1	Sup	oorting	Inf	ormati	on

2 3	Dietary Lead and Phosphate Interactions Affect Oral Bioavailability of Soil Lead in the Mouse
4	
5	Karen D. Bradham, ^{*,†} Clay M. Nelson [†] , Gary L. Diamond, [‡] William C. Thayer, [‡] Kirk G.
6	Scheckel,§ Matt Noerpel, § Karen Herbin-Davis, Brittany Elek, David J. Thomas
7	
8	
9	[†] Office of Research and Development, United States Environmental Protection Agency, Research
10	Triangle Park, North Carolina, 27711, United States
11	[‡] SRC, Inc., North Syracuse, NY 13212
12	[§] Office of Research and Development, United States Environmental Protection Agency,
13	Cincinnati, Ohio, 45224, United States
14	Pharmacokinetics Branch, Integrated Systems Toxicology Division, National Health and
15	Environmental Effects Laboratory, ORD, US EPA, RTP, NC, 27709, United States
16	
17	
18	
19	
20	
21	
22	*Corresponding author: Address: 109 T.W. Alexander Drive, MD-205-05, Research Triangle
23	Park, NC 27711. E-mail: <u>bradham.karen@epa.gov</u> . Phone: (919) 541-9414. Fax: (919) 541-
24	3527.
25	

Table of contents

27	Figure S1 Dietary Pb levels	Page S3
28	Lead speciation analysis	Page S3
29	Data analysis	Page S4
30	Table S1: Formulas for calculation of experimental variables	Page S4
31	Table S2: Effect of dietary P concentration unamended AIN-93G rodent diet	Page S5
32	Table S3: Effect of dietary P concentration unamended or Pb-amended AIN-93G rodent diet	Page S5
33	Table S4: Effect of dietary amendment unamended or Pb-amended AIN-93G rodent diet	Page S5
34	Table S5: Effect of dietary amendment and dietary P level	Page S6
35	Regression analysis of dietary Pb source and dietary P levels on percent body weight	Page S6
36	Table S6: Identification of variables retained as significant predictors.	Page S6
37	Table S7: Identification of variables retained as significant predictors of percent feed	Page S7
38	Table S8: Effect of dietary P level and dietary Pb source on relative growth	Page S7
39	Table S9. Effect of dietary P level and Pb source on relative growth	Page S7
40	Table S10. RBA estimates for SRM 2710a.	Page S7
41	Figure S2: Levels of phosphate and calcium and their molar ratio in rodent diets	Page S9
42	References	Page S9
43		
44		
45		
46		
47		
48		
10		
50		
51		

55

Relation between target and measured Pb levels in diets. Line of identity shown.

56 Lead Speciation Analysis

57 XAS data were collected at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) Sector 5, beam line 5BM-D, at the Advanced Photon Source (APS) of the Argonne National Laboratory 58 (ANL), U.S. The storage ring operated at 7 GeV in top-up mode. A liquid N₂ cooled double crystal Si(111) 59 monochromator was used to select the incident photon energies and a platinum-coated mirror was used for 60 61 harmonic rejection. Calibration was performed by assigning the first derivative inflection point of the 62 absorption L_{III} -edge of Pb metal (13035 eV), and each sample scan was collected simultaneously with a Pb 63 metal foil. The samples were ground and pressed into pellets, affixed to a multiport sample holder, and 64 mounted for analysis without any further modifications. Data collection was conducted in fluorescence mode with two Vortex-ME4 four-element silicon drift detectors for the samples. Various Pb standards 65 66 were used as reference spectra, including mineral sorbed Pb [Pb-ferrihydrite, Pb-kaolinite, Pb-goethite, Pb67 gibbsite, Pb-birnessite, and Pb-montmorillonite in which each mineral was equilibrated with $Pb(NO_3)_2$ at 68 pH 6 for a target surface loading of 2500 mg kg⁻¹ after dialysis], organic bound Pb [Pb-fulvic acid and Pbhumic acid as reagent grade organic acids equilibrated with Pb(NO₃)₂ at pH 6 for a target loading of 1500 69 mg kg⁻¹ after dialysis, and reagent grade Pb acetate, Pb cysteine, and Pb citrate], Pb carbonate [Smithsonian 70 71 Natural History Minerals Collection specimens of cerussite, hydrocerussite, and plumbonacrite with X-ray 72 diffraction verification], PbO [massicot and litharge], Pb-phosphates [chloropyromorphite, hydroxypyromorphite, lead phosphate (Pb₃(PO₄)₂), PbHPO₄, and Pb sorbed to apatite at pH 6 and surface 73 loading of 2000 mg kg⁻¹], and other lead minerals [leadhillite, magnetoplumbite, plumboferrite, 74 75 plumbogummite, plumbojarosite, anglesite, and galena from the Smithsonian Natural History Minerals Collection with X-ray diffraction verification]. All reference spectra were collected in transmission mode 76 with dilution calculations determined by XAFSMass¹ mixed in binder and pressed into a pellet. 77

