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1. Supplementary Methods 

1.1. Participants and study design 

All participants provided written informed consent for protocols approved by the Institutional Review Board 

of the medical faculty in Mannheim. For the first study including healthy controls and patients with 

schizophrenia, we included a total of 202 subjects (178 healthy controls, 24 individuals with schizophrenia, 

see Supplementary Table 1). General exclusion criteria in controls included the presence of a lifetime history 

of psychiatric, neurological, or significant general medical illness, pregnancy, a history of head trauma, and 

current alcohol or drug abuse. The patients were recruited from the Department of Psychiatry and 

Psychotherapy at the Central Institute of Mental Health in Mannheim and via local advertisements. A trained 

psychiatrist or psychologist verified the diagnosis of schizophrenia based on ICD-10 criteria. 

 

Neuropsychological characterization of healthy controls included the trail-making-test B (TMT-B) (1) and the 

German multiple-choice vocabulary intelligence test (MWT-B) (2) as a measure of premorbid intelligence. 

Clinical characterization included the assessment of current symptom severity using the Positive and 

Negative Symptom Scale (PANSS) (3), Beck’s Depression Inventory (4), measures of global functioning in 

daily life (global assessment of function (GAF)) and current antipsychotic medication dosage (converted into 

chlorpromazine dose equivalents (CPZE)). 

 

For the second, pharmacological intervention study, 17 healthy individuals completed a subject- and 

observer-blind, placebo-controlled, randomized three-period cross-over study (see Table 2). Exclusion 

criteria included a regular consumption of drugs or history of drug or alcohol abuse; systolic blood pressure 

(SBP) greater than 140 or less than 90 mm Hg, and diastolic blood pressure (DBP) greater than 90 or less 

than 50 mm Hg; notable resting bradycardia (heart rate (HR) <40 bpm) or tachycardia (HR >90 bpm); use of 

any medication or herbal remedies taken within 14 days prior to randomization into the study or 5 times the 

elimination half-life of the medication, clinically significant abnormalities in laboratory test results (including 

hepatic and renal panels, complete blood count, chemistry panel and urinalysis): a history or presence of 

clinically significant ECG abnormalities (e.g. PQ/PR interval >210 ms, QTcF >450 ms) or cardiovascular 

disease (e.g. cardiac insufficiency, coronary artery disease, cardiomyopathy, hypokalemia, congestive heart 

failure, family history of congenital long QT syndrome, family history of sudden death); any personal or familial 

history of seizures, epilepsy or other convulsive condition, previous significant head trauma, or other factors 

predisposing to seizures; disorders of the central nervous system, cerebrovascular events, Parkinson’s 

disease, migraine, depression, bipolar disorder, anxiety, any other psychiatric disorders or behavioral 

disturbances; regular smoking (>5 cigarettes, >3 pipe-fulls, >3 cigars per day); habitual caffeine consumption 

of more than 400 mg/d (approximately 4 cups of coffee or equivalent); a history or evidence of any clinically 

significant endocrinological, hepatic, renal, autoimmune, pulmonary, gastrointestinal, urogenital, oncological, 

hematological or any other disease; or a body mass index (BMI) of over 30 or below 22. 
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Participants were invited for a fixed interval of 7 days with each scanning session taking place at 

approximately the same time of day. On each of three scanning visits, individuals either received a single 

oral dose of 400 mg Amisulpride, 3 mg Risperidone or Placebo. MRI scanning took place 2 hours after drug 

administration, with the N-back paradigm commencing approximately 10 minutes after the start of the scan. 

One subject was excluded from the analysis due to an excessive body-mass index (BMI > 30). 

 

1.2. Data acquisition 

1.2.1. N-back paradigm 

The visual N-back paradigm is a well-established and reliable working memory task consisting of a high 

memory load (2-back) and an attention control condition requiring motor response (0-back) (5-7).  

Specifically, a diamond-shaped stimulus containing a number from 1 to 4 was presented every 2 seconds 

(see Supplementary Figure 1). In the 0-back condition, subjects were required to press the button on the 

response box corresponding to the number currently displayed on the presentation screen. In the 2-back 

condition, subjects were required to press the button on the response box corresponding to the number 

presented two stimuli before the number currently displayed on the presentation screen. Stimuli were 

presented in alternating blocks of either 0-back or 2-back conditions. In each condition block, 14 stimuli 

were presented. Each condition block was repeated 4 times. Task performance was measured by accuracy 

(defined as the percent of correct answers) and reaction time (defined as the time span between stimulus 

onset and button press) for each condition separately. 

1.3. Atlas construction 

To combine structural and functional brain imaging data, we first constructed a brain atlas that equally well 

respects functional and anatomical features. We transformed a recently published multimodal atlas (8) into 

a volumetric format by projecting its FreeSurfer pial cortex coordinates into standard MNI space. A grey 

matter prior probability map (thresholded at 0.3) provided in SPM was used to define relevant voxels. 

