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A. Weighted Signed Stock Networks

For two stocks A and B in a given market, our interest is to investigate whether the

relationship between the stock log returns (YA, YB)T changes with time. In this context,

copulas are very useful since they give a flexible structure for modeling multivariate de-

pendences [1]. Let FA, FB and, F be the continuous marginals and the joint distribution

function of (YA, YB)T . Then, based on Sklar’s theorem [2], there is a unique copula func-

tion C(·, ·, t) : [0, 1]2 → [0, 1] such that F (yAt, yBt, t) = C(FA(yAt, t), FB(yBt, t), t) for any

yjt ∈ Yj, j = A,B. As a measure of the underlying dependence in the copula structure the

Kendall’s tau rank correlation is used, which can be written as a functional of the copula.

Therefore, time varying Kendall’s tau is defined in terms of copulas as

τA,B(t)=4

∫
[0,1]2

C(u1, u2, t)dC(u1, u2, t)−1,

where (u1, u2) ∈ [0, 1]2. To estimate the time varying dependence, we use a nonparametric

estimation method because of its advantage of overcoming the rigidity of parametric esti-

mators. Specifically, it allows to remove the restriction that the joint distribution function
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belongs to a parametric family. Therefore, Ascorbebeitia et al. [3] proposed to estimate

the time varying copula C(u1, u2, t) under α- mixing local stationary variables as

Ĉ(u1, u2, t) =
1

Sh

S∑
s=1

wh(t− s)I{YA(s) ≤ F̂−1A (u1, t), YB(s) ≤ F̂−1B (u2, t)},

where F̂j(y, t) = (Sh)−1
∑S

s=1wh(t− s)I{Yj(s) ≤ y} denotes the nonparametric time vary-

ing estimator of the j-marginal distribution. In this context, they derive a consistent

nonparametric estimator for the time varying Kendall’s tau, τ̂A,B(t), which is defined in

the “Methods” section of the main text.

B. Time Varying Nonparametric Regression

Let us consider the following regression model Yi(t) = mi(Yj(t)) + εi(t), where t =

1, ..., S, Yi(t) is the dependent variable, mi(·) is a non-specified unknown smooth function,

Yj 6=i(t) is the explanatory variable and εi(t) is the error term. As pointed out in several

studies (see, e.g., Refs. [4, 5, 6]), the time varying behavior of the variables is an important

characteristic in finance to take into account. Since financial variables are dependent and

not stationary, a nonparametric estimator for the regression model that accounts for time

variation is considered under local stationary and α-mixing variables [7]. The time varying

estimator of mi(y) for any value y in the domain of the variable Yj is defined as

m̂i(y) =

(
S∑
s=1

wh(t− s)wh(y − Yj(s))

)−1 S∑
s=1

wh(t− s)wh(y − Yj(s))Yi(s),

where wh(y− Yj(s)) = (Sh)−1k ((y − Yj(s))/(Sh)) and k(·) denotes the kernel weights. To

choose the smoothing parameter h, cross-validation methods proposed in the literature for

nonparametric regression can be used (for details see, e.g., Ref. [8]).

If one is interested in the relation between regression slopes and correlation coefficients,

a time varying relationship between variables can be assumed mi(Yj(t)) = βi(t)Yj(t) (see

Ref. [7]) leading to a semiparametric regression model. In such case, the time varying

correlation between two variables, ρij(t), is related to the time varying slope βi(t) as ρij(t) =

βi(t) (σi(t))
−1 σj(t), where σ2

i (t) and σ2
j (t) are the time varying variances of variables Yi and

Yj that can be estimated by smoothing the corresponding squared residuals. Then, ρ̂ij(t)
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can be estimated through the time varying slope defined as

β̂i(t) =

(
S∑
s=1

wh,tsYj(s)
2

)−1 S∑
s=1

wh,tsYi(s)Yj(s)

In this setting, the estimation of Yi(t) is given by Ŷi(t) = m̂i(Yj(t)) = β̂i(t)Yj(t). This

relation would allow to replace the product of slopes of the regression models estimating

the trend of the different pairs of stocks in a triad with the product of their respective

conditional correlation and replace the study of predictability in stock markets by that

of balance in WSSNs. Nevertheless, the linear correlation is not appropriate for financial

variables as we have mentioned before. Hence, we consider the rank correlation as the con-

nectivity measure between nodes in the network. Note that if the variables were gaussian,

there is a one-to-one relationship between the linear correlation and Kendall’s tau, i.e.,

ρij(t) = sin((π/2)τij(t)), so using Kendall’s tau generalizes the analysis made with linear

correlation.

