Fig. S1

Fig.S1. Tfh phenotype. **A,** Bcl6, Il21, Cxcr5 and Pdcd1 mRNA expression in *in vitro* polarized Th0, Th1 and Tfh cells. **B**, (Perforin) Prf, (granzyme B) GzmB, and Ifng mRNA expression in *in vitro* polarized Th0, Th1 and Tfh cells. **C**, IFN γ (ELISA) and Tbet (ICS flow cytometry) expression in *in vitro* polarized Th1 and Tfh. Indicated values represent the mean \pm SEM and are representative of at least three independent experiments; ns: not significant,* p < 0.05, ** p < 0.01, versus "Th0".

Α

Fig. S2. T cell localization and gene expression after transfer. **A**, Percentage of CD45.2 cells among CD4⁺ T cells measured by flow cytometry in non-draining lymph node (LN), draining lymph node (dLN) and tumor from MC38 tumor bearing mice. **B**, Cxcr5, Bcl6, Il21, Ifng, Tbx21, Gata3, Il4, Il17 and Foxp3 mRNA expression in CD45.2 sorted cells. Indicated values represent the mean \pm SEM and are representative of at least three independent experiments; * p < 0.05, ** p < 0.01.

Fig. S3. Flow cytometry gating strategy to identify mouse Tfh cells. A, Flow cytometry gating strategy. **B**, Relative to figure 2B. Wild-type mice were inoculated with EL4 lymphoma, B16F-10 melanoma, LLC1 lung adenocarcinoma, Tc1 non-small cell lung cancer or MC38 colorectal carcinoma (C57BL/6 mice) or CT26 colorectal carcinoma, 4T1 triple negative breast cancer (Balb/c mice). When tumors reached 100-150 mm², the spleen, non-draining lymph node (ndLN), tumor-draining lymph node (dLN) and tumor were excised. The percentage of Tfh among CD4⁺ T cells was analyzed by flow cytometry.

Fig. S4. Tfh localization within TLS. MC38 and CT26 tumor serial sections were stained with anti-CD4, anti-BCL6 and anti-CD8 antibodies and analyzed by immunohistochemistry. Arrow: enlarge image; dotted red line: TLS.

Fig. S5. Cxcl13 expression in tumor and non-tumor cells. Cxcl13 expression was analyzed by RT-PCR. **A**, Expression of Cxcl13 in CD8⁺ cells sorted from Spleen, LN, dLN and tumor from MC38 tumor bearing mice. **B**, Expression of Cxcl13 in CT26, 4T1, B16-F10, MC38, LLC1 and EL4 cancer cell lines and in tumors from tumor bearing mice injected with CT26, 4T1, B16-F10, MC38, LLC1 and EL4 cell lines. **C**, Expression of Cxcl13 in LN and dLN from LLC1, 4T1, MC38 and CT26 tumor bearing mice. **D**, Cxcl13 expression in CD45⁻ cells, CD45⁻ CD90⁺cells and CD45⁺ cells sorted by flow cytometry from MC38 tumor bearing mice. Indicated values represent the mean \pm SEM and are representative of at least three independent experiments; ns: not significant, * < 0.05, ** p < 0.01, **** p < 0.0001, versus "spleen" in **A** versus "cell line" in **B** and versus "CD45⁻" in **D**.

Fig. S6. Impact of CXCL13 on CD8⁺ T cell migration. Number of Th0 or Tfh cells that have migrated through the Matrigel matrix loaded in the cell culture insert. The bottom of underneath wells was loaded with CD8⁺ cells sorted from spleen (sCD8), tumor (tCD8) supplemented or not with anti-CXCL13. Th0 or Tfh migrated cells were stained with DAPI. Indicated values represent the mean \pm SEM and are representative of at least three independent experiments; * p < 0.05, ** p < 0.01, *** p < 0.001.