Voxels were labeled by choosing the closest label with maximum distance of 4 mm. Since the published 

multimodal atlas does not cover all subcortical regions of interest (e.g. amygdala, thalamus), we 

complemented it with subcortical structures from the Harvard-Oxford atlas as implemented in FSL (9). 

Combining the two atlases resulted in 374 regions that covered cortical and subcortical structures. A full list 

of regions included in the combined atlas can be found in Supplementary Table 3. 

 



 

 4 

1.4. Network Control Theory 

1.4.1. Model assumptions 

The framework of network control theory that we have employed here is based on linear system model that 

relies on several assumptions: 

 Linearity: Linearity implies that the system evolves linearly over time. This is probably not an 

accurate description of most brain dynamics, but non-linear dynamics can be locally approximated by linear 

dynamics for macroscale brain circuits (10, 11). 

 Time invariance: Time invariance means that a systems response does not depend on the time 

point because both the structural network A and the control set B are constant over time. As we consider 

brain dynamics over the time scale of minutes, both assumptions hold true. 

 Freedom from noise: Neural systems at all time and spatial scale are not noise free. Nevertheless, it 

seems reasonable to consider that the salient features of our model do no depend on noise. This is aided 

by our definition of brain states as meta states that are defined as statistical patterns of brain activation 

over repeated measurements. 

 

1.4.2. Continuous versus discrete dynamical models 

Linear dynamical system can be studies using different time-system, either continuous or discrete. A 

discrete-time system assumes that the system evolves in discrete time steps whereas a continuous-time 

system models continuously changing dynamics. The choice depends on which time assumptions best 

reflects the neural dynamics at study. Our choice was motivated by a) our definition of brain states as non-

discrete entities of dimensional brain activity summarized over extended brain region and b) the 

computational traceability. As we considered brain regions containing millions of neurons as network 

nodes, we assumed that each brain region`s state change is more heterogenous and therefore better 

represented as a continuous system. For reasons of computational feasibility, we used a discrete-system 

approach for the computation of the suboptimal trajectories. 

 

1.4.3. Stabilization of the dynamical system 

If not stabilized, a dynamical system could potentially increase infinitely over time. Such extreme brain 

states would be neurobiologically implausible due to the finite energy resources of the brain. We therefore 

chose to normalize the system by decreasing the average weight of the connectome such that it goes to 

zero over time: 

 

(1) 𝐀norm =  
𝐀

|λ(𝐀)max|+𝑐
− 𝐈 
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Here, I denotes the identity matrix, A denotes the structural connectivity matrix and |λ(A)max| denotes the 

largest eigenvalue of the system. To normalize the system, we must specify the parameter c, which 

determines the rate of stabilization of the system. We choose c = 1, meaning that all modes decay and the 

system goes to zero over time. Within the range of brain states that converge to zero over time, we cannot 

make statements regarding whether any of these intermediate brain states are biologically plausible or are 

realized in human brains. Further work integrating experiment and theory is needed to more clearly define 

types of implausible states, and their respective mechanisms (e.g., metabolic, electrical, informational, or 

other physical constraints). A more in-depth and mathematical introduction and discussion can be found in 

Refs. (12-14). 

1.4.4. Time horizon 

The time horizon T specifies the time over which the control input is applied and the system can be pushed 

from one state to the other. It determines how quickly the system is required to converge and therefore 

small values might give the system insufficient time to reach the target state, making it hard to control. In 

theory, T is dimensionless if not coupled to external time domains. As we do not intend to model an 

evolving process in real time, we chose T = 1 to use a normalized time, in line with previous works (15), 

which allows the system to have adequate time to be controlled (12). For a systematic investigation of the 

influence of T on control processes in the context of brain networks, we refer the reader to (12), as well as 

to more general introductions of the control processes in linear dynamics (14, 16). 

 

1.4.5. On the relationship between BOLD signal and control theory measures 

In the control theory framework, the control input (u) of a node and the state of that same node (x) are 

highly interrelated. For example, if we consider a simplified system consisting of only one node, then the 

control energy E necessary to change the state of that node from an initial state (x0) to a target state (xT) is 

basically a function of the squared difference in that node’s state 

(2) [E ~ (x0 - xT)2]. 

 

As our definition of brain states is based on estimates that depend on BOLD activity, in such a simplified 

system control energy would not give any additional information other than the usual contrast images 2back- 

0back. However, if we consider a more complex system with more than one node, and where all nodes are 

connected via either direct or indirect links as summarized in the connectivity matrix A, then the control 

energy of a single node is not a simple function of the squared differences in its state but additionally 

accounts for the influence of other connected neighbors. 