C. Balance

The definition of balance given in the main text is:

K =
tr (exp (βrelA (G)))

tr (exp (βrelA (G′)))
,

which has also been defined in [9].

Let us first express the exponential of the adjacency matrix of the WSSN as a Taylor

series (see for instance Ref. [10]):

tr (exp (βrelA (G))) = n+
β2
rel

2!
tr
(
A2 (G)

)
+
β3
rel

3!
tr
(
A3 (G)

)
+ · · · .

Notice that tr (I) = n and tr (A (G)) = 0. The term tr
(
Ak (G)

)
represents the sum of

all closed walks of length k in the WSSN. A walk of length k between the nodes v and u in

an WSSN is the product of the Kendall’s tau for all (not necessarily different) edges in the

sequence ev,1, e1,2, . . . ek−1,u. The walk is closed if v = u. Then, tr (A2 (G)) =
∑

(i,j)∈E τ
2
ij

and tr (A3 (G)) =
∑

(i,j,k)∈4 τijτikτjk, where 4 is the triangle with vertices i, j, k. We can

continue with higher order powers of A (G), which are related to squares, pentagons, and

so forth, apart from other cyclic and non-cyclic subgraphs. Obviously, we have already
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shown here that for a signed triangle tr (A3 (G)) = 6K̃, where K̃ = τijτikτjk was defined in

the main text of the paper as an index of predictability of the stock trends in a triad.

Let us first prove that K = 1 if and only if the WSSN is balanced. For that, we first

state a result proved by Acharya [11].

Theorem 1. For any signed graph, the matrices A (G) and A (G′) are isospectral if and

only if the signed graph is balanced.

This means that both matrices A (G) and A (G′) have exactly the same eigenvalues

λj (A (G)) and λj (A (G′)), respectively, if and only if the graph G is balanced. Then, we

can write

K =

∑n
j=1 e

βrelλj(A(G))∑n
j=1 e

βrelλj(A(G′))
,

which is equal to one if and only if the graph is balanced.

Let us now show that K quantifies the departure of a WSSN from balance for non-

balanced ones. Let us designate Wk = tr
(
Ak (G)

)
the total number of CWs of length k in

the WSSN. Obviously, Wk =
∑n

i=1Wk (i), where Wk (i) is the number of CW of length k

that starts (and ends) at the node i. Then, Wk (i) < 0 if the node i is in an unbalanced

cycle. Otherwise, Wk (i) > 0. Therefore, Wk (G) =
∑

i=1W
+
k (i) −

∣∣∑
i=1W

−
k (i)

∣∣, where

W+
k (i)and W−

k (i) are positive and negative CWs of length k starting at node i. Let us

now designate W+ (G) =
∑∞

k=0

∑
i=1

βkrel
k!
W+
k (i) and W− (G) =

∑∞
k=0

∑
i=1

βkrel
k!
W−
k (i). It

is straighforward to realize that in G′ tr (exp (βrelA (G′))) = W+ (G) + |W− (G)|, which

implies that

K =
W+ (G)− |W− (G)|
W+ (G) + |W− (G)|

.

We can see now that K = 1 only when the WSSN does not have any unbalanced cycle,

i.e., W− (G) = 0. Also, K departs from one as the number of unbalanced walks growth,

K = 1 − 2 |W− (G)|
W+ (G) + |W− (G)|

, which approaches asymptotically to zero as 2 |W− (G)| →

(W+ (G) + |W− (G)|).
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D. Data

We use companies’ daily data to construct stock networks for nine countries. The data

set contains equities’ daily closing price and volume data from 01-03-2005 to 09-15-2020.