Fig. S7. Impact of TGF- β on CXCL13. **A**, The production of CXCL13 was analyzed by ELISA in supernatant of CD8⁺ T cells activated with anti-CD3 / CD28 and treated by an increased dose of TGF- β for 72 hours. **B**, The production of TGF- β was analyzed by ELISA in MC38 cancer cells or 3T3 fibroblast-like cell supernatants. **C**, Expression of Cxcl13 was analyzed by RT-PCR in naive CD8⁺ T cells activated with anti-CD3 / CD28 alone (medium) or with supernatant of MC38 or 3T3 cell lines for 48 hours. Indicated values represent the mean ± SEM and are representative of at least three independent experiments; ns: not significant,* p < 0.05, *** p < 0.001 versus "0" in **A** and versus Ctrl in **C**.

Fig. S8

Fig. S8. IL-21 production by Tfh cells and IL-21 effect on CD8 differentiation. **A**, Expression of Il21 was analyzed by RT-PCR in Tfh (CXCR5⁺CD4⁺), CXCR5⁻CD4⁺, CD8⁺ T cells (left panel – relative to CXCR5⁻CD4⁺) and in Th1, Th2, Th17 and Tfh cells (right panel – relative to Th2) from tumors of MC38 tumor bearing mice. **B**, Expression assessed by RT-PCR of

Cd101, Ctla4, Tigit, Lag3, Havcr2, Slamf6, Cx3cr1, Rorc and II17 in naive CD8⁺ T cells activated by anti-CD3 / CD28 stimulation and treated or not (Ctrl) with recombinant IL-21 (20ng/ml) for 48 hours. The relative gene expression was normalized to Actb. **C**, Analysis of CD101 and CX3CR1 markers by flow cytometry in CD8⁺PD1⁺ cells from tumor of MC38 tumor bearing mice treated or not with anti-IL-21 antibody. Indicated values represent the mean \pm SEM and are representative of at least three independent experiments; ns: not significant,* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, versus "CXCR5⁺CD4⁺" in **A** and versus Ctrl in **B and C**.

Fig. S9. Tfh cell amount in Bcl6^{-/-} CD4^{cre} mice and exhaustion marker expression in OTI CD8⁺ T cells. **A**, Percentage of Tfh cells measured by flow cytometry in CD4^{cre} mice and Bcl6^{-/-} CD4^{cre} mice. Indicated values represent the mean \pm SEM and are representative of at least three independent experiments,* p < 0.05, versus Ctrl. **B**, SLAMF6, and Tim3 expression analyzed by flow cytometry in OTI CD8⁺ PD-1⁺ T cells activated for 3 days by anti-CD3 / CD28. **C**, MC38 tumor sections were stained with anti-CD8 antibodies and analyzed by immunohistochemistry. Values represent the relative number of CD8 T cell clusters per mm² on the tumor section.

Fig. S10. Analysis of the correlation between CXCL13 and TGFB genes and between immune cell clusters. **A**. Heat map showing the Pearson correlation coefficients between CXCL13 and different genes representative of TGFB (TGFB1, TGFB2 and TGFB3) in each type of cancer provided by the TCGA. Blue cells represent a negative correlation and red cells a positive correlation between CXCL13 and each of the three genes representative of TGF β . **B**. Heat map showing the Pearson correlation coefficients between the abundance of cells in the different clusters characterized by Guo et al. from single-cell RNAseq data*: p-value < 0.05.