1.5.   On the use of control theory as a statistical framework 

In our analysis, we apply control theory as a statistical and theoretical tool to answer questions based on 

the theoretical “dual-state” framework regarding neurobiological properties of brain function. Translating 
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and transferring across these three levels (control theory as a statistical tool, dual-state theory as a non-

linear theoretical framework, brain imaging data defining meta-level brain states) is challenging and 

requires (reasonable) simplifications. The hypotheses that we aim to test are based on the dual-state 

theory framework, which also uses the terminology of brain states and energy. In this framework, states 

and transitions are based on non-linear dynamics, corresponding to attractor basins, which translate to 

stable reoccurring activation patterns in neuronal ensembles (17-19). Abstracting these concepts to large-

scale dynamics of brain macro-circuits provides the underlying basis for the idea that we aim to investigate 

here: relatively stable “meta”-level brain activation patterns as identified by neuroimaging (including all the 

caveats of the assumption of stationarity of brain activations measured by functional magnetic resonance 

imaging) populate a state-space for which we aim to identify the brain regions that are responsible for 

maintaining and shifting those activation patterns. To answer these cognitive neuroscience questions, we 

use network control theory as a toolkit that makes these questions computationally tractable in a linear 

dynamical system framework enabling us to quantify the associated “energy cost” of transitions on a brain 

region level. This effort requires certain (reasonable) assumptions, in particular to assume an equivalence 

between states defined by neuroimaging and states defined in the control theory framework, as well linear 

and continuous transitions between those states. Future work integrating biophysical models of task-

induced brain activity in combination with network control theory and tailored imaging paradigms is critically 

needed to provide further evidence for the assumed relationships (and distinctions) between actual data, 

network control tools, and the theoretical framework. 

 

1.6. Gene based polygenic co-expression indices  

1.6.1. Polygenic co-expression index calculation  

Previous publications have shown that gene sets defined using co-expression networks and selected for their 

association with the genes DRD1 and DRD2 provided replicable predictions of n-back-related brain activity 

and behavioral indices (20-23). Weighted Gene Co-expression Network Analysis [WGCNA (24)] applied on 

the Braincloud dataset (N=199) of post-mortem DLPFC gene expression (25) identified 67 non-overlapping 

sets of genes based on their expression pattern. The co-expression gene sets including DRD1 and DRD2 

were summarized into Polygenic Co-expression Indices (PCIs) based on SNPs that predicted co-expression 

of these genes (called co-expression quantitative trait loci, or co-eQTLs). 

PCIs are a proxy for the assessment of the genetic component of gene transcription co-regulation and are 

computed as a weighted average of the effect of all genotypes of an individual among those selected in the 

data mining study as co-eQTLs. The effect of individual SNPs is computed as the difference between the 

gene co-expression distribution of minor allele carriers (heterozygotes and homozygotes) and that of major 

allele homozygotes, using common tools from signal detection theory (26). Genotype weights, therefore, 

represent the deviation in gene co-expression from a reference distribution and are not constrained by 

allele dose. For each genotype of each SNP we computed an index, called A’, proportional to the 

expression of the gene of interest (DRD1 or DRD2) within its co-expression module. The A’ index is less 

dependent than d‘ on the assumption of a normal distribution of gene expression in each genotypic 
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population (20). Both PCI-based predictions were significantly replicated in an independent post-mortem 

dataset, while controlling for ethnicity. The translational effect of these two scores on brain activity during n-

back has been assessed and replicated across multiple samples, which combined amount to approximately 

600 participants (23, 27, 28). 

It is important to note that these dopamine-related genetic effects are large in magnitude compared to 

those estimated by polygenic risk score approaches that focus on epidemiological data, rather than on 

molecular processes. The DRD2-PCI we developed (23) yielded an effect size f = 0.30 in our n-back 

discovery sample (required sample size to obtain 80% power with α = 0.05 and covariates as in the current 

work: N = 71). Results were replicated in an independent fMRI dataset collected at a different institution 

with f = 0.20 (required sample size computed as above: N = 156). Our follow-up work on the DRD2-PCI 

(21) considered two datasets of 50 individuals each and yielded a minimum effect size f = 0.28 (in the 

replication sample; required sample size computed as above: N = 81). The DRD1-PCI was also tested in 

two independent samples (20), yielding a minimum effect size f = 0.37 (in the replication sample; required 

sample size computed as above: N = 46). Taken together, these published results show that the effects of 

these polygenic indices on n-back activity in the prefrontal cortex are relatively large, with sizes ranging 

between 0.20 and 0.37 and with required samples ranging from 46 to 156 individuals. Importantly, the 

DRD2-PCI was also tested in a small sample of 29 patients with SCZ and yielded results consistent with 

the effects discovered in healthy controls (23). Although the required sample sizes were computed based 

on the top cluster, it should be borne in mind that the technique we used in this work employs the entire 

brain, and therefore (i) is not subject to correction for multiple comparisons, as reflected in the uncorrected 

alpha used for the power calculations and (ii) benefits from the greatest possible amount of information 

about brain states. 