The criteria used to consider a company as a candidate to form the database for each

country is the trading volume at the end of April 2020. Initially, a set of around 250

companies with the highest trading volume at the 28th of April 2020 is considered, except

for the US and Japan for which the initial sets are extended to 794 and 427 companies

respectively because their stock markets are very diversified in terms of volume. Then,

companies with a big amount of missing values (more than three market years of consecutive

missing values or more than 30 % of non-consecutive missing values) according to the daily

closing prices series have dropped out. There are many possible reasons for those missing

values, such as trading cancellation for a period of time, stock market exit, late entry

into the stock market, a merger of companies, bankruptcy, etc. We find that allowing for

the 30% of missing values in a stock price series is a reasonable threshold. Nevertheless,

there are some exceptions. Companies with more than 30% of missings but with a leading

trading volume such as Abengoa S.A Class B (ABG.P) from the Spanish stock market,

which constitutes the 39% of the total trading volume on the reference date, are excluded

from this screening.

After the cleaning process, the database is composed of a set of representative companies

according to the sector to which they belong (under Russell Global Sector classification)

and their trading volume.

Table S1: Number of assets considered and the percentage of the total trading volume.

Germany France Greece Italy Ireland Portugal Spain US Japan

no. of assets 81 78 73 83 32 36 78 119 120

volume 70.86% 76.9% 97.41% 90.56% 85.79% 98.75% 86.62% 45.66% 54.58%

Table S1 shows the number of companies considered and the percentage of the total

trading volume that constitute such assets for each country.
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E. WSSNs by country

Figures S1 to S3 illustrate the snapshots of three representative networks before, at,

and after September 2011.

F. Events that may have triggered BUTs

In the paper, we have observed a lack of capacity of national EPU indexes to explain

the balance transition in those countries that have experienced it. This might be due to the

relationship between the US EPU index and foreign stock markets being stronger than that

between these stock markets and their corresponding national EPU indexes. While there

are some contradictory results depending on the chosen methodology [12], a large amount of

evidence shows an association between the EPU index and greater stock price volatility for

the US [13, 14, 15, 16, 17], with this association being particularly strong during very high

uncertainty episodes [18]. However, the evidence for the relationship between national or

European EPU indexes and stock market volatility for other countries is generally weaker

[19], state dependent [20] and shows important levels of heterogeneity [12, 21]. Indeed,

Mei et al. [22] find that models including the US EPU index can achieve better forecasting

performance for European stock markets volatility, while the inclusion of the corresponding

national own EPU index does not significantly increase forecasts accuracy. In this same

direction, Ko and Lee [20] show that the negative link between the national EPU and stock

prices changes over time, being importantly influenced by the co-movement of the national

EPU index and the US one.

In the period considered in our study, the US EPU index attains its highest level before

the COVID-19 crisis in August 2011, coinciding with the Black Monday. The Black Monday

2011 refers to August 8, when the US and the global stock market crashed, following the

credit rating downgrade by Standard and Poor’s of the US sovereign debt from AAA for

the first time in history. This same period coincides with extremely high values for the

US, European, and Asian stock market volatility indexes, VIX, VSTOXX, and VKOSPI

respectively. These indexes - with an important leading role of the VIX on the other two

through strong spillover effects- are established measures of fear, risk, and uncertainty

in international stock markets, proved to be important in explaining stock returns [23].

The three of them attained their highest point between the 2008 financial crisis and the
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Figure S1: Snapshots for three representative networks before, at, and after the BUT. The

colors of the edges go from dark red for the most negative Kendall’s tau estimates to blue

for the most positive ones. (a) The US. (b) Portugal. (c) Ireland.