78 All sample and standard spectra were calibrated to a Pb foil on the same energy grid, averaged, and normalized, and the background was removed by spline fitting using IFEFFIT.² Principal components 79 analyses were performed in Sixpack³ on the normalized scans, and target factor analyses of each Pb standard 80 81 were performed to determine the most appropriate standards to be used for linear combination fitting (LCF) 82 analyses. Pb standards with SPOIL values <3.0 were used in the LCF analyses, which included mineral 83 sorbed Pb [sum of Pb-ferrihydrite, Pb-goethite, and Pb-birnessite], organic bound Pb [sum of Pb-fulvic acid and Pb-humic acid], Pb carbonate [sum of cerussite and hydrocerussite], PbO [sum of massicot and 84 litharge], Pb-phosphates [chloropyromorphite, hydroxypyromorphite, Pb₃(PO₄)₂, and Pb sorbed to apatite], 85 and other lead minerals [leadhillite, plumboferrite, plumboyarosite, anglesite, and galena]. The k-space 86 87 functions of the standards and samples were used for all linear combination fitting. Levenberg-Marquardt least squares algorithm was applied to a fit range of 0.6 to 9.0 Å⁻¹. Best-fit scenarios, defined as having the 88 smallest residual error, also had sums of all fractions close to 1. To fully describe any particular sample 89 90 within 1% reproducible error, a minimum of two components was necessary, and results have a $\pm 10\%$ 91 accuracy.

92 Data analysis

Table S1 - Formulas for calculation of experimental variables

Variable	Formula
Cumulative food intake (g)	Sum of daily food intake
Cumulative Pb intake (mg)	Cumulative food intake*dietary Pb level
Cumulative P intake (mg)	Cumulative food intake*dietary P level
% Body weight change	((Final body weight – Initial body weight)/Initial body weight)*100
% Feed efficiency	((Final body weight – Initial body weight)/ Cumulative food intake)*100

Table S2 - Effect of dietary P concentration on food intake, relative growth, and feed efficiency in mice consuming unamended AIN-93G rodent diet^a

Dietary P level	N	Cumulative food intake (g)	% Body weight change	% Feed efficiency
Low	4	81.8 ± 7.4ª	6.04 ± 3.58ª	3.71 ± 1.97ª
Basal	5	73.9 ± 2.4ª	7.85 ± 3.75ª	5.38 ± 2.38ª
High	4	70.9 ± 2.1 ^b	4.52 ± 3.67ª	3.16 ± 2.58ª

a. Mean \pm SD shown. Means denoted with different letters are significantly different (p ≤ 0.05 , ANOVA, Tukey HSD).

ANOVA, Tukey HSD).

 Table S3 – Effect of dietary P concentration on food intake, relative growth, and feed efficiency in mice consuming either unamended or Pb-amended AIN-93G rodent diet^a

Dietary P level	N	Cumulative food intake (g)	% Body weight change	% Feed efficiency
Low	43	77.8 ± 4.36 ^a	7.23 ± 3.04 ^a	4.81 ± 1.96ª
Basal	29	81.6 ± 5.86 ^b	7.27 ± 2.81ª	4.76 ± 1.72 ^a
High	28	72.5 ± 4.54°	1.93 ± 3.58 ^b	1.35± 2.52 ^b

a. Mean \pm SD shown. Means denoted with different letters are significantly different (p ≤ 0.05 ,

 Table S4 – Effect of dietary amendment on food intake, relative growth, and feed efficiency in mice consuming either unamended or Pb-amended AIN-93G rodent diet^a

Dietary amendment	N	Cumulative food intake (g)	% Body weight change	% Feed efficiency
Unamended	13	75.4 ± 6.45ª	6.27 ± 3.65ª	4.18 ± 2.36ª
PbAc	42	77.8 ± 6.18ª	5.41 ± 4.50 ^a	3.57 ± 2.97ª

	2710a	45	77.7 ± 5.63°	5.94 ± 3.40 ^a	3.96 ± 2.24ª			
109	a. Mean \pm SD shown. Means denoted with different letters are significantly different (p ≤ 0.05 ,							
110	ANOVA, Tukey	HSD).						
11								
12	Table S5 – Effe	ect of dietar	y amendment and dietary	P level on food intake, rela	tive growth, and			
13	feed efficiency in mi	ce consumi	ng either high P unamend	ed or Pb-amended AIN-930	G rodent diet ^a			
Dieta	ary amendment – diet P	level N	Cumulative food intake	(g) % Body weight chang	e 8 Feed efficiend			
	Unamended-high P	4	70.9 ± 2.1°	4.52 ± 3.67 ^a	3.16 ± 2.58ª			
	PbAc-high P	12	72.6 ± 5.3ª	-0.42 ± 2.46 ^b	-0.30 ± 1.84 ^b			
	2710a-high P	12	72.9 ± 4.4ª	3.42 ± 3.28ª	2.39± 2.24ª			
14	a. Mean \pm SD show	vn. Means d	lenoted with different letter	ers are significantly differen	$rt (p \le 0.05,$			
15	ANOVA, Tukey	HSD).						

