

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.202004507

Hypermethylation of hepatic mitochondrial *ND6* provokes systemic insulin resistance

Ke Cao, Weiqiang Lv, Xueqiang Wang, Shanshan Dong, Xuyun Liu, Tielin Yang, Jie Xu, Mengqi Zeng, Xuan Zou, Daina Zhao, Qingqing Ma, Mu Ling, Jiangang Long, Weijin Zang, Feng Gao, Zhihui Feng*, Jiankang Liu*

Supporting Information

Hypermethylation of hepatic mitochondrial ND6 provokes systemic insulin resistance

Ke Cao, Weiqiang Lv, Xueqiang Wang, Shanshan Dong, Xuyun Liu, Tielin Yang, Jie Xu, Mengqi Zeng, Xuan Zou, Daina Zhao, Qingqing Ma, Mu Ling, Jiangang Long, Weijin Zang, Feng Gao, Zhihui Feng*, Jiankang Liu*

Figure S1 Linear correlations between clinical parameters and *D-loop* methylation level. A-D, BMI, fasting glucose level, fasting insulin level, and HOMA-IR index in T2DM and non-T2DM subjects. E, Relative mRNA levels of 13 mtDNA-encoded OXPHOS complex subunits; F, nDNA-encoded OXPHOS complex subunits and mtDNA-related transcription factors; G, *D-loop* methylation level in human peripheral leukocytes of T2DM and non-T2DM subjects, in A-G, n=39 for each group. H-L, Liner correlations between *ND6* mRNA level, BMI, fasting glucose, fasting insulin, HOMA-IR, and ND6 methylation level in human peripheral leukocytes of non-T2DM subjects, n=39; M-Q, Liner correlations between *ND6* mRNA level, BMI, fasting glucose, fasting insulin, HOMA-IR, and ND6 methylation level in human peripheral leukocytes of T2DM subjects, n=39; R, Linear correlations between BMI and *D-loop* methylation level; S, fasting glucose and *D-loop* methylation level; T, fasting insulin and *D-loop* methylation level; U, HOMA-IR index and *D-loop* methylation level in human peripheral leukocytes, n=78. Values are mean \pm SEM. **p< 0.01.

Figure S2 *ND6* is a primary target of mtDNA methylation in the liver of db/db mice. A-C, Fasting glucose, fasting insulin, and HOMA-IR index in HFD and db/db mice. **D**, HE staining of liver tissues. **E**, Confirmation the purity of extracted mtDNA via PCR with specific mitochondrial and nuclear primers. NC1-4, negative control of *ND1*, *ND6*, *ATP8* and *Tubulin*, respectively. Predicted PCR products were *ND1*, 152 bp; *ND6*, 199 bp; *ATP8*, 113 bp; *Tubulin*, 294 bp; *Sdha*, 247 bp. **F**, Total methylated CG, CHG and CHH frequencies; **G-I**, Methylated CG, CHG, and CHH frequencies of peptides, tRNAs and rRNAs on liver mtDNA. **J-M**, Methylated CHH frequencies on H-strand, methylated CHH, CHG, and CG frequencies on Lstrand of 13 oxidative phosphorylation (OXPHOS) complex subunits in the liver of control and

db/db mice. N, Relative *ND6* mRNA level; O, Relative mtDNA copy number; P, Relative complex I activity in the liver of the control and db/db mice. Values are mean \pm SEM. *n*=7 for the control and 4 for the HFD group, *p< 0.05, **p< 0.01.

Figure S3 Correlations between D-loop methylation and complex I activity and HOMA-IR. A-C, Liner correlations between *D-Loop* methylated CG, CHG, CHH frequencies and complex I activity in the liver of control and db/db mice; **D-F**, Liner correlations between *D-Loop* methylated CG, CHG, CHH frequencies and HOMA-IR index in the liver of control and db/db mice. N=15.