7



ALPHAALMY
ANEK

EYDAP

TATT

OTOEL

AVAX

TELL

BYTE

CENTREKTER

ELLAKTORELTON

ELHA

EUROB

EUPICEVROF

FIER

FOYRK

FRIGO

GEKTERNA

SAR

OPAP

EXAE

ELPE

HTO

KLM
INTET

INKAT
INTRKINLOT

BELA
KEKR

KORDE

KRI KTILA

LAMDA

LAVI

MIG

MLSMOH

MYTIL

NAYP

ETE

NIR

TPEIR

PPA

PLAIS

PROF

PPC

QUAL

QUEST
KAMP

SATOK

SELO

OLYMP

SPIR

EYAPS
PLAT IASO

IATR

AEGN
ALPHA

ALMY

ANEK
EYDAPTATT

OTOEL
AVAXTELL

BYTE
CENTR

DROME
EKTER

ELLAKTOR
ELTON

ELHA

EUROB

EUPICEVROF

FIERFOYRK

FRIGO

GEKTERNA

SAR
OPAPHAIDE

EXAEELPE
HTOKLM

INTEK
IKTIN

INTET

XYLEK

INKAT
INTRK

INLOT
BELA

KEKR
KYRI

KORDE

KRI
KTILA

LAMDA
LAVI MIG

MLS

MOH

MYTIL
NAYP

ETE

NIR

PAP

TPEIR

PPAPLAIS
PROF

PPC

QUAL

QUEST
KAMPSATOK

SELO
OLYMP

TENERGY
SPIR

EYAPS

PLAT
BIOSK

MEDIC

IASO

IATR
EUROM

AEGN

ALPHA
ALMY

ANEK

EYDAP

TATT

OTOEL

AVAX

TELL

BYTE

CENTR

DROME

EKTER

ELLAKTOR

ELTON

ELHAEUROB

EUPICEVROFFIER

FOYRKFRIGO
GEKTERNA

SAR

OPAP

HAIDE

EXAE

ELPE
HTO

KLM

INTEK

IKTIN

INTET
XYLEK

INKATINTRK

INLOT

BELA

KEKR

KYRIKORDE

KRI

KTILA

LAMDA

LAVI

MIG
MLS

MOH
MYTIL

NAYP

ETE

NIR

PAP

TPEIR

PPA

PLAISPROF
PPC

QUAL
QUEST

KAMP

SATOKSELO

OLYMP
TENERGY

SPIR

EYAPS

PLAT

BIOSKMEDIC

IASO

IATREUROM

(d)

ABG

ANA

ACX

ACS
AIR

AI

AMP
A3M

AZK

BBVA

SAB

SAN

BKT

BIOCIECAFOLEMDFEBRO
ENO

ENG
ENC

ELE
ECR

FER

FCCGCO

EZE

IBE
IDR

ITX

COL

RJF

MAP

TL5

MEL

MCM

MTB

NTGY

NHH
NXT

NYEOHL

PVAXPBRAPHM

PRS

PSGREE

REP

SCYR

SPS
SGRE

TEF TUB

XTZA

UBS

VID

VIS

ZOT
ABGANAACXACS

AIR

AI

ALM

AMP

MTS
A3M

ADX
AZK

BBVA

SAB
SANBKT

BIO

BME

CABK

CIE
CDR

CAF

OLE

MDF

EBRO

ENO

ENG
ENC

ELE

ECR

FAE

FER

FDR

FCC

GALQ

GRF

GCO
EZE

IBE
IDR

ITX
COL

ISUR

RJF

MAPTL5MEL

MCM
MTB

NTGYNHH

NXTNYE

OHL

PVA

XPBRA
PHM

PRS

PSG

QBT

RLIA

REE
REP

SCYR

SPS

SGRE

SLR

TRETEFTUBTRG

XTZA
UBS

VID

VIS

VOC

ZOT

ABG

ANA
ACXACS

AIR

AI
ALMAMP

MTS

A3M

ADX

AZK

BBVASAB
SAN

BKT

BIO

BME

CABK

CIE

CDRCAFOLEMDF

EBRO

ENO
ENG

ENC

ELE
ECR

FAE

FER

FDR

FCCGALQ

GRFGCO
EZE

IBE
IDR

ITX

COL

ISUR

RJF
MAP

TL5

MEL

MCM
MTB

NTGY

NHH

NXTNYE

OHL

PVA

XPBRA

PHM

PRSPSG
QBT

RLIA

REE

REP

SCYR

SPS

SGRE

SLR

TRE

TEF

TUB TRG
XTZA

UBS

VID

VIS
VOC

ZOT
ABG.P

(e)