 

 

2. Supplementary Results 

2.1. Null models of structural brain networks  

To study the impact of structural brain networks on control properties, we repeated the computation of 

control energy using a randomized null model of the individuals’ structural brain networks that preserves 

the degree distribution and ensure fully connected networks. Null models were created using the 

randmio_und_connected function, rewiring each edge 20 times, as implemented in the Brain Connectivity 

Toolbox (https://sites.google.com/site/bctnet/). For each subject, we created 100 null models and 

recomputed control energy. The average control energy over 100 null models was used for further 

analyses. In line with our expectation, control energy increased significantly for randomized networks 

(repeated measures ANOVA with null_model_vs_data and transition as within-subject factors: main effect 

of null_model_vs_data, F(1,174) = 5.183, p = 0.024). Further analysis revealed no interaction with patient 

status (repeated measures ANOVA with null_model_vs_data and transition as within-subject factors and 

https://sites.google.com/site/bctnet/
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group as between-subject factor: group by null_vs_data interaction, F(1,99) = 0.289, p = 0.592). These 

analyses suggest that human brain structural networks are in some form optimized to control brain state 

transitions independent of diagnostic status. 

2.2. Null models of spatial activity patterns 

To study the impact of the spatial distribution of activity patterns on control properties, we repeated the 

computation of control energy and spatially randomized individuals’ brain activation patterns. 

Randomization was done using the randperm function in matlab for the paired vectorized brain activation 

patterns (related to 0- and 2-back) followed by recomputation of control energy. This procedure was 

repeated 100 times and the averaged brain-wide control energy over all 100 iterations for each subjects 

was used in the subsequent analysis. In line with our expectation, control energy increased significantly for 

randomized networks in both groups (repeated measures ANOVA with model_vs_data and transition as 

within-subject factors, HC: main effect of model_vs_data, F(1,174) = 6.995, p = 0.009). Further analysis 

revealed no interaction with patient status (repeated measures ANOVA with null_model_vs_data and 

transition as within-subject factors and group as between-subject factor: group by null_vs_data interaction, 

F(1,99) = 3.904, p = 0.056). These analyses suggest that the spatial distribution of brain activity patterns is 

important for minimizing control effort, but individuals with schizophrenia have a differently, potentially less 

organized activity pattern than healthy controls. 

2.3. Robustness to choice of parcellation scheme  

To demonstrate the robustness of the results to our choice of parcellation scheme, we repeated our 

analysis using a recently published functionally defined atlas comprising a similar number of areas (29). 

Specifically, we used the “Gordon” template (29) consisting of 333 regions that are functionally derived from 

resting-state connectivity analyses. Data were reprocessed using the same pipeline as for the main 

analysis and all parameters were kept identical in the subsequent analysis. Notably, we replicated all main 

results (see Supplementary Table 1), indicating that our reported findings are robust to the choice of 

parcellation scheme. 

2.4. Robustness to choice of edge definition 

To demonstrate the robustness of our results to our selection of connectivity measure, we repeated our 

analysis using the number of streamlines normalized by the respective size of the regions to construct 

structural connectivity matrices (15). All parameters were kept identical in the subsequent analysis. All main 

results could be replicated (see Supplementary Table 4), indicating that our findings are robust to the 

choice of edge definition. 

2.5. Impact of medication and duration of illness on control properties 

In patients, the potential relationship between control energy and stability, antipsychotic drug dose 

(expressed in chlorpromazine equivalents (CPZE), n=20), and clinical parameters (illness duration, illness 
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severity as indexed by global functioning (GAF) and Positive and Negative Symptom Scale (PANSS)) were 

explored using Pearson correlation. Neither the control energy for the 0-back to 2-back transition nor the 

opposite transition or the stability of either state were significantly associated with CPZE (N = 20, 0- to 2-

back: r = 0.078, p = 0.767; 2- to 0-back: r = 0.320, p = 0.210; 0- back stability: r = 0.150, p = 0.564; 2- back 

stability: r = 0.096, p = 0.713), with illness duration (N = 23, 0- to 2-back: r = 0.017, p = 0.937; 2- to 0-back: 

r = -0.226, p = 0.299; 0- back stability: r = 0.110, p = 0.644; 2- back stability: r = 0.281, p = 0.230), or with 

GAF (N = 24, 0- to 2-back: r = -0.086, p = 0.690; 2- to 0-back: r = -0.254, p = 0.230; 0- back stability: r = -

0.135, p = 0.570; 2- back stability: r = 0.066, p = 0.793). Please note, that a lack of between-subject 

correlations in small samples can only provide weak proof of evidence for a null effect. 

2.6. Pharmacological validation using Risperidone 

To demonstrate the robustness of our pharmacological intervention of dopaminergic signaling, we 

additionally analyzed the data of the Risperidone condition in the same subjects. Risperidone also 

preferentially targets D2 receptors, but also affects D1, adrenergic, serotoninergic and histaminergic 

pathways. Using the same models and covariates as in the main analysis, we detected a trend-wise 

increase in control energy needed for both transitions (repeated measures ANOVA with drug and transition 

as within-person factors; main effect of drug: F(1,10) = 3.490, p = 0.091; drug-by-condition interaction: 

F(1,10) = 0.238, p = 0.636; activity difference, drug order, and sex as covariates of no interest), but no 

effect on stability (F(1,8) = 0.105, p = 0.334; mean brain activity, sex, and drug order as covariates of no 

interest). Although these results showed only trend-wise significance, likely due to the lower D2-specificity 

of Risperidone, the detected pattern was conserved across drugs, validating the proposed underlying 

concepts. 

