## **Supplementary materials**

## Cell-type specific analysis of physiological action of estrogen in mouse oviducts

Emily A. McGlad, Gerardo G. Herrera, Kalli K. Stephens, Sierra L. W. Olsen, Sarayut Winuthayanon, Joie Guner, Sylvia C. Hewitt, Kenneth S. Korach, Francesco J. DeMayo, John P. Lydon, Diana Monsivais, and Wipawee Winuthayanon **Supplementary figures:** 



**Figure S1.** IHC Staining of ESR1, Ki67, and PGR in uterine and oviduct samples collected from ovariectomized females treated with Veh or  $E_2$ . **A.** Staining of Ki67 and PGR in uterine samples after Veh or  $E_2$  treatment. **B-D.** Lower magnification of ESR1, Ki67, and PGR staining images from Fig. 1 of oviduct samples treated with Veh or  $E_2$ . All scale bars = 50  $\mu$ m.



Figure S2. Dot plots of top 10 differentially expressed genes in cell clusters comparing between Veh vs. E<sub>2</sub> treatment or InfAmp vs. IsthUTJ. A. Marker genes in all cell clusters including 0/ciliated (InfAmp), 1/secretory (InfAmp), 2/secretory (IsthUTJ), 3/fibroblast *Pdgfra*<sup>-</sup>, 4/muscle, 5/epithelial (subset), and 6/fibroblast *Pdgfra*<sup>+</sup> cell clusters. Epithelial cells are indicated by *Epcam*<sup>+</sup> and *Krt8*<sup>+</sup>, mesenchymal cells (fibroblasts and muscles) by *Vim*<sup>+</sup>, *Pdgfra*<sup>+</sup>, and *Twist2*<sup>+</sup>, muscle cells by *Act2a*<sup>+</sup> and *Myh11*<sup>+</sup>, ciliated cells by *Foxj1*<sup>+</sup> and *Ccdc153*<sup>+</sup>, secretory cells by *Ovgp1*<sup>+</sup>, and endothelial cells by *Pecam1*<sup>+</sup>. *Krt19* was expressed in both epithelial and fibroblasts. *Sprr2f, Serpina1e*, and *S100g* were expressed specifically in 5/epithelial cell subset.
B-K. The top 10 region- and E<sub>2</sub>-specific genes for each cell clusters are shown.



Figure S3. UCSC Genome Browser screenshots of ESR1 binding sites using ESR1 chromatin immunoprecipitation-sequencing (ChIP-seq) analysis from mouse uterine dataset (GSE36455)  $^{50,51}$  that were treated with E<sub>2</sub> (blue tracks) or Veh (pink tracks) for 1 hr. Significant increase of ESR1 binding sites (red arrows) on the promotors, TSSs, and intragenic regions were observed in a subset of genes identified in scRNA-seq analysis in the mouse oviduct to be enriched after E<sub>2</sub>

compared to Veh treatment in A. all cell clusters, B. ciliated cells, C. secretory cells, D. epithelial cell subset, E. fibroblasts, and F. muscle cells. Note that scales on y-axes for Veh and  $E_2$  tracks are actual, not fixed scales.



**Figure S4:** Dot plots of genes in (**A-B**) protease and (**C-D**) protease inhibitor family in cells isolated from Veh and E<sub>2</sub>-treated samples; including 0/ciliated, 1/secretory (InfAmp), 2/secretory (IsthUTJ), and 3/fibroblast *Pdgfra*<sup>-</sup>, 4/muscle, 5/epithelial (subset), and 6/fibroblast *Pdgfra*<sup>+</sup> cell clusters.



**Figure S5.** Dot plots of marker genes for each cell cluster from estrus and Veh- vs. E<sub>2</sub>-treated datasets combined, including 0/secretory (InfAmp), 1/ciliated (InfAmp), 2/secretory (IsthUTJ), 3/epithelial (subset), 4/fibroblast *Pdgfra*<sup>+</sup>, 5/fibroblast *Pdgfra*<sup>-</sup>, and 6/muscle cell clusters.