ALEUP

ALALO
AVT

KNACA
CGG

CSBNP
LOCAL

GLE

ORA

ENGI

FP

AF

EDF

JXR

AIR

STM

UG

SAN

BOL

VIV
CA

GECP

RNO
FTI

BN

SGO

VIE

LI

DG
SU

IPH

ENCNPFRSAF

ATA RXL

BVI

SESG

CAP

ACAI

GET

PUB

ETL

EL
OR

MC

RI

SCRALO
ML

LR

ONXEO
UBI

ATO

TFI

ALVER

EO

ALERS

SW

DSY

MEMS

FGR

HO

ALGEN

GNFT

MERY
S30

ALEUP

ALALO

AVT
KN

ACA

CGG
CS
BNP

LOCAL

GLE

ORA
ENGI

FP

AF

ALAMG

EDF

JXRAIR

STM

UG

SAN

BOL

VIV
CA

GECP

RNOFTI

BN

SGO

VIE
LI

DG
SU

IPH

EN
CNP

FRSAF

ATA
RXL

BVI

SESG CAP
AC AI

GET

CIB

PUB

ETL
EL

ORMC

RI

SCR

ALO

ML
LR

ONXEOUBICRI

ATOTFI

ALVER

EO

ALERS

SW DSY MEMS

FGR

HO

CLA
VLA

ALGEN

CATG

GNFT

MERY
S30

ALEUP
ALALO

AVT
KN
ACA

CGG

CS

BNP

LOCAL

GLE

ORAENGI
FPAF

ALAMGEDFJXR

AIR

STM

UG
SAN

BOL

VIV

CA

GECP

RNO

FTI

BN

SGO

VIE

LI

DG

SU

IPH

EN

CNPFR

SAF

ATARXL

BVI

SESG CAP

AC
AI
GET

CIB

PUB

ETL

EL OR

MC

RI

SCR

ALO

ML

LR

ONXEO

UBI

CRI

ATO

TFI

ALVER

EO

ALERS
SW

DSYMEMS

FGR

HO

CLA
VLA

ALGEN

CATG
GNFT

MERY

S30

ALSPW

(f)

Figure S2: Snapshots for three representative networks before, at, and after the BUT. The

colors of the edges go from dark red for the most negative Kendall’s tau estimates to blue

for the most positive ones. (d) Greece. (e) Spain. (f) France.
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Figure S3: Snapshots for three representative networks before, at, and after the BUT. The

colors of the edges go from dark red for the most negative Kendall’s tau estimates to blue

for the most positive ones. (g) Germany. (h) Italy. (i) Japan.
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current COVID-19 crisis in September 2011, coinciding with the balance transition found

in national stock markets.

These findings point towards the events associated with the Black Monday 2011 as

the most likely triggers for the balance transition we observe in five of the countries in

our sample. The association between a period of increased -economic policy- uncertainty

and a sudden loss of balance seems coherent with the reduction of balance observed for

most of the countries also after the crisis produced by COVID-19. However, this line of

reasoning conflicts with the lack of a generalized, strong-enough drop in balance during

the financial crisis of 2007-2008 in most of the countries. The US stock market did suffer

significant balance fluctuations in this period, even if these were different from a strict

loss of balance since balance was recovering after falling. A potential explanation might

be the interruption of the negative time-varying correlation between policy uncertainty

and stock market returns that took place during the financial crisis. This could be a

consequence of the unprecedented bailout package for the US banking sector of 2008 and

the stimulus package of 2009, which pushed the market into positive returns even if the

policy uncertainty remained high [13].

A detailed exploration of the causes of the heterogeneous behavior of the different

countries is out of the scope of this paper. Italy, Japan, and Germany, the three countries

without a balance transition during the period had lower long-term GDP growth before

the 2007-2008 financial crisis, but the obvious commonalities finish there. A promising

avenue for the further exploration of this question might consider the differential impact

of the European debt crisis in each country: the ranking of the countries according to the

long-term interest rates of their national debt during this period matches the intensity of

the observed balance transitions, except for Italy and France.

G. Quasi-CSG-WSSN

Algorithm 1 contains the Matlab code for building the quasi-CSG-WSSN.

In Figure S4 we illustrate an example of quasi-CSG-WSSN with n = 50, m− = 500,

m+ = 100, and s = 10.