2.7. Null results for gene score and imaging associations 

As mentioned in the main text, D1 receptor expression-related gene scores predicted stability of both states 

(0-back: b = 0.184, p = 0.034; 2-back: b = 0.242 p = 0.007), but not D2 receptor expression-related gene 

scores (0-back: b = 0.153, p = 0.109; 2-back: b = -0.01 p = 0.924). In turn, the control energy of both state 

transitions could be predicted by the D2 receptor expression-related score (0- to 2-back: b = -0.076, p = 

0.037; and trending for 2- to 0-back: b = -0.134, p = 0.068), but not by the D1 receptor expression-related 

gene score (0- to 2-back: b = -0.037, p = 0.324; 2- to 0-back: b = -0.06, p = 0.418). 

2.8. Relation to previous gene score and imaging associations 

To demonstrate the added value of our analysis, we extracted the BOLD parameters from the voxels 

reported in Fazio et al. (30) and Selvaggi et al. (32) of a standard 2-back>0-back contrast image and 

included them a covariates in our main analysis.  

D1 expression-related gene score predicted stability of both states (0-back: b = 0.184, p = 0.036; 2-back: b 

= 0.242, p = 0.008, age, sex, brain activity, first 5 genetic PCA components and brain activity at [-29 53 24] 

as peak voxel reported in Fazio et al. as covariates of non-interest). 
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D2 expression-related gene score predicted the control energy of both state transitions (0- to 2-back: b = -

0.075, p = 0.042; 2- to 0-back: b = -0.139, p = 0.062, age, sex, brain stability, difference in brain activity, 

first 5 genetic PCA components and brain activity at [-29 53 24] as peak voxel reported in Fazio et al. as 

covariates of non-interest). 

All our previous associations remained significant when controlling for the BOLD parameters, suggesting 

that our data explains different variance. 

2.9. Comparison to more conventional SPM analyses 

To demonstrate the added value of our control metrics, we performed the following two more conventional 

SPM analyses: 

1) Association of control energy and stability with PCI scores for DRD1 and DRD2: 

We performed a conventional GLM analysis for Placebo versus Amisulpride, using a paired t-test of 

the 2-back>0back contrast in SPM12. We could not detect any significant clusters, either for the 

Placebo > Amisulpride nor the opposite contrast, even at a lenient threshold of P < 0.001 

uncorrected. These results suggest that network control theory can detect biologically meaningful 

effects that cannot be detected by more conventional SPM analyses. 

2) Stability and Control Energy in Schizophrenia: 

We performed a conventional SPM analysis for individuals with schizophrenia  versus healthy 

control, using the 2-back > 0back contrast. At a lenient threshold of P < 0.001 uncorrected, we 

detected two main significant cluster of voxels in the common region-of-interests for the N-back task 

(comprising dorsolateral prefrontal cortex, hippocampus and parietal cortex). The first cluster for the 

HC > SZ contrast was located in the right hippocampus at 42 -37 -13 [number of significant voxels = 

24, PFWE=0.554, T=3.86], while the second cluster was found in the opposite contrast and was 

located in the right parietal cortex at 51 -43 17 [number of significant voxels = 214, PFWE=0.171, 

T=5.35; see supplemental figure 4B]. To demonstrate that the control energy and stability values of 

our analysis are not associated with the more conventional activity measures, we extracted the 

peak voxel beta estimates of those coordinates and performed a partial correlation analyses, 

correcting for age, sex and group. For both peak voxels, we did not detect a significant association 

with our control indices (beta estimates at 42 -37 -13: 0-back stability: rpar = -0.005, p = 0.961; 2-

back stability: rpar = 0.139, p = 0.167; 0- to 2-back control energy: rpar = -0.115, p = 0.253; 2- to 0-

back control energy: rpar = 0.150, p = 0135. beta estimates at 42 -37 -13:  0-back stability: rpar = -

0.079, p = 0.431; 2-back stability: rpar = -0.106, p = 0.293; 0- to 2-back control energy: rpar = -0.144, 

p = 0.151; 2- to 0-back control energy: rpar = -0.100, p = 0.318). 
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2.10. Suboptimal trajectories 

As mentioned in the main text, the variability in suboptimal trajectories was greater in schizophrenia (rm-

ANOVA: main effect of group: F(1,98) = 4.789, p = 0.031, controlling for age, sex, DTI tSNR, brain state 

activity difference). These results remained significant after additionally accounting for the stability of both 

states and for the control energy of both transitions (rm-ANOVA: main effect of group: F(1,95) = 11.2, p = 

0.001). 

