEDOT:PSS/perovskite/C ₆₀ /BCP/Ag	7.94	[7]		
FASnI ₃ (SnF ₂ ,FOEI)	ITO/PEDOT:PSS/ perovskite/C ₆₀ /BCP/Ag	10.16	[8]		
FASnI ₃ (SnF ₂ , EDAP ₂)	ITO/PEDOT:PSS/ perovskite/C ₆₀ /BCP/Ag	6.8	[9]		
FASnI ₃ (SnF ₂ , PHCl)	ITO/PEDOT:PSS/ perovskite/C ₆₀ /BCP/Ag	11.4	[10]		
FASnI ₃ (SnF ₂ , PAI)	ITO/PEDOT:PSS/ perovskite/C ₆₀ /BCP/Ag	11.22	[11]		
FASnI ₃ (SnCl ₂ ,GA)	ITO/NiO _x /WSe ₂ /perovskite/PCBM/BCP/Ag	10.47	This work		

References:

- [1] T. M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W. L. Leong, P. P. Boix, A. C. Grimsdale, S. G. Mhaisalkar, N. Mathews, *J. Mater. Chem. A* **2015**, *3*, 14996.
- [2] M. E. Kayesh, T. H. Chowdhury, K. Matsuishi, R. Kaneko, S. Kazaoui, J.-J. Lee, T. Noda, A. Islam, *ACS Energy Lett.* **2018**, *3*, 1584.
- [3] W. Liao, D. Zhao, Y. Yu, C. R. Grice, C. Wang, A. J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R. G. Xiong, Y. Yan, Adv Mater 2016, 28, 9333.
- [4] Z. Zhu, C. C. Chueh, N. Li, C. Mao, A. K. Y. Jen, *Adv. Mater.* **2018**, *30*, 1703800.

- [5] S. J. Lee, S. S. Shin, Y. C. Kim, D. Kim, T. K. Ahn, J. H. Noh, J. Seo, S. I. Seok, *J. Am. Chem. Soc.* **2016**, *138*, 3974.
- [6] E. Jokar, C.-H. Chien, A. Fathi, M. Rameez, Y.-H. Chang, E. W.-G. Diau, *Energy Environ. Sci.* **2018**, *11*, 2353.
- [7] C. Liu, J. Tu, X. Hu, Z. Huang, X. Meng, J. Yang, X. Duan, L. Tan, Z. Li, Y. Chen, *Adv. Funct. Mater.* **2019**, *29*, 1808059.
- [8] X. Meng, Y. Wang, J. Lin, X. Liu, X. He, J. Barbaud, T. Wu, T. Noda, X. Yang, L. Han, *Joule* **2020**, *4*, 902.
- [9] S. Shahbazi, M.-Y. Li, A. Fathi, E. W.-G. Diau, ACS Energy Lett. 2020, 5, 2508.
- [10] C. Wang, F. Gu, Z. Zhao, H. Rao, Y. Qiu, Z. Cai, G. Zhan, X. Li, B. Sun, X. Yu, B. Zhao, Z. Liu, Z. Bian, C. Huang, *Adv. Mater.* **2020**, *32*, 1907623.
- [11] X. Liu, T. Wu, J.-Y. Chen, X. Meng, X. He, T. Noda, H. Chen, X. Yang, H. Segawa, Y. Wang, L. Han, *Energy Environ. Sci.* **2020**, *13*, 2896.