Figure S4 ND6 knockdown promotes mitochondrial dysfunction in murine cell lines and hepatic lipid accumulation in mice. A, Relative ND6 mRNA levels; B, mitochondrial OCR; C, fluorescence of mitochondrial superoxide in 3T3-L1 and HT22 cells transfected with ND6 siRNA (n=3). D, Relative mRNA levels of 13 mtDNA-encoded OXPHOS complex subunits in the liver of ND6 siRNA treated mice (n=6). E, Relative mRNA levels of nDNA-encoded OXPHOS complex subunits in the liver of ND6 siRNA treated mice (n=6). F, Body and tissue weight; G, Relative liver TG; H, Relative liver T-CHO; I, Serum HDL-c; J, serum LDL-c of mice; K, Serum TG levels in mice treated with ND6 siRNA for one week ($n\geq6$). Values are mean \pm SEM. *p< 0.05, **p< 0.01.

Figure S5 Increased mitochondrial DNMT1 localization in the liver of HFD mice and db/db mice. A-B, Western blot analysis of liver DNMT1, DNMT3a and DNMT3b protein levels in total, mitochondrial and cytosolic fractions of HFD mice and (b) db/db mice. Values are mean \pm SEM. *n*=6, *p< 0.05, **p< 0.01.

Figure S6 Characterization of mouse adenovirus infection through tail vein injection. A, *GFP* mRNA expression in the tissues of mice infected with pAd/CMV/V5-*GFP* adenovirus via the tail vein injection (n=3). B, Relative *Dnmt1* mRNA level in the liver of mice infected with pAd/CMV/V5-*Dnmt1*(Ad-*Dnmt1*), pAd/CMV/V5-mt*Dnmt1*(Ad-mt*Dnmt1*) or pAd/CMV/V5-NC (Ad-NC) adenovirus (n=6). C-D, Protein levels of DNMT1 and ND6 in the liver of mice infected with adenovirus (n=6). E, Body and tissue weight of mice after *Dnmt1* overexpression (n=8). F, Relative mRNA level of nDNA-encoded OXPHOS complex subunits (n=6). G, Serum TG; H, Serum T-CHO; I, Serum HDL-c; J, Serum LDL-c of mice infected with pAd/CMV/V5-*GFP* adenovirus via the tail vein injection (n=6). Values are mean ± SEM. *p< 0.05, **p< 0.01.

Figure S7 AMPK activation is associated with PA induced *ND6* hypermethylation by DNMT1. A, Relative *ND6* mRNA level in HepG2 cells under dose dependent PA treatment for 24 h (n=5). B, Relative *ND6* mRNA level in HepG2 cells under time dependent PA treatment at 300 µM (n=5). C, Western blot analysis of DNMT1 protein subcellular localization in mouse primary hepatocytes under 300 µM PA treatment. D, Methylation levels of *D-loop* and *ND6* in PA treated cells with or without 2 µM 5-Aza for 24 h (n=5). E, Western blot of p-AMPK, AMPK, p-Akt, Akt, p-ERK1/2, ERK1/2, p-JNK, JNK, p-p38 and p38 in HepG2 cells under time dependent PA treated cells (n=4). G, Relative *ND6* mRNA level in cells after prolonged AICAR treatment (n=4). H, Relative *ND6* mRNA level in HepG2 cells under time dependent 2 µM SC79 treatment (n=3). J, *ND6* methylation and mRNA levels in PA treated cells with or without 10 µM LY294002 for 24 h (n=5). Values are mean ± SEM. *p< 0.05, **p< 0.01.

Figure S8 Hepatic knockdown of *Dnmt1* ameliorates metabolic abnormality induced by HFD. A-B, Relative mRNA levels of mtDNA-related transcription factors and nDNA-encoded OXPHOS complex subunits in the liver of mice under diets and AAV intervention (n=6). C, Relative complex II-V activities in liver (n=8). D-E, Relative TG and T-CHO level in the liver (n=8). F-K, Serum ALT activity, AST activity, TG level, T-CHO level, LDL-c level, and HDL-c level in mice (n=6). L-M, Fasting glucose and fasting insulin level in mice after diets and AAV intervention (n=6). Values are mean ± SEM. *p< 0.05, **p< 0.01.