 

 

 

3. Supplementary figures 

3.1. Supplementary Figure 1: N-back task design 

 

Design of the N-back task: Stimuli were presented in blocks of either 0-back or 2-back conditions. There 

was no additional control or resting condition. In the 0-back condition, subjects were instructed to press the 

button on the response box corresponding to the number currently displayed on the presentation screen. 

Here, the red numbers below the screen images indicate correct responses. In the 2-back condition, 

subjects were instructed to press the button on the response box corresponding to the number presented 

two stimuli before the number currently displayed on the presentation screen. Here, the red numbers below 

the screen images indicate the correct responses. Each condition block lasted 30 seconds and was 

repeated four times in an interleaved manner. 
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3.2. Supplementary Figure 2: Control Energy, Stability and Average Brain Activity for Placebo 

and Amisulpride  

 

Supplementary Figure 2: Control Energy, Stability and Average Brain Activity for Placebo and Amisulpride  

Plots depicting the actual data points n = 15 healthy controls for A) control energy, B) stability and C) 

average brain activity for the pharmacological study. All tests were two-sided and without adjustments for 

multiple comparisons. Black lines indicate mean, dark boxes indicate 1 standard deviation, light boxes 

indicate 1.96 SEM. 

 

3.3. Supplementary Figure 3: Control Energy, Stability and Average Brain Activity for Individuals 

with Schizophrenia and Healthy Controls 

 

Supplementary Figure 3: Control Energy, Stability and Average Brain Activity for Individuals with 

Schizophrenia and Healthy Controls 

Plots depicting the actual data points for A) control energy, B) stability and C) average brain activity for the 

schizophrenia patient study (healthy control: n = 80, individuals with schizophrenia: n = 24). All tests were 

two-sided and without adjustments for multiple comparisons. Black lines indicate mean, dark boxes indicate 

1 standard deviation, light boxes indicate 1.96 SEM. 
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3.4. Supplementary Figure 4: Control Impact for different visualization thresholds 
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Supplementary Figure 4: Control Impact for different visualization thresholds 

Unique and common sets of brain regions contributing most to the transition from 0-back to 2-back and the 

transition from 2-back to 0-back for different visualization thresholds derived from n = 178 healthy controls. 

For illustrative purposes, we projected the computed control impact of each brain region for the respective 

transitions on a 3D structural template, displaying A) the 10% highest for each transition B) the 30% highest 

for each transition and C) the 50% highest for each transition. D) and E) depict the raw control impact 

values for the transition from 0-back to 2-back or the transition from 2-back to 0-back, respectively. 
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4. Supplementary tables  
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4.1. Supplementary Table 1: Statistical details for the main findings and replication analyses 

  Glasser Gordon 

  FA count FA 

Result 

df F or t  p-val df F or t p-val df F or t p-val 

  

(stand 

beta)     

(stand 

beta)     

(stand 

beta)   

General properties of control             

stability 0 back > 2 back 1,173 66.80 < 0.001 1,173 60.50 <0.001 1,173 56.846 <0.001 

T02 > T20 1,174 27.98 <0.001 1,174 19.73 <0.001 1,174 21.706 <0.001 

stability 2-back -> accuracy  -2.78 0.006   2.70 0.008  2.58 0.011 

   (0.274)    (0.252)    (-0.239)  

stability 2-back -> RT  -1.94 0.054   -1.94 0.054  -1.95 0.053 

   (-0.192)    (-0.182)    (-0.181)  

Differential relation to D1 

and D2 expression                   

D1 -> stability 0 back  2.18 0.034   2.212 0.031  3.10 0.003 

   (0.184)    (0.190)    (0.270)  

D1 -> stability 2 back  2.78 0.007   2.978 0.004  3.39 0.001 

   (0.242)    (0.270)    (0.307)  

D2 -> stability 0 back  1.629 0.109  1.963 0.055  0.146 0.149 

   (0.153)   (0.185)   (0.147)  

D2 -> stability 2 back  -0.095 0.924  0071 0.944  0.174 0.862 

  (-0.010)   (0.008)   (0.019)  

D2 -> T02  -2.14 0.037   -2.33 0.023  -2.07 0.043 

   (-0.076)    (-0.09)    (-0.07)  

D2 -> T20  -1.87 0.068   -1.83 0.073  -2.16 0.036 

   (-0.134)    (-0.134)    (-0.152)  

D1 -> T02  -0.996 0.324  -1.066 0.291  -0.832 0.414 

   (-0.037)   (-0.045)   (-0.029)  

D1 -> T20  -0.817 0.418  -0.650 0.519  -0.376 0.709 

  (-0.06)   (-0.049)   (-0.028)  