**Figure S6.** UMAP plot of clusters of cells from human fallopian tubes with different cell-type markers; epithelial cells ( $EPCAM^+$ ), fibroblast ( $PDGFRA^+$ ), muscle cells (MYH11), endothelial cells ( $PECAM1^+$ ), immune cells ( $CD52^+$ ), secretory epithelial cells ( $OVGP1^+$ ), ciliated epithelial cells ( $FOXJ1^+$ ), epithelial cells in the infundibulum and the ampulla identified in mice ( $PDXK^+$ ), fibroblast and muscle cells identified in mice ( $DCN^+$ ), secretory epithelial cells in the isthmus identified in mice ( $SERPINA1^+$ ), epithelial cells in the UTJ identified in mice ( $CRABP2^+$ ).

## Supplementary Tables:

**Table S1:** Top 25 genes and *p*-values (*p*) enriched in each cell cluster identified in Veh- and E<sub>2</sub>treated samples; 0/ciliated (InfAmp), 1/secretory (InfAmp), 2/secretory (IsthUTJ), 3/ fibroblast *Pdgfra*<sup>-</sup>, 4/muscle, 5/epithelial (subset), and 6/fibroblast *Pdgfra*<sup>+</sup> clusters.

|                | 0/   | 1/         |            |                   |               |            |                                       | 4/               |               |            |              |          |              |
|----------------|------|------------|------------|-------------------|---------------|------------|---------------------------------------|------------------|---------------|------------|--------------|----------|--------------|
| 0/ gene        | n 0/ | 1/<br>gene | 1/n        | 2/ gene           | 2/ n          | 3/ gene    | 3/ n                                  | 3/ <i>p</i> gene |               | 5/ gene    | 5/ n         | 6/ gene  | 6/ n         |
| o/ gene        | P    | gene       | - <i>P</i> | -/ gene           | <i>-, p</i>   | o, gene    |                                       | Sene             | 6 34E         | o, gene    | 8.94E        | o, gene  | 4 96E        |
| Ccdc153        | 0    | Ovgp1      | 0          | Fxvd3             | 0             | Igfbp6     | 0                                     | Acta2            |               | Sprr2f -95 |              | Dcn -67  |              |
|                |      | o or or o  | -          |                   |               | -8/*F*     | , , , , , , , , , , , , , , , , , , , |                  | 6.74E         | ~          | 3.92E        |          | 2.29E        |
| Tppp3          | 0    | Aldoc      | 0          | Fxyd4             | 0             | Upk3b      | 0                                     | Tagln            | -113          | Car2       | -91          | Gsn      | -64          |
|                |      |            |            |                   |               |            |                                       | Ŭ                | 7.06E         |            | 2.96E        |          | 5.03E        |
| Elof1          | 0    | Ier3       | 0          | Wfdc2             | 0             | Dcn        | 0                                     | Myl9             | -113          | Tmem213    | -78          | Lgals1   | -47          |
|                |      |            |            |                   |               |            |                                       |                  | 1.72E         |            | 1.13E        |          | 2.34E        |
| Chchd10        | 0    | Gstm2      | 0          | Id2               | 0             | Rarres2    | 0                                     | Tpm2             | -110          | Gm28940    | -75          | Serpinf1 | -45          |
| 4933434E2      |      |            |            | Slc25a4           |               |            |                                       |                  | 3.92E         | 4933408J1  | 1.46E        |          | 3.62E        |
| ORik           | 0    | Plet1      | 0          | 8                 | 0             | Gas6       | 0                                     | Tpm1             | -110          | 7Rik       | -75          | Cd63     | -45          |
|                |      |            |            |                   |               |            |                                       |                  | 1.25E         | A530040E   | 1.60E        |          | 4.50E        |
| Mtl            | 0    | Rpl32      | 0          | Calb1             | 0             | Aebp1      | 0                                     | Myl6             | -109          | 14Rik      | -75          | Lum      | -44          |
| ~              |      |            |            | ~                 |               | ~          |                                       |                  | 9.06E         |            | 2.43E        |          | 5.74E        |
| Gm19935        | 0    | Plat       | 0          | Grn               | 0             | Serping1   | 0                                     | Mustn1           | -104          | Zfp366     | -75          | Mirg     | -41          |
| T              | 0    | D 1        | 0          | Pdzklip           | 0             | <i>C</i> 2 | 0                                     | C 1              | 1.23E         | C= 17(()   | 2.6/E        | Mand     | 7.38E        |
| 1mem212        | 0    | KCN1       | 0          | 1                 | 0             | Csrp2      | 0                                     | Csrp1            | -101<br>5.70E | Gm4/002    | -/5          | Myrji    | -41<br>7.52E |
| Eam 182h       | 0    | Dn114      | 0          | 10000             | 0             | Cfh        | 0                                     | Elma             | 5./0E         | Magad      | 2.86E        | 016.945  | /.52E        |
| Fum1050        | 0    | Крі14      | 0          | Апрер             | 0             | Cjn        | 0                                     | гти              | -94<br>2.94E  | npus4      | -73<br>2.04E | 0117845  | -41<br>7.52E |
| Unrah 3        | 0    | Krt18      | 0          | Galm              | 0             | Spare      | 0                                     | Sparell          | 2.04L<br>03   | Gm11112    | 5.04E        | Fornl    | 7.52E<br>41  |
| v preos        | 0    | K/110      | 0          | Guim              | 1 16F         | Spure      | 0                                     | Spurcii          | 1.88F         | 0117712    | 3 10F        | F030018  | 7 53F        |