Table S1 Probabilities of DNMT1 isoforms to mitochondria	predicted by	y MitoProt	Π.
--	--------------	------------	----

Species	Isoform	Length (amino acid)	Probability to mitochondria	Mitochondrial leader peptide
Human	NM_001130823.3 NP_001124295.1 DNMT1 isoform a	1632	47.94%	MPARTAPARV
Human	NM_001318730.2 NP_001305659.1 DNMT1 isoform c	1619	48.33%	MPARTAPARV
Human	NM_001318731.2 NP_001305660.1 DNMT1 isoform d	1511	38.96%	MADANSPPKPLSKPRTPRRS
Human	NM_001379.4 NP_001370.1 DNMT1 isoform b	1616	47.33%	MPARTAPARV
Human	DNMT1 isoform b supplemented with an additional MTS reported by Shock et al. (mtDNMT1)	1717	85.54%	MNECLGHRTHLPANRGAWTS PLLRVGGVCARLAHACSLGM AGSVPSFCTGYRLSPFGTSPPP PRPDWGGRRRLRSSPLPIGFRA KSRG
Human	NM_003201.3 NP_003192.1 TFAM isoform 1 precursor	246	92.26%	MAFLRSMWGVLSALGRSGAE LCTGCGSRLRSPFSFVYLPRWF SSVLASC
Mouse	NM_001199431.1 NP_001186360.2 Dnmt1 isoform 1	1620	36.13%	MPARTAPARV
Mouse	NM_001199432.1 NP_001186361.1 Dnmt1 isoform 3	1501	72.45%	MADSNRSPRSRPKPRGPRRS
Mouse	NM_001199433.1 NP_001186362.1 Dnmt1 isoform 4	1502	72.45%	MADSNRSPRSRPKPRGPRRS
Mouse	NM_001314011.1 NP_001300940.1 Dnmt1 isoform 5	1627	36.42%	MPARTAPARV
Mouse	NM_010066.4 NP_034196.5 Dnmt1 isoform 2	1619	36.13%	MPARTAPARV
Mouse	Dnmt1 isoform 1 supplemented with an additional MTS reported by Shock et al. (mtDnmt1)	1673	91.70%	MRTPFGHSMVFPHSLALCGT CCFRLRRPLPIGFRAREKAGV SFRAVLSSATCKMPARTAPARV

Table S2 Primers used in methylation-specific PCR.

Species	Region	Primer (5'-3')
Human	D-loop-M	Forward: CGTTTTTTTTAAATAAGATATTACGA
		Reverse: AAAAATCAAAAACAAATACTACGAC
Human	D-loop-U	Forward: TGTTTTTTTTAAATAAGATATTATGA
		Reverse: AAAAATCAAAAACAAATACTACAAC

Human ND6-M	Forward: TTTCGTATTAATAGGATTTTTTCGA
	Reverse: AATTATCTTTAAATATACTACAACGAT
Human ND6-U	Forward: TTTTGTATTAATAGGATTTTTTTGA
	Reverse: ATAATTATCTTTAAATATACTACAACAAT
Mouse <i>D-loop-M</i>	Forward: GTTTTTTTTAAATAAGATATTTCGA
	Reverse: TACTATCCTTTCATACCTTAACGAC
Mouse <i>D-loop-U</i>	Forward: GTTTTTTTTAAATAAGATATTTTGA
	Reverse: TACTATCCTTTCATACCTTAACAAC
	Forward: GATATTTTTTAGTAGTTATAGTAGTCGT
MD0-111	Reverse: TAATTTTAAAAATTTAATAAATCGTT
NDC U	Forward: TGGATATTTTTTAGTAGTTATAGTAGTTGT
MD0-0	Reverse: TAATAATTTTAAAAATTTAATAAATCATT
	ND6-M ND6-U D-loop-M D-loop-U ND6-M ND6-U

Table S3 Primers used in mtDIP.