Drug effect on transition 

energy            

Pla vs. Ami 1,10 7.272 0.022 1,10 4.954 0.05 1,10 8.839 0.014 

Pla vs. Ris 1,10 3.49 0.091 1,10 3.797 0.08 1,10 3.014 0.113 

Drug effect on stability          

Pla vs. Ami 1,8 0.715 0.422 1,8 0.698 0.428 1,8 0.013 0.913 

Pla vs. Ris 1,8 1.057 0.334 1,8 2.941 0.125 1,8 0.358 0.566 

Schizophrenia            

stability 2-back: HC vs. SZ 1,98 6.436 0.013 1,98 6.552 0.012 1,98 4.951 0.028 
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stability 0-back: HC vs. SZ 1,98 0.041 0.840 1,98 0.105 0.746 1,98 0.327 0.569 

T02: HC vs. SZ 1,98 5.238 0.024 1,98 6.414 0.013 1,98 5.070 0.027 

T20: HC vs. SZ 1,98 0.620 0.433 1,98 0.534 0.467 1,98 0.275 0.601 

          

Abbreviations: FA = structural edge weight defined as mean fraction anisotropy of a track connecting two 

regions; Count =  structural edge weight defined as track count connecting two regions; Gordon = resting-

state defined atlas with 333 regions; T02 = control energy for the transition 0 to 2-back;  T20 = control 

energy for the transition 2 to 0-back; -> = predicts in a regression model; Q = modularity estimate; Pla = 

Placebo; Ami = Amisulpride; Ris = Risperidone; HC = healthy control; SZ = individuals with schizophrenia. 

All tests were two-sided and without adjustments for multiple comparisons 
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4.2. Supplementary Table 2: Graph metrics for structural connectomes 

 Healthy controls 
(n = 178) 

Matched controls 
(n = 80) 

Individuals with 
schizophrenia 
 (n = 24) 

t value P value 

Network measures      

Density 0.053 ± 0.005 0.051 ± 0.006 0.051 ± 0.006 0.28 0.788 

Average degree 18.51 ± 2.10 18.84 ± 2.25 18.72 ± 2.22 0.24 0.828 

Global efficiency 0.15 ± 0.009 0.15 ± 0.11 0.15 ± 0.10 0.27 0.785 

Average clustering 
coefficient 

0.14 ± 0.009 0.14 ± 0.010 0.14 ± 0.009 0.78 0.437 

Modularity (Q) 0.50 ± 0.03 0.50 ± 0.03 0.49 ± 0.03  0.988 0.326 

All tests were two-sided and without adjustments for multiple comparisons 
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Supplementary Table 3: List of brain regions included in the extended Glasser parcellation 

 