| Foril          | 0    | Kctd14     | 0          | Cndn?             | -302          | C3         | 0                                     | Mvh11            | -89           | Gm29325    | -75          | B13Rik   | -41          |
| 1700016K1      | Ŭ    | iiciui i   | 0          | Chup2             | 6.99E         | 05         | 0                                     | myn11            | 6.44E         | 0112/020   | 3.12E        | Gm2901   | 7.58E        |
| 9Rik           | 0    | Rps5       | 0          | Rnf128            | -296          | Ogn        | 0                                     | Mvlk             | -89           | Gm13963    | -75          | 0        | -41          |
| 1110017D1      |      | I ···      |            |                   | 1.08E         | - 8 -      |                                       |                  | 8.24E         |            | 3.13E        | -        | 7.79E        |
| 5Rik           | 0    | Emb        | 0          | Ybx1              | -288          | Upk1b      | 0                                     | Des              | -88           | Col28a1    | -75          | Tbr1     | -41          |
|                |      | Seleno     |            |                   | 8.76E         |            |                                       |                  | 1.01E         |            | 3.24E        |          | 7.86E        |
| Dynlrb2        | 0    | т          | 0          | Ifitm 1           | -281          | Nbl1       | 0                                     | Lgals1           | -87           | Gm26945    | -75          | Tdrd5    | -41          |
|                |      |            |            |                   | 1.79E         |            |                                       |                  | 6.19E         |            | 3.24E        |          | 7.96E        |
| Gm867          | 0    | Rps9       | 0          | Cldn10            | -274          | Nkain4     | 0                                     | Vim              | -87           | Gm40190    | -75          | Ecel1    | -41          |
| 1700007K1      |      |            |            |                   | 3.98E         |            |                                       |                  | 5.18E         |            | 3.38E        | AI18237  | 8.03E        |
| 3Rik           | 0    | Rps27a     | 0          | Crabp2            | -272          | Cldn15     | 0                                     | Cald1            | -83           | Gm16630    | -75          | 1        | -41          |
| <i>a</i> . 10. |      |            | 0          | <i>a i</i>        | 1.01E         |            |                                       | <i>a</i>         | 9.12E         | G. 2000.6  | 3.77E        | A930009  | 8.10E        |
| Cfap126        | 0    | Eeflal     | 0          | Gstol             | -271          | Rspol      | 0                                     | Crip1            | -83           | Gm38096    | -75          | AISRik   | -41          |
| <i>C L</i> 1   | 0    | D 111      | 0          | 9530014<br>D07D:1 | 1.08E         | <i>C</i> 1 | 0                                     | a · 2            | 3.52E         | 0.55       | 3.77E        | Gm3904   | 8.24E        |
| Calm1          | 0    | RplII      | 0          | BU/Rik            | -2/0          | Gasi       | 0                                     | Cavins           | -/0           | Gpr55      | -/3          | 3        | -41          |
| Sector         | 0    | En 1       | 0          | 4833423<br>E24D:L | 3.04E         | D 2        | 0                                     | Dalld            | 3.30E         | Daal10h    | 3.80E        | 76-107   | 8.48E        |
| Snin           | 0    | гпі        | 0          | E24Kik            | -200<br>1.60E | D2m        | 0.00E                                 | гини             | -/3<br>6.41E  | Kasilob    | -73<br>4 14E | ZJP407   | -41<br>0.07E |
| Dnah5          | 0    | Rns15a     | 0          | $Cd\theta$        | -259          | Iaf1       | +00                                   | Acth             | -73           | Gm5160     | 4.14E        | Gnall    | 9.97E        |
| Dhuno          | Ŭ    | npsisu     | 0          | Cu>               | 1.46E         | 15/1       | 4.65E                                 | new              | 1.43E         | 4430106G   | 4 16F        | Iaky13-  | 1.01E        |
| Tm4sf1         | 0    | Rn l 23    | 0          | Tspan8            | -217          | Col3a1     | -307                                  | Mfoe8            | -69           | 13Rik      | -75          | 1gkv15-  | -40          |
| 111115/1       | v    | 10125      | 3.59E      | Ispano            | 1.30E         | corsur     | 2.51E                                 | 11/800           | 3.11E         | 15100      | 4.29E        | 55 1     | 1.04E        |
| Dvnll1         | 0    | Slc1a3     | -308       | Klf5              | -214          | Efemp1     | -303                                  | Igfbp7           | -67           | Serinc4    | -75          | Mcmdc2   | -40          |
| , <u>-</u>     |      |            | 5.41E      | <i>y</i> -        | 8.55E         | J. 17-     | 1.55E                                 | GV T             | 7.06E         |            | 4.40E        | Gm4062   | 1.09E        |
| Rsph1          | 0    | Rps4x      | -306       | Pla2g4a           | -205          | Cavin1     | -295                                  | Malat1           | -64           | Slc47a1    | -75          | 1        | -40          |
|                |      | 1          | 6.17E      |                   | 1.03E         |            | 9.40E                                 |                  | 4.00E         |            | 4.60E        | Gm4091   | 1.10E        |
| Nudt4          | 0    | Cd81       | -305       | Sox17             | -202          | Tmsb10     | -288                                  | Calm2            | -60           | Gm33280    | -75          | 0        | -40          |
|                | 1    |            | 4.42E      |                   | 7.82E         |            | 1.26E                                 |                  | 2.39E         |            | 4.80E        |          | 1.10E        |
| Dnajc7         | 0    | Rpl10      | -303       | Car2              | -195          | Crip1      | -285                                  | Actn1            | -59           | Rgs6       | -75          | Slc13a1  | -40          |

