Supplementary materials for

Evaluation of protein secondary structure from FTIR spectra improved after partial deuteration

Joëlle De Meutter and Erik Goormaghtigh

Center for Structural Biology and Bioinformatics, Laboratory for the Structure and Function of Biological Membranes, Campus Plaine CP206/02; Université Libre de Bruxelles, B1050 Brussels, Belgium

Table of Contents

Table S1: list of 25 proteins included in the Kennard-Stone test set	S2
Figure S1: HDX spectra of myoglobin and metallothionein	S4
Figure S2: Reproducibility: quadruplicate spectra of myoglobin and metallothionein at t_0 and t_{15}	S5
Figure S3: predicted versus actual secondary structure contents obtained by PLS	S6
Figure S4: predicted versus actual secondary structure contents obtained by SVM	S7
Figure S5: ASLR determination of secondary structures	S8

Table S1: list of 25 proteins included in the Kennard-Stone test set

		Kennart-Stone selection				
			ordered		anti//	
Protein name	PDB name	a-helix	a-helix	b-sheet	b-sheet	Others
Aldolase A	1ZAH					
Alpha-2-Macroglobulin	4ACQ		Х	Х	Х	
Alpha-Crystallin B chain	2YGD			Х		
Amidase	2UXY			Х		
Amino acid oxidase, D-	1VE9					
Apolipoprotein E3	1H7I	Х	Х			Х
Apo-Transferrin	4H0W					
Aprotinin (Trypsin inhibitor Kunitz type)	4Y0Y	Х	Х	Х		Х
Avidin	1VYO				Х	
Beta-Amylase	1FA2				Х	
Beta-Galactosidase	5A1A			Х	Х	
Beta-Glucunoridase	3LPF					
Beta-Lactamase TEM	1XPB	Х			Х	
Beta-Lactoglobulin	3NPO	Х		Х		
Bowman-Birk proteinase inhibitor	5J4Q					Х
Calmodulin	1PRW	Х	Х	Х		
Carbonic anhydrase 1	1HCB				Х	
Carbonic anhydrase 2	1V9E	Х	Х			Х
Carboxyl esterase	1K4Y					
Carboxypeptidase A1	2CTB			Х		
Carboxypeptidase Y	1720					
Catalase	3RGP		X			
CerulopIsamin	4FN7		~~~~			
Choline oxidase	4MIW	Х				
Chymotripsinogen A	2CGA				х	
Citrate synthase	3ENI	Х				Х
Concanavalin A (Lectin)	113H				х	X
Creatine (phospho)kinase	1U6R					
Cytochrome c	1HRC					
Deoxyribonuclease-1	3DNI				Х	Х
DT-diaphorase	1D4A					X
Elastase	10NI			Х		
Endo-1,4-beta-xylanase	2110	х		X	х	
Enolase	1FBH	~				
Galactose oxidase	251F			Х	Х	
Gelonin	3KT7	х			X	
Glucagon	1NAU		Х			Х
Glucose Oxidase	1CF3	Х				X
Glutamate oxaloacetate transaminase 1	5TOO	X				
Glutathione Reductase	3DJG				Х	
Glyceraldehyde-3-phosphate dehydrogenase	1.10X			Х		
Glycogen phosphorylase-b	1AXR				1	Х
Hemoglobin	20SP					X
Hexokinase	1168				1	X
Immunoglobuling G	1HZH	Х		Х	Х	X
Insulin (neat)	3W7Y		Х		X	
Lactate Dehydrogenase	3H3F		-			
Lactoferrin (Lactotransferrin) human	1CB6			Х		Х

Lactoferrin bovin	1BLF		Х			
Lactoperoxidase	6A4Y			Х		
Lectin	1LEN			Х		
Leptin	1AX8	Х	Х			Х
Lipoxidase	1F8N					
Lysostaphin	4LXC			Х	Х	Х
Lysozyme	4LZT		Х			
Metallothionein-2A	4MT2					Х
Micrococcal Nuclease	1EY0	Х				
Myoglobin	1WLA	Х	Х			Х
Ovalbumin	10VA			Х	Х	Х
Ovotransferrin (Conalbumin)	10VT			Х		
Pepsin A	4PEP		Х			
Pepsinogen	2PSG	Х				
Peroxidase	1HCH		Х			
Phosphatase, Alkaline	1Y6V				Х	
Phosphoglucomutase 1	5EPC				Х	
Phosphoglycerate kinase	1QPG	Х				
Phospholipase A2	20SH	Х	Х			
Protein disulfide isomerase	4EL1	Х	Х		Х	
Pyrophosphatase inorganic	1 40	Х				Х
Pyruvate Kinase	1A49		Х			
Ribonuclease A	1KF5		Х	Х		
Ribonuclease T1	1RLS					
Serum Albumin	1N5U	Х		Х	Х	Х
SilB-C	2L55				Х	
Silb-NM2	5A4G				Х	
Subtilisin Calsberg	3UNX	Х			Х	
Superoxide Dismutase (Fe)	1ISA	Х	Х	Х		
Superoxide Dismutase (CU Zn)	1Q0E		Х			Х
Thaumatin	3AOK		Х	Х		
Transketolase	2R8O			Х		
Transthyretin (Préalbumin)	1TTA		Х	Х		Х
Triose Phosphate Isomerase	1YPI		Х			
Trypsin inhibitor A Kunitz type SBTI	1BA7	Х	Х		X	Х
Ubiquitin	2WWZ					
ZneB	3LNN		Х			