117 Regression analysis of dietary Pb source and dietary P levels on percent body weight change and 118 percent feed efficiency

119 Stepwise linear regression evaluated dietary Pb level, dietary P level, dietary Pb source, cumulative

120 Pb intake, cumulative P intake, cumulative food intake, and two interaction terms, (cumulative food

121 intake*dietary P level) and (dietary P*Pb source) to explain variance in percent body weight change and

122 feed efficiency. In constructing the regression models, the entry p-value for dependent variables was 0.15.

123 Among these variables, cumulative food intake, dietary Pb source, (cumulative food intake*dietary P

level), and (dietary P level*dietary Pb source) remained in the final model as significant predictors of

percent body weight change (adjusted $r^2 = 0.50$). Results of this analysis is shown in Table S6.

126 127
 Table S6 – Identification of variables retained as significant predictors of percent

 body weight change in stepwise linear regression

Dependent Variable: Percent body weight change					
Independent Variable	Mean	Partial r ²	Р		
Intercept	-18.12 ± 3.89		<0.0001		
Cumulative food intake	0.38 ± 0.05	0.27	<0.0001		
Cumulative food intake*dietary P level	-0.044 ± 0.006	0.15	<0.0001		
Dietary Pb source	-3.31 ± 1.05	0.02	0.0021		
Dietary P level*dietary Pb source	2.12 ± 0.50	0.09	< 0.0001		
Adiuste	ed r ² =0.50				

129

Table S7 shows results of stepwise linear regression analysis of these variables in relation to % feed efficiency. Here, cumulative food intake, dietary Pb source, cumulative food intake*dietary P level, and dietary P level*dietary Pb source remained in the final model as significant predictors of feed efficiency (adjusted $r^2 = 0.48$).

- 134
- 135
- 136

Table S7 - Identification of variables retained as significant predictors of percent feed efficiency in stepwise linear regression

Dependent Variable: Percent feed efficiency								
Independent Variable	Mean	Partial r ²	р					
Intercept	-10.00 ± 2.61		0.0002					
Cumulative food intake	0.23 ± 0.03	0.22	<0.0001					
Cumulative food intake*dietary P level	-0.030± 0.004	0.16	<0.0001					
Dietary Pb source	-2.38 ± 0.70	0.02	0.0010					
Dietary P level*dietary Pb source	1.51 ± 0.34	0.10	<0.0001					
Adjuste	d r² =0.48		Adjusted r ² =0.48					

137

Table S8. Effect of dietary P level and dietary Pb source on relative growth predicted from regression
 models

	Dietary Pb source						
	Pb Ac	etate	NIST SRM 2710a				
	% Body weight	% Body weight	% Body weight	% Body weight			
	change (at mean	change across	change (mean	change across			
	cumulative food	cumulative food	cumulative food	cumulative food			
Dietary	intake)	intake range	intake)	intake range			
P level		(min, max)		(min, max)			
Low	8.3	3.9, 14.4	7.1	2.7, 13.2			
Basal	4.9	1.0, 10.1	5.8	2.0, 11.1			
High	1.5	-1.8, 6.0	4.5	1.2, 9.0			

140

141 **Table S9**. Effect of dietary P level and Pb source on relative growth predicted from regression models

Dietary Pb	Dietary P level			
source	Low	Basal	High	
PbAc	8.3	4.9	1.5	
	(3.9, 14.4)	(1.0, 10.1)	(-1.8, 6.0)	
2710a	7.1	5.8	4.5	
	(2.7, 13.2)	(2.0, 11.1)	(1.2, 9.0)	

Estimates of % body weight change at mean cumulative food intake and across food intake range
(min, max)

Table S10. RBA estimates for SRM 2710a

Table STO. KDA estimates for SKW 2710a

Dietary Pb	RBA - Bone	RBA - Blood	RBA – Kidney	RBA – Point Estimate
Low	0.28	0.42	0.40	0.37
	(0.23, 0.33)	(0.31, 0.55)	(0.32 <i>,</i> 0.49)	(0.32, 0.42)
Basal	0.24	0.47	0.52	0.41
	(0.06, 0.42)	(0.37, 0.58)	(0.43 <i>,</i> 0.65)	(0.33, 0.48)
High	0.72	0.49	0.29	0.50
	(0.45, 1.08)	(0.34, 0.63)	(0.21, 0.37)	(0.39, 0.61)

Values shown in parentheses are 95% confidence limits.

150 Figure S2. Dietary P and Ca levels

152

Levels of phosphate and calcium and their molar ratio in rodent diets. Levels of phosphate (P) and calcium (Ca) expressed as % of total diet mass and on a molar ratio basis in 46 natural ingredient (NI) diets and in AIN-93G purified diet (PD).

156 **References**

- 157 (1) Klementiev, K. V. 2012. XAFSmass, freeware:
- 158 www.cells.es/Beamlines/CLAESS/software/xafsmass.html
- 159 (2) Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray
- absorption spectroscopy using IFEFFIT. J Synchrotron Rad. 2005, 12:537-541.
- 161 (3) Webb, S. M. SIXpack: A graphical user interface for XAS analysis using IFEFFIT. Phys Scr.
- 162 2005, T115, 1011–1014.