**Table S2:** Top 500 genes and *p*-values differentially expressed in Veh- vs. E<sub>2</sub>-treated samples or InfAmp vs. IsthUTJ in all 7 cell clusters combined, 0/ciliated, 1 and 2/secretory, 3 and 6/fibroblast, 4/muscle, and 5/epithelial (subset) cell clusters. Please refer to file Table S2.xlsx.

**Table S3:** Gene ontology (GO) biological processes (BPs) enriched in Veh- vs. E<sub>2</sub>-treated samples or InfAmp vs. IsthUTJ in all 7 cell clusters combined, 0/ciliated, 1 and 2/secretory, and 3 and 6/fibroblast. Data were analyzed using the top 500 genes identified in Table S2. PANTHER overrepresentation test was used as analysis type with Fisher's test, FDR correction was included when applicable. There were no significant BPs enriched in 4/muscle and 5/epithelial (subset) cell clusters. Please refer to file Table S3.xlsx.

**Table S4:** Top 1,000 genes and GOBPs enriched in endogenous (estrus) vs. exogenous E<sub>2</sub>treated samples in all 7 cell clusters combined. Data were analyzed using the top 1,000 genes identified. PANTHER overrepresentation test was used as analysis type with Fisher's test and FDR correction. Please refer to file Table S4.xlsx.