Species	Region	Primer (5'-3')
Human	Dloop	Forward: TGCTTGTAAGCATGGGGAGG
	D-100p	Reverse: ACATTACTGCCAGCCACCAT
Human	ND6	Forward: GGGGTTTGTGGGGGTTTTCTTC
		Reverse: ACCCATATAACCTCCCCAA

Table S4 Primers used in real-time PCR.

Species	Gene	Primer (5'-3')
Mouse ND6		Forward: CTACCCCAATCCCTCCTT
	ND6	Reverse: GGTTTGGTGGATCGTTTT
N		Forward: GAGGCTGATGATGATGTGTC
Mouse	Mouse Dnmt1	Reverse: GGAATCATCTGGAATGACCG
		Forward: ATGTGGTTCGAGATTCTCCC
Mouse	Mouse Ndufa1	Reverse: GCAACTCGTTTTTCCTTGC
М		Forward: ATCCCATAGGTCAGACAAGC
Mouse	Mouse Ndufs1	Reverse: CAGTTGTGCGAACATATCCT
Mouse Sdha	C 11	Forward: AAGATTACAAAGTGCGGGTC
	Sana	Reverse: TTTCATCAGTAGGAGCGGAT
Mouse	Sdhb	Forward: GTTCTCGGCAGAGTCGG

		Reverse: TCCGCACTTATTCAGATCCA
Mouse	I I a sub	Forward: CACTCTCAGGTCAAAATGGC
	Uqcrb	Reverse: ATCTCGCATTAACCCCAGT
Mouse	I I a conce	Forward: GCGTCTATCTTCTGTCCCA
	Uqcrq	Reverse: ACCACTACAAACGGCGG
Mouse	Confe	Forward: CATTGGCTACCATGAGTTCC
	Coxoc	Reverse: CAGCCACGCCAAACTTATAG
Mouse	Cou7o	Forward: GAGCAAGGTCGTGTAGAAAG
	Cox/c	Reverse: GAAAATGGCAAATTCTTCCCC
Mauga	1 to 5 a 1	Forward: CATTTTGTGCCAGTCGTCC
Mouse	Агрэат	Reverse: ATTTTTGGAGACCAGTCCCG
Mouse	1 to 5 h 1	Forward: AATTCCTGTTGGTCCTGAGA
	Alpsol	Reverse: CCAAAGAGTCCGATTTTCCC
Mouso	Tfam	Forward: AGACTACACTGGGAAACCAC
wiouse	1 jum	Reverse: GTTAGGCTTATAGGGACCCA
Mouso	Teb Im	Forward: CCCAAACCAAAAGTTGATGT
wouse	IJDIM	Reverse: TTTCCTTCGAAACTGAAACG
Mouso	TA 2m	Forward: GGCATTACTTAAAGCTGGTG
wiouse	1jD2m	Reverse: TTTATAGGAACACCTGCTGAC
Mouso	Dolumet	Forward: TTCCCTCAGGAGTTTGTCTG
wiouse	FOIrmi	Reverse: TGATAGGGCTGTATGATGGG
Mouso	188 "DNA	Forward: GTAACCCGTTGAACCCCATT
wiouse	105 / 104	Reverse: CCATCCAATCGGTAGTAGCG
Mouso	D-loop	Forward: AGGCATGAAAGGACAGCA
wiouse	(for DNA)	Reverse: TTGGCATTAAGAGGAGGG
Mouso	18S rRNA	Forward: GAGAAACGGCTACCACATCC
wiouse	(for DNA)	Reverse: CACCAGACTTGCCCTCCA
Human	ND I	Forward: TTCGCCCTATTCTTCATAGC
Tuman		Reverse: GGAGGTTAGAAGTAGGGTCT
Human	ND2	Forward: ACACCCTTAATTCCATCCAC
		Reverse: GAGATAGGTAGGAGTAGCGT
Human	ND 3	Forward: AGAAAAATCCACCCCTTACG
riulliall	IND J	Reverse: CATGGTAGGGGTAAAAGGAG
Human	ND4	Forward: CTCTCTGTGCTAGTAACCAC