Table S2 contains the results for the analysis of the networks with BUT by means of
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Algorithm 1 Matlab code for constructing a quasi-CSG-WSSN with given n, m− and m+

and s.

%%%Input data%%%

n=50;

m neg=500;

m pos=100;

s =10;

%%%Construct ion o f the adjacency matrix A(G)%%%

B=−ones (n−s , s ) ;

n r e s t=n−s ;

m rest=m neg−(s ∗(n−s)+s ∗( s −1)/2);

C=f u l l ( e rdrey ( n r e s t , m rest ) ) ;

A=[−ones ( s , s ) B’ B −C ] ;

A=A−diag ( diag (A) ) ;

A=t r i u (A) ;

K=t r i l ( ones (n , n ) ) ;

A=A+K+eye (n ) ;

[ row , c o l ] = f i n d (˜A) ;

data=[row c o l ] ;

y = datasample ( data , m pos , ’ Replace ’ , f a l s e ) ;

z=length ( y ) ;

f o r i =1: z

A( y ( i , 1 ) , y ( i , 2 ) )=1 ;

end ;

A=t r i u (A) ;

A=A+A’ ;

A=A−diag ( diag (A) ) ;
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Table S2: Analysis of WSSNs with BUT. The number of companies s forming a central

negative clique for each WSSN as well as the acronym for each company in such clique. The

last three columns correspond to the analysis of the simulations of WSSNs with random

and with quasi-CSG structures, where sopt is the optimal value of s to minimize the root

mean square error (RMSE) in the spectrum of the adjacency matrix of the quasi-CSG

network relative to the real one. Underlined stocks correspond to the financial sector.

Market

Real WSSN Simulated WSSN

s Companies in clique
quasi-CSG Random

sopt RMSE RMSE

Greece 26 BIOSK, BYTE, DROME, EKTER,

ELTON, EUPIC, EUROM, EVROF,

FIER, HAIDE, IATR, INTEK,

INTET, KORDE, KRI, KTILA,

KYRI, LAVI, MEDIC, NAYP,

OTOEL, SAR, SATOK, SELO, SPIR,

XYLEK

27 0.728 2.620

USA 21 ABCE, AHIX, AMAZ, ARSN, ARTR,

AYTU, BTSC, CBDL, DPLS, ETEK,

FBCD, GFTX, GRSO, KPAY, PLYZ,

SGMD, SNRY, SNVP, TPTW, VISM,

WDLF

21 1.810 4.516

Portugal 12 ESON, FCP, FEN, GPA, LIG, LIT,

MCP, ORE, RED, SANT, SCP, VAF

12 1.095 2.465

Ireland 6 DEL, DOY, DQ7A, GYQ, OVXA,

P8ET

6 1.131 2.255

Spain 5 ISUR, NXT, NYE, SPS, PVA 5 1.684 3.037

France 5 ALEUP, ALSPW, ATA, CIB, GECP 5 1.607 2.868
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Figure S4: Illustration of a quasi-CSG-WSSN with n = 50, m− = 500, m+ = 100, and

s = 10.

simulated quasi-CSG and random WSSNs.

H. WSSNs by financial and non-financial sectors
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Figure S5: Evolution of the balance for stocks in the financial sector between January 2005

and September 2020 in the WSSN (blue line) and of its detrended cumulative sum (red

line). (a) The US. (b) Portugal. (c) Ireland. (d) Greece. (e) Spain. (f) France.

Figures S5 and S6 show the evolution of the balance when we split the WSSNs by fi-

nancial and non-financial sectors. Figure S7 presents the balance evolution for the WSSNs
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Figure S6: Evolution of the balance for stocks in the non-financial sector between January

2005 and September 2020 in the WSSN (blue line) and of its detrended cumulative sum

(red line). (a) The US. (b) Portugal. (c) Ireland. (d) Greece. (e) Spain. (f) France.
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Figure S7: Evolution of the balance in the WSSN for interactions between financial and

non-financial sectors’ stocks from January 2005 until September 2020 (blue line), and of its

detrended cumulative sum (red line). (a) The US. (b) Portugal. (c) Ireland. (d) Greece.

(e) Spain. (f) France.

with cross interactions between financial and non-financial sectors’ stocks.
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