| 0/              |               |               |               |                  |               |           |               | 4/    |              |               |              |          |              | 7/              |              | 8/         |              | 9/             |              | 10/         | 10/          |
|-----------------|---------------|---------------|---------------|------------------|---------------|-----------|---------------|-------|--------------|---------------|--------------|----------|--------------|-----------------|--------------|------------|--------------|----------------|--------------|-------------|--------------|
| gene            | 0/ p          | 1/ gene       | 1/ p          | 2/ gene          | 2/ p          | 3/ gene   | 3/ p          | gene  | 4/ p         | 5 gene        | 5/ p         | 6/ gene  | 6/ p         | gene            | 7/ p         | gene       | 8/ p         | gene           | 9/ p         | gene        | р            |
| 0               | 2.27E-        |               | 2.29E-        | 0                | 1.82E         | KRTAP5-   | 1.76E         | HLA-  | 7.25         |               | 1.19E-       |          | 1.37         |                 | 4.46E        | PTCR       | 2.68         | CCL2           | 2.42E        | 0           | 2.40         |
| IL7R            | 179           | SPARCL1       | 182           | WFDC2            | -165          | ASI       | -130          | DPB1  | E-81         | LYZ           | 63           | GSN      | E-21         | FTH1            | -15          | Α          | E-13         | 1              | -11          | IFI27       | E-07         |
|                 | 1.52E-        |               | 3.18E-        |                  | 7.30E         |           | 3.25E         | HLA-  | 2.68         | AC02065       | 4.38E-       |          | 2.07         |                 | 5.89E        |            | 2.75         | CLD            | 2.64E        | EGFL        | 2.85         |
| CD69            | 151           | SFRP4         | 176           | CLU              | -165          | HMMR      | -130          | DPA1  | E-80         | 6.1           | 63           | CFD      | E-21         | SRGN            | -15          | GZMB       | E-13         | N5             | -11          | 7           | E-07         |
|                 | 1.01E-        |               | 4.79E-        |                  | 2.83E         |           | 6.17E         | HLA-  | 6.77         |               | 1.62E-       |          | 7.21         |                 | 1.50E        | PPP1R      | 2.84         | CAVI           | 2.92E        |             | 3.15         |
| KLRB1           | 140           | DCN           | 170           | KRT18            | -161          | BNIPL     | -130          | DQA1  | E-76         | CSTA          | 57           | DCN      | E-21         | EMP3            | -14          | 14B        | E-13         | N2             | -11          | LIFR        | E-07         |
|                 | 3.61E-        |               | 6.22E-        |                  | 9.24E         | RNF217-   | 8.52E         | HLA-  | 1.43         |               | 2.03E-       |          | 7.73         | SCNN1           | 1.32E        | JCHAI      | 2.85         |                | 2.94E        |             | 3.39         |
| BTG1            | 124           | Cl1orf96      | 163           | ELF3             | -153          | ASI       | -130          | DRB1  | E-72         | S100A9        | 57           | IGFBP6   | E-21         | G               | -13          | N          | E-13         | TFF3           | -11          | CAVI        | E-07         |
|                 | 2.12E-        |               | 2.72E-        |                  | 3.19E         | TMEM25    | 9.70E         |       | 6.17         |               | 2.19E-       | SERPIN   | 9.13         | DLGAP           | 1.35E        |            | 2.94         |                | 4.17E        | MT1         | 3.76         |