Table S1: alphabetically sorted list of the 85 proteins included in the study along with the selection by the Kennard-Stone algorithm of a 25-protein test set for α -helix, ordered helices, β -sheet, antiparallel β -sheet and "Others" Further information can be found in (De Meutter and Goormaghtigh, 2020) including source organism, expression system if any, commercial reference of the product, Swiss-Prot entry, UniProtKB accession number, PDB entry, resolution of the structure, molecular weight, isoelectric pH, extinction coefficient at 280 nm, content, all secondary structure contents and all 20 amino acid content.

Reference

De Meutter J, Goormaghtigh E (2020) A convenient protein library for spectroscopic calibrations. Comput Struct Biotechnol J 18:1864–1876. <u>https://doi.org/10.1016/j.csbj.2020.07.001</u>

Figure S1: Spectra of myoglobin (blue) and metallothionein (green) recorded at t₀, t₁₅, t₁₀₅, t_{24h} as indicated on the figure. $v(^{1}H_{2}O)$ at 3300-3500 cm⁻¹ refers to $v(O^{-1}H)$ in water, overlapped by the protein amide A band, $v(^{2}H_{2}O)$ at 2500 cm⁻¹ refers to $v(O^{-2}H)$ in heavy water, $\delta(^{1}H_{2}O)$ near 1640 cm⁻¹ refers to $\delta(O^{-1}H)$ in water, $\delta(^{1}HO^{2}H)$ near 1450 cm⁻¹ to bending in the mixed molecule $^{1}HO^{2}H$ and $\delta(^{2}H_{2}O)$ near 1200 cm⁻¹ to $\delta(O^{-2}H)$ in heavy water. Amide I occurs near 1650 cm⁻¹, amide II near 1545 cm⁻¹ and amide II' near 1450 cm⁻¹.

Figure S2: Reproducibility: quadruplicate spectra of myoglobin and metallothionein at to and t15

Figure S2: myoglobin and metallothionein spectra are presented at t_0 and t_{15} as indicated in the right margin of the figure. Each condition, represented by a different color, is reproduced in quadruplicate. For the sake of the clarity, each group of 4 spectra has been shifted by 0.1 absorbance unit with respect to the previous one. Spectra have been normalized on the amide I region by vector normalization.

A accurate evaluation of the position of the maximum is obtained after curve fitting of the maximum of the amide I band by a 3rd order polynomial. The mean position of the amide I maximum is presented below with the standard deviation.

Condition	Mean ± standard deviation
metallothionein t ₀	1655.2±0.8
metallothionein t ₁₅	1650.1±0.8
myoglobin t ₀	1655.5±0.3
myoglobin t ₁₅	1653.2±0.1

Position of the amide I maximum \pm the standard deviation for the quadruplicates

Figure S3: Relation between predicted β -sheet (top row) and "Others" (bottom row) structures obtained by PLS and actual "true" secondary structure content obtained after analysis of PDB-stored high resolution structures by DSSP. All concentrations are reported in %. The left column refers to results obtained at deuteration time t₀ and the right column at t₁₅. Each circle in the graphs represents a protein. RMSECV, correlation coefficient r and ζ^{RMSECV} are reported in the inset.

Figure S4: predicted versus actual secondary structure contents obtained by SVM

Figure S4: Relation between predicted α -helix (top row), β -sheet(middle) and "Others" (bottom row) structures obtained by SVM and actual ("True") secondary structure content obtained after analysis of PDB-stored high resolution structures by DSSP. All concentrations are reported in %. The left column refers to results obtained at deuteration time t₀ and the right column at t₁₅. Each circle in the graphs represents a protein. RMSECV, correlation coefficient r and ζ are reported in the inset.

Figure S5: ASLR determination of secondary structures

Figure S5: ascending stepwise linear regression. Top, ordered helix; bottom, antiparallel β -sheet. The left column presents the profile of the RMSECV (expressed in % of the structure content) when a single wavenumber is used (blue line), when a second is added (green line), a third one (red line), a fourth one (cyan) and a fifth one (magenta). For each curve, the value of the minimum with the corresponding wavenumber is reported in the middle column. The right column reports the predicted secondary structure content as a function of the actual content for each structure. The red diagonal line reflects a situation where prediction is perfect. All four deuteration time periods indicated on top of the left columns were used simultaneously. The best wavenumbers identified by a red circle are reported in the middle column.