Fig. S11. Tumor samples from glioblastoma (n=2), ovarian (n=2) and breast cancer (n=7) patients were dissociated, stained with anti-CD45 and then were activated with whole blood with PMA/Iono. After activation, samples were stained with anti-IFN γ , anti-IL-21, anti-IL-4, anti-CXCL13, anti-IL-17A, anti-CD3, anti-CD4 and anti-CD8 antibodies and analysed by flow cytometry. **A.** Flow cytometry gating strategy to identify different subtypes of CD4⁺ T

cells and CD8⁺ T cells in blood and tumor samples. **B.** Frequency of CD4⁺ and CD8⁺ T cells among CD45⁺ T cells in blood or tumor samples and frequency of Tfh cells (CD4⁺ CXCR5^{high} PD1^{high}) among CD4⁺ T cells (left panel). Frequency of Th1 (CD4⁺ IFN γ^+ IL-17A⁻), Th17 (CD4⁺ IFN γ^- IL-17A⁺), Th17-Th1 (CD4⁺ IFN γ^+ IL-17A⁺), Th2 (CD4⁺ IFN γ^- IL-17A⁻ IL-4⁺) and Tfh (CD4⁺ IFN γ^- IL-17A⁻ IL-4⁻ CXCR5^{high} PD1^{high}) cells in blood and tumor (right panel).

Fig. S12. Impact of Tfh/exhausted CD8 metagene on cancer patient survival. Kaplan-Meier curves of overall survival in breast invasive carcinoma (BRCA), Colon and Rectum adenocarcinoma (COADREAD) and Lung adenocarcinoma (LUAD). Red curves represent patients with high expression of Exhausted CD8⁺ metagene and Tfh metagene and black curves patients with at least one metagene with low expression.

Fig. S13. Impact of Tfh/exhausted CD8 metagene and CXCL13 on cancer patient progression-free survival. Kaplan-Meier survival analysis for progression-free survival estimated for patients from GSE136961 (A) and GSE93157 (B). Red curves represent patients with high expression of two metagenes among Tfh, CXCL13 and Exhausted CD8⁺ T cells and black curves represent other patients.

Target	Fluorochrome	Lot Number	Supplier
CD45	BV395	30-F11	BD Biosciences
CD8	BUV805	53-6.7	BD Biosciences
PD1	Vioblue	HA2-7B1	Miltenyi
TIM-3	PE-Cy7	RMT3-23	Biolegend
Lag3	BV650	C9B7W	Biolegend
Tigit	APC-R700	1G9	BD Horizon
Granzyme B	PE	REA-226	Miltenyi
ΤΝFα	BV510	MP6-XT22	Biolegend
IL-2	FITC	JES6-5H4	Biolegend
IFNγ	APC	XMG1.2	BD Biosciences
Ki67	BV510	B56	BD Biosciences
CD45	Viogreen	REA737	Miltenyi
CD4	BUV805	GK1.5	BD Biosciences
CXCR3	APC	REA724	Miltenyi
ST2	PE	DJ8	MD Bioproducts
CCR6	PE-Vio770	REA277	Miltenyi
CXCR5	BV421	L138D7	Biolegend
PD1	FITC, PE	REA802	Miltenyi
B220	APC-Cy7	RA3-6B2	BD
FoxP3	PerCP	FJK-16S	Invitrogen
SLAMf6	PE, Fitc	13G3	Miltenyi
CX3CR1	BV711	SA011F11	BD Biosciences
CD45	Viogreen	REA737	Biolegend
BCL6	PE-Cya7	K112-91	BD Biosciences
CD25	Fitc	7D4	BD Biosciences
CD45r	APC-Cy7	RA3-6B2	BD Biosciences
CD278	Alexa Fluor 6477E.17G9		BD Biosciences
CD11b Fitc	Fitc	M1/70	BD Biosciences
CD11c Apc	Арс	HL3	BD Biosciences
CD19	APC-Cy7	1D3	BD Biosciences
CD45.1	Fitc	A20	Biolegend
CD45.2	BV510	104	Biolegend
Fixable Viability Dye eFluor™ 780			Invitrogen
BD Horizon™ Fixable Viability Stain 700			BD