| CD52            | 120           | IGFBP4        | 162           | CLDN4            | -147          | 5A        | -130          | CD74  | E-71         | TYROBP        | 53           | GI       | E-21         | 2               | -13          | IGKC       | E-13         | TFPI           | -11          | M           | E-07         |
|                 | 4.62E-        |               | 1.93E-        |                  | 1.06E         |           | 1.45E         | HLA-  | 1.01         |               | 1.94E-       |          | 3.92         | SLC30A          | 1.37E        |            | 3.28         | SPTB           | 8.16E        |             | 4.09         |
| CD3E            | 112           | IGFBP7        | 161           | KRT8             | -146          | TEPP      | -129          | DRA   | E-70         | CTSS          | 52           | MGP      | E-20         | 2               | -13          | MZB1       | E-13         | NI             | -11          | EMP1        | E-07         |
|                 | 3.31E-        |               | 1.11E-        |                  | 7.82E         |           | 1.46E         | HLA-  | 3.01         | -             | 1.01E-       |          | 6.66         |                 | 1.40E        |            | 3.48         | S100           | 1.97E        | RNAS        | 6.45         |
| RPS12           | 110           | LGALSI        | 160           | SLPI             | -145          | PRCI      | -129          | DMA   | E-69         | FTL           | 50           | FBLN5    | E-20         | NCAPH           | -13          | PLD4       | E-13         | A10            | -10          | EI          | E-07         |
| CDAD            | 5.79E-        | GEDDI         | 2.89E-        | CDICDA           | 3.56E         | ND 1777 ( | 1.57E         | HLA-  | 1.09         | <i></i>       | 3.00E-       | DI (CO   | 1.04         | G100.45         | 1.56E        | 10 55      | 3.54         | WI FL          | 5.98E        | VED         | 6.53         |
| CD3D            | 110           | SFRP1         | 158           | CRISP3           | -123          | WNT7A     | -129          | DQBI  | E-67         | TKT           | 49           | PLAC9    | E-19         | S100A5          | -13          | IRF/       | E-13         | KLF4           | -10          | NFIB        | E-07         |
| TSC22           | 1.14E-        | CDAL          | 2.95E-        | WDTIO            | 3.66E         | ** • •    | 1.82E         | MS4A6 | 6.83         | 1.0.11.00     | 3.47E-       |          | 1.80         | (CD) (          | 1.57E        |            | 4.44         | HLA-           | 7.85E        | SOCS        | 7.44         |
| D3              | 109           | CD81          | 155           | KRT19            | -119          | ILII      | -129          | A     | E-60         | LGALS2        | 49           | LTBP4    | E-19         | ASPM            | -13          | TTM2C      | E-13         | E              | -10          | 3           | E-07         |
| 11 ( D.G.2      | 4.66E-        | TD1 (2        | 3.92E-        | ELV (CI          | 5.18E         | AL137077  | 2.25E         | GPRI8 | 4.66         | G100.40       | 5.06E-       | CDE      | 2.98         | 71121           | 1.58E        | CL ICA     | 5.29         | VI DA          | 1.15E        | GNG         | 7.46         |
| HARS2           | 106           | IPM2          | 154           | ELN-ASI          | -116          | .2        | -129          | 3     | E-59         | S100A8        | 49           | CPE      | E-19         | ZHXI            | -13          | CLIC3      | E-13         | KLF2           | -09          |             | E-07         |
| LINC02          | 5.22E-        |               | 4./3E-        | AC02090          | /.50E         | AC09/359  | 2.86E         | SPCN  | 7.18         | DCAD          | 6.4/E-       | SEMA3    | 5.79         | 71157()         | 1.58E        | IDEO       | 7.06         | AKAP           | 1.41E        | 1M4S        | 9.85         |