		Reverse: ATGGGGGGATAGGTGTATGAA
TT		Forward: CACACCTCATATCCTCCCTA
Human ND	ND4L	Reverse: GCATTGGAGTAGGTTTAGGT
	ND 5	Forward: CCTATTCGCAGGATTTCTCA
Human	ND5	Reverse: AATGTGCATAGTGGGGATTT
		Forward: CAACCATCATTCCCCCTAAA
Human	NDO	Reverse: GTGGGTTTAGTAATGGGGTT
	CVTD	Forward: AAACTTACTATCCGCCATCC
Human	CIIB	Reverse: GTAAGGGTGGAAGGTGATTT
11	COVI	Forward: CCTAATCACAGCAGTCCTAC
Human	COXI	Reverse: ATGGGAGATTATTCCGAAGC
Human	COV2	Forward: AAACCGTCTGAACTATCCTG
Human	COA2	Reverse: AATGGGGGAAGTATGTAGGA
Human	COY2	Forward: CGCTAAATCCCCTAGAAGTC
Human	COAS	Reverse: AGCCAATAATGACGTGAAGT
Human		Forward: GATCCCCACCTCCAAATATC
numan	AIFO	Reverse: TAAGAGATCAGGTTCGTCCT
Uumon		Forward: AACACAAACTACCACCTACC
numan	AIFO	Reverse: CAATGAATGAAGCGAACAGA
Human		Forward: ACCCAGAAGTAGGGTTTTGG
numan	NDUFAI	Reverse: TTCTCCAAACCCTTTGACAC
Uuman	NDUESI	Forward: CAAGGATTCTAGTCCCTCCG
TTuman	ND01'SI	Reverse: CTTAACATATTGCTTCTCCCCG
Uumon	SDHA	Forward: AACATGGAGGAGGACAACTG
TTuman	SDIIA	Reverse: CATATCGCAGAGACCTTCCA
Human	SDHR	Forward: TTGTTCCCGATTTGAGCAAC
Tuman	SDIID	Reverse: TCACGCTCTTCTATGGACTG
Human	UOCPR	Forward: TGGTCAAAATGGCTGGTAAG
Tuman	UQUND	Reverse: CTCGCATTAACCCCAGTTTA
Human	UOCPO	Forward: TCAGCTACAGCTTGTCACC
пuman	υψεκφ	Reverse: AAACACTACAAACTGCGGC
Human	COY6C	Forward: GCTTTGTATAAGTTTCGTGTGG
riuiiiall	CUAUC	Reverse: AACTGAGAAAGACTTACTGTCC
Human	COX7C	Forward: GATCTGCATTTGCTACACCC

	Reverse: GGCTGCACCTCTTAAAATGC
ATP5B1	Forward: CCTGTTGGTCCTGAGACTTT
	Reverse: CCAAAAAGCCCAATTTTGCC
TFAM	Forward: CCAAGAAGCTAAGGGTGATT
	Reverse: TGTTTCTTTATTGTGCGACG
TFB1M	Forward: AAGTTGTTAAGACTGCAAGC
	Reverse: TTTCAACCACCAGAAGTTCA
TFB2M	Forward: TGGATGGAAAACTACGAGTG
	Reverse: GGAACTGCTTCTATTCCCAA
POLRMT	Forward: AAGGTCAAGCAAATAGGAGG
	Reverse: GTCAGGCCCTTCCTGTA
18S rRNA	Forward: GTAACCCGTTGAACCCCATT
	Reverse: CCATCCAATCGGTAGTAGCG
D-loop	Forward: CAGTACCTAACAAACCCACA
(for DNA)	Reverse: GAGGTCGTAAACCCTATTGT
18S rRNA	Forward: TGGTGAGCTGCGAGAATAG
(for DNA)	Reverse: TTTTATGGTAATAACGCGGC
	ATP5B1 TFAM TFB1M TFB2M POLRMT 18S rRNA D-loop (for DNA) 18S rRNA (for DNA)