Table S1: Antibodies used in flow cytometry experiments on mice

Table S2: Primers used for RT-qPCR experiments

	Fw	Rev
Ascl2	TCCATCAAGCTTGCATTCAG	GAAGGTGCAAACGTCCACTT
Actb	ATGGAGGGGAATACAGCCC	TTCTTTGCAGCTCCTTCGTT
Bcl6	AAAGGCCGGACACCAGTTTT	TCACGGGGAGGTTTAAGTGC
Blimp1	GCAAAGAGGTTATTGGCGTGGT	CAGGCAGCCAGGTTTTGCTC
Cx3cr1	CCATCTGCTCAGGACCTCAC	CACCAGACCGAACGTGAAGA
Cxcl13	TTGTGTAATCGGCTTCCACA	ACGTTGAACTCCACCTCCAG
Cxcr5	GCTGCAGCTATGAACTACCCA	CAGTTCCTTGTACAGGTCATCCA
Cxcr5	GCTGCAGCTATGAACTACCCA	CAGTTCCTTGTACAGGTCATCCA
Eomes	CGGGACAACTACGATTCCATG	CTAGGGGAATCCGTGGGAGA
Gata3	AGGATGTCCCTGCTCTCCTT	GCCTGCGGACTCTACCATAA
Granzyme B	GAAGCCAGGAGATGTGTGCT	GCACGTTTGGTCTTTGGGTC
lfng	TGAGCTCATTGAATGCTTGG	ACAGCAAGGCGAAAAAGGAT
17	TGAGCTTCCCAGATCACAGA	TCCAGAAGGCCCTCAGACTA
1121	AAAACAGGCAAAAGCTGCAT	TGACATTGTTGAACAGCTGAAA
114	CGAGCTCACTCTCTGTGGTG	TGAACGAGGTCACAGGAGAA
Pdcd1	CAGGCTGGGTAGAAGGTGAG	CATTCACTTGGGCTGTGCT
Perforine	TTGGTGGGACTTCAGCTTTCC	CCATACACCTGGCACGAACT
Rora	CCCCTACTGTTCCTTCACCA	TGCCACATCACCTCTCTCTG
Slamf6	AGTCACTCGTCCAATGCAGG	AGAGTATTCGGCCTCTCTGG
Tbx21	ATCCTGTAATGGCTTGTGGG	TCAACCAGCACCAGACAGAG
Tcf1	CGCAGAGACTTTTCCCGGAC	TGTTATGCAGCGGGGGTTGA
Tgfb	CAACCCAGGTCCTTCCTAAA	GGAGAGCCCTGGATACCAC
Tim3	CCACTCCAATGTGGATAGCA	CAAGAACCCTAACCACGGAG
Tnfa	AGGGTCTGGGCCATAGAACT	CCACCACGCTCTTCTGTCTAC
Tox1	GCCTCTCTGTTCCGTCTGAG	CTCCCCGTCAAACTTGTTGC

Table S3: Table of metagene signatures

Metagene	Genes
Tfh	CD200, FBLN7, ICOS, SGPP2, SH2D1A, PDCD1, TIGIT
Exhausted CD8 ⁺	CD244, EOMES, LAG3, PTGER4
CD8 ⁺ T cells	CD8A, CD8B