| 315             | 106           | RARRES2       | 155           | 9.3              | -110          | .2        | -129          | SKGN  | E-59         | PSAP          | 48           | C        | E-19         | ZNF/03          | -13          | IKF8       | E-13         |                | -09          | F I         | E-07         |
|                 | 5.32E-        | SELENO        | 8.09E-        | AC11939          | 1.31E         | 100 120   | 3.03E         |       | 2.08         | TUDCI         | 9.85E-       | GEDDO    | 1.50         | AF12/5          | 1.59E        | CNUL       | 1.20<br>E.12 | GNG            | 1.86E        | VDV2        | 1.34         |
| KPLP1           | 106           | P             | 151           | 0.2              | -115          | ADRA2B    | -129          | AIF1  | E-38         | THBSI         | 48           | SFRP2    | E-18         | //.4            | -13          | GNAIS      | E-12         |                | -09          | IBAS        | E-06         |
| AC0229          | 8./4E-        | TCLO          | 1.41E-        | AC01163          | 2.10E         | KONIA     | 3.38E         |       | 5.39         |               | 2.12E-       |          | 1.80         | 270             | 1.64E        | GRAS       | 1.39         | LMO            | 1.8/E        | CCD         | 2.40         |
| 10.1<br>C10.ruf | 100           | IGM2          | 14/<br>1.26E  | 2.1              | -115          | ACNJ4     | -129          | TVDOD | E-38         | AIFI          | 4/<br>1.20E  | TIMPS    | E-18         | 3/9             | -13          | P<br>SEC(1 | E-12         | 2              | -09<br>2.22E | COSB        | E-00         |
| C100rj          | 1.00E-<br>105 | DTCDS         | 1.20E-<br>145 | EDCAM            | 3.13E         | SUOV      | 3.42E         |       | 5.59<br>E 55 | 10182         | 1.20E-       | MEAD5    | 2.89<br>E 19 | CDVID           | 1.00E        | DEC01      | 1.00<br>E 12 | VDV2           | 2.22E        | 1211        | 2.44<br>E 06 |
| 91              | 2.120         | FIGDS         | 145<br>6.47E  | EFCAM            | -115          | SUUA      | -129          | Γ     | E-33         | AF 152        | 40<br>1.74E  | MFAF J   | 2.01         | 4 <i>C</i> 0020 | -13          |            | E-12         | I DA J<br>V AN | -09<br>2.12E | A2M<br>TSC2 | E-00         |
| EDC4            | 3.12E-<br>105 | J             | 0.4/E-        | AVADE            | 4.00E         | WAIT7P    | 3./IE<br>120  | SCVI  | 1.45<br>E 54 | TVMD          | 1./4E-       | CCDC8    | 2.91<br>E 19 | AC0020          | 1.09E        | 2          | 3.00<br>E 12 | NAN<br>V2      | 3.12E        | 15C2<br>2D1 | 5.44<br>E 06 |
| EDC4            | 105<br>5.54E  | I<br>SELENO   | 145<br>1.40E  | AKAF0<br>4107964 | -115<br>1.90E | WINI/D    | -129<br>2 79E | SUKI  | E-34         | TIME          | 40<br>1.74E  | 0        | E-10         | 91.2            | -13<br>1.72E | 5          | E-12         | MMD            | -09<br>4 21E | 2D1         | 2.50         |
| EARDA           | 5.54E-<br>105 | M             | 1.49E-<br>120 | AL0/804          | 1.60E         | I AMD3    | 3.78E         | CTSZ  | 1.//<br>E 54 | VCAN          | 1./4E-<br>46 |          | 7.77<br>E 18 | CYCLO           | 1./3E<br>12  | ADEC       | 7.02<br>E 12 | MMA<br>N1      | 4.21E        | וחו         | 5.39<br>E 06 |
| TADI 4          | 5 71E-        | 11/1          | 1.70E-        | 4.2              | 3 /1F         | BAGAINT   | -12)<br>4.48E | CISL  | 7.50         | VCAN          | 1.61E-       | ADIIID   | 1.71         | 4C0076          | -13<br>173E  | AKEU       | 0.05         | NNM            | -0)<br>1 12F | ID1         | 3.63         |
| KCNE5           | 105           | TAGIN         | 135           | 11               | -114          | 3         | -120          | RGS10 | F-54         | CVBB          | 1.0112-      | IIAPI    | F-17         | 34.3            | -13          | NR3C1      | F-12         | T              | -00          | GSN         | 5.05<br>E-06 |
| KCWEJ           | 1.03E-        | INGLN         | 135<br>185E-  | 1.1              | -114<br>3.63E | 5         | 5 16E         | HI 4- | 1 32         | CIDD          | 3 58E-       | UAI I    | 2.15         | DMERP           | -13<br>1.77E | WASCI      | 0.71         | ARIA           | 6.76E        | SPRV        | 3.67         |
| KIFC1           | 104           | NBL1          | 131           | 03               | -114          | TSFM      | -129          | DMB   | F-53         | \$100412      | 44           | ACKR3    | E-17         | 1               | -13          | CD74       | E-12         | A A            | -09          | 1           | E-06         |
| iiii ci         | 1.68E-        | NBEI          | 2.67E-        | 0.5              | 5.65E         | 151 111   | 5 28E         | OGERI | 2.92         | TNERSE        | 1.11F-       | nemits   | 2.85         | F4M86           | 1 78E        | CDTT       | 1.04         | 4DIR           | 7 24F        | IIAC        | 3.82         |
| MATN4           | 104           | RAMP1         | 129           | DNAH17           | -114          | DCAF4     | -129          | 1     | E-53         | $\frac{1}{R}$ | 43           | \$100410 | E-17         | R2              | -13          | AIRG       | F-11         | F              | -09          | A           | E-06         |
| MPDU            | 5 28E-        | TO INT I      | 2 44E-        | AC02723          | 6.17E         | AC010618  | 5 30E         | - 1   | 9 54         | 10            | 8.66E-       | 5100110  | 4 52         | TMEM2           | 1.82E        | PMEP       | 1 72         | ANXA           | 8.43E        | SOXI        | 4 04         |
| 1               | 104           | <i>IGFBP6</i> | 125           | 7.2              | -114          | .3        | -129          | RGS1  | E-53         | UPP1          | 43           | COL6A2   | E-17         | 55B             | -13          | Al         | E-11         | 2              | -09          | 7           | E-06         |
| -               | 5.77E-        |               | 9.18E-        | SLC35F           | 9.72E         | AC051619  | 5.46E         |       | 1.12         |               | 1.94E-       | 2010112  | 4.60         |                 | 1.83E        |            | 1.74         | IGFR           | 1.07E        |             | 6.49         |
| KCNB2           | 104           | IFITM3        | 125           | 1                | -114          | .5        | -129          | MS4A7 | E-50         | MAFB          | 41           | COL1A2   | E-17         | ZBTB12          | -13          | PLP2       | E-11         | P7             | -08          | ID3         | E-06         |
| AP0007          | 8.87E-        | LAPTM4        | 3.76E-        | -                | 1.34E         |           | 5.58E         | FCERI | 2.49         | HLA-          | 5.73E-       |          | 4.66         |                 | 1.88E        | LDLR       | 2.00         |                | 1.13E        | THB         | 7.44         |
| 87.1            | 104           | A             | 124           | IL13             | -113          | SPATA12   | -129          | G     | E-50         | DRA           | 41           | IGFBP5   | E-17         | RSPO3           | -13          | AD4        | E-11         | LAYN           | -08          | D           | E-06         |
| AC0076          | 9.43E-        |               | 3.63E-        | TACSTD           | 1.48E         | TMEM25    | 5.69E         |       | 6.93         |               | 7.01E-       |          | 5.47         | AC1185          | 1.88E        |            | 3.06         | RAB1           | 1.13E        | ADIR        | 1.01         |
| 20.2            | 104           | PGRMC1        | 123           | 2                | -113          | 4-AS1     | -129          | CD83  | E-48         | LAPTM5        | 41           | PMP22    | E-17         | 53.1            | -13          | RPS3A      | E-11         | 1A             | -08          | F           | E-05         |
|                 | -             |               |               |                  | -             |           | -             |       | -            |               |              |          |              |                 | -            |            | · · · · ·    |                |              |             |              |