Exhausted CD8⁺

TfH

ACC	-0.767	-0.861	-0.606	-1.028
	[-1.524;-0.011]	[-1.612;-0.109]	[-1.366;0.153]	[-1.805;-0.251]
RICA	-0.421	-0.363	-0.598	0.264
BLCA	[-0.757;-0.085]	[-0.683;-0.043]	[-0.893;-0.304]	[-0.05;0.577]
BRCA	-0.515	-0.525	-0.371	-0.425
BRCA	[-0.887;-0.143]	[-0.865;-0.185]	[-0.715;-0.027]	[-0.745;-0.104]
CESC	-0.544	-0.976	-0.887	-0.629
6256	[-1.019;-0.07]	[-1.596;-0.355]	[-1.412;-0.362]	[-1.111;-0.148]
CHOL	-0.37	-0.311	-1.256	-0.941
	[-1.419;0.679]	[-1.308;0.686]	[-2.385;-0.127]	[-1.882;0]
COADREAD	-0.586	-0.448	-0.492	-0.45
	[-1.011;-0.16]	[-0.875;-0.022]	[-0.923;-0.062]	[-0.874;-0.027]
ESCA	-0.301	0.476	-0.28	-0.244
	[-0.796;0.194]	[-0.044;0.996]	[-0.739;0.179]	[-0.697;0.21]
GBMI GG	0.438	0.915	1.141	0.382
GBINIEGO	[0.178;0.697]	[0.663;1.167]	[0.835;1.446]	[0.126;0.637]
HNSC	-0.426	-0.373	-0.362	-0.535
	[-0.693;-0.16]	[-0.645;-0.102]	[-0.652;-0.071]	[-0.806;-0.263]
ΚΙΡΑΝ	0.895	0.589	0.691	0.418
KIFAN	[0.634;1.155]	[0.328;0.849]	[0.388;0.995]	[0.158;0.679]
ПНС	-0.206	-0.57	-0.166	0.239
	[-0.552;0.139]	[-0.926;-0.214]	[-0.535;0.202]	[-0.106;0.584]
	-0.405	-0.393	-0.325	-0.237
LUAD	[-0.739;-0.07]	[-0.694;-0.092]	[-0.623;-0.027]	[-0.558;-0.085]
	-0.22	-0.158	-0.118	-0.286
	[-0.504;0.064]	[-0.45;0.135]	[-0.401;0.165]	[-0.579;0.007]
MESO	-0.303	0.29	-0.388	-0.775
	[-0.771;0.166]	[-0.211;0.792]	[-0.858;0.081]	[-1.317;-0.232]
OV	-0.482	-0.216	0.139	-0.243
00	[-0.775;-0.189]	[-0.525;0.092]	[-0.154;0.433]	[-0.548;0.061]
PAAD	0.19	0.283	-0.4	-0.628
	[-0.226;0.606]	[-0.138;0.703]	[-0.872;0.072]	[-1.111;-0.145]
PRAD	-0.625 [-1.898:0.648]	-0.706	-1.223	-1.446
		[-2.061;0.649]	[-2.783;0.337]	[-2.803;-0.09]
SARC	-0.441	-0.643	-0.48	-0.442
	[-0.848;-0.033]	[-1.056;-0.229]	[-0.887;-0.073]	[-0.855;-0.028]
SKCM	-0.749	-0.853	-0.867	0.308
	[-1.484;-0.015]	[-1.592;-0.115]	[-1.631;-0.103]	[-0.472;1.087]
STAD	-0.346	0.148	-0.296	-0.392
	[-0.662;-0.03]	[-0.1/5;0.4/2]	[-0.624;0.031]	[-0./41;-0.044]
THCA	-0.518 [-1.507;0.47]	-0.745	-0.794	0.725
		[-1./33;0.244]	[-1./82;0.195]	[-0.531;1.981]
UCEC	-1.15	-0.74	-0.495	-0.554
	[-1.954;-0.347]	[-1.44;-0.039]	[-1.21;0.22]	[-1.255;0.147]
UCS	-0.79	-0.448	0.741	0.428
UVM	[-1.581;0.001]	[-1.243;0.347] 2.025 [0.901;3.15]	[0.049;1.433]	[-0.297;1.154]
	2.069		1.408	-0.448
ALL DATA	[1.141;2.997]	. , .,	[0.546;2.271]	[-1.338;0.441]
	0.209	-0.188	0.127	-0.109
	[0.132;0.286]	[-0.266;-0.111]	[0.045;0.208]	[-0.193;-0.026]
NSCL	-0.924	-0.540	-1.037	-0.331
	[-1.911;0.063]	[-1.397;0.317]	[-1.874;-0.200]	[-1.180;0.518]

Table S4: Log hazard ratio with confidence interval

CXCL13

CD8⁺ T cells