# Brain Region Label 

1 Glasser_L_V1 

2 Glasser_L_MST 

3 Glasser_L_V6 

4 Glasser_L_V2 

5 Glasser_L_V3 

6 Glasser_L_V4 

7 Glasser_L_V8 

8 Glasser_L_4 

9 Glasser_L_3b 

10 Glasser_L_FEF 

11 Glasser_L_PEF 

12 Glasser_L_55b 

13 Glasser_L_V3A 

14 Glasser_L_RSC 

15 Glasser_L_POS2 

16 Glasser_L_V7 

17 Glasser_L_IPS1 

18 Glasser_L_FFC 

19 Glasser_L_V3B 

20 Glasser_L_LO1 

21 Glasser_L_LO2 

22 Glasser_L_PIT 

23 Glasser_L_MT 

24 Glasser_L_A1 

25 Glasser_L_PSL 

26 Glasser_L_SFL 

27 Glasser_L_PCV 

28 Glasser_L_STV 

29 Glasser_L_7Pm 

30 Glasser_L_7m 

31 Glasser_L_POS1 

32 Glasser_L_23d 

33 Glasser_L_v23ab 

34 Glasser_L_d23ab 

35 Glasser_L_31pv 

36 Glasser_L_5m 

37 Glasser_L_5mv 

38 Glasser_L_23c 

39 Glasser_L_5L 

40 Glasser_L_24dd 

41 Glasser_L_24dv 

42 Glasser_L_7AL 

43 Glasser_L_SCEF 

44 Glasser_L_6ma 
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45 Glasser_L_7Am 

46 Glasser_L_7PL 

47 Glasser_L_7PC 

48 Glasser_L_LIPv 

49 Glasser_L_VIP 

50 Glasser_L_MIP 

51 Glasser_L_1 

52 Glasser_L_2 

53 Glasser_L_3a 

54 Glasser_L_6d 

55 Glasser_L_6mp 

56 Glasser_L_6v 

57 Glasser_L_p24pr 

58 Glasser_L_33pr 

59 Glasser_L_a24pr 

60 Glasser_L_p32pr 

61 Glasser_L_a24 

62 Glasser_L_d32 

63 Glasser_L_8BM 

64 Glasser_L_p32 

65 Glasser_L_10r 

66 Glasser_L_47m 

67 Glasser_L_8Av 

68 Glasser_L_8Ad 

69 Glasser_L_9m 

70 Glasser_L_8BL 

71 Glasser_L_9p 

72 Glasser_L_10d 

73 Glasser_L_8C 

74 Glasser_L_44 

75 Glasser_L_45 

76 Glasser_L_47l 

77 Glasser_L_a47r 

78 Glasser_L_6r 

79 Glasser_L_IFJa 

80 Glasser_L_IFJp 

81 Glasser_L_IFSp 

82 Glasser_L_IFSa 

83 Glasser_L_p9-46v 

84 Glasser_L_46 

85 Glasser_L_a9-46v 

86 Glasser_L_9-46d 

87 Glasser_L_9a 

88 Glasser_L_10v 

89 Glasser_L_a10p 

90 Glasser_L_10pp 

91 Glasser_L_11l 

92 Glasser_L_13l 
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93 Glasser_L_OFC 

94 Glasser_L_47s 

95 Glasser_L_LIPd 

96 Glasser_L_6a 

97 Glasser_L_i6-8 

98 Glasser_L_s6-8 

99 Glasser_L_43 

100 Glasser_L_OP4 

101 Glasser_L_OP1 

102 Glasser_L_OP2-3 

103 Glasser_L_52 

104 Glasser_L_RI 

105 Glasser_L_PFcm 

106 Glasser_L_PoI2 

107 Glasser_L_TA2 

108 Glasser_L_FOP4 

109 Glasser_L_MI 

110 Glasser_L_Pir 

111 Glasser_L_AVI 

112 Glasser_L_AAIC 

113 Glasser_L_FOP1 

114 Glasser_L_FOP3 

115 Glasser_L_FOP2 

116 Glasser_L_PFt 

117 Glasser_L_AIP 

118 Glasser_L_EC 

119 Glasser_L_PreS 

120 Glasser_L_H 

121 Glasser_L_ProS 

122 Glasser_L_PeEc 

123 Glasser_L_STGa 

124 Glasser_L_PBelt 

125 Glasser_L_A5 

126 Glasser_L_PHA1 

127 Glasser_L_PHA3 

128 Glasser_L_STSda 

129 Glasser_L_STSdp 

130 Glasser_L_STSvp 

131 Glasser_L_TGd 

132 Glasser_L_TE1a 

133 Glasser_L_TE1p 

134 Glasser_L_TE2a 

135 Glasser_L_TF 

136 Glasser_L_TE2p 

137 Glasser_L_PHT 

138 Glasser_L_PH 

139 Glasser_L_TPOJ1 

140 Glasser_L_TPOJ2 
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141 Glasser_L_TPOJ3 

142 Glasser_L_DVT 

143 Glasser_L_PGp 

144 Glasser_L_IP2 

145 Glasser_L_IP1 

146 Glasser_L_IP0 

147 Glasser_L_PFop 

148 Glasser_L_PF 

149 Glasser_L_PFm 

150 Glasser_L_PGi 

151 Glasser_L_PGs 

152 Glasser_L_V6A 

153 Glasser_L_VMV1 

154 Glasser_L_VMV3 

155 Glasser_L_PHA2 

156 Glasser_L_V4t 

157 Glasser_L_FST 

158 Glasser_L_V3CD 

159 Glasser_L_LO3 

160 Glasser_L_VMV2 

161 Glasser_L_31pd 

162 Glasser_L_31a 

163 Glasser_L_VVC 

164 Glasser_L_25 

165 Glasser_L_s32 

166 Glasser_L_pOFC 

167 Glasser_L_PoI1 

168 Glasser_L_Ig 

169 Glasser_L_FOP5 

170 Glasser_L_p10p 

171 Glasser_L_p47r 

172 Glasser_L_TGv 

173 Glasser_L_MBelt 

174 Glasser_L_LBelt 

175 Glasser_L_A4 

176 Glasser_L_STSva 

177 Glasser_L_TE1m 

178 Glasser_L_PI 

179 Glasser_L_a32pr 

180 Glasser_L_p24 

181 Glasser_R_V1 

182 Glasser_R_MST 

183 Glasser_R_V6 

184 Glasser_R_V2 

185 Glasser_R_V3 

186 Glasser_R_V4 

187 Glasser_R_V8 

188 Glasser_R_4 
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189 Glasser_R_3b 

190 Glasser_R_FEF 

191 Glasser_R_PEF 

192 Glasser_R_55b 

193 Glasser_R_V3A 

194 Glasser_R_RSC 

195 Glasser_R_POS2 

196 Glasser_R_V7 

197 Glasser_R_IPS1 

198 Glasser_R_FFC 

199 Glasser_R_V3B 

200 Glasser_R_LO1 

201 Glasser_R_LO2 

202 Glasser_R_PIT 

203 Glasser_R_MT 

204 Glasser_R_A1 

205 Glasser_R_PSL 

206 Glasser_R_SFL 

207 Glasser_R_PCV 

208 Glasser_R_STV 

209 Glasser_R_7Pm 

210 Glasser_R_7m 

211 Glasser_R_POS1 

212 Glasser_R_23d 

213 Glasser_R_v23ab 

214 Glasser_R_d23ab 

215 Glasser_R_31pv 

216 Glasser_R_5m 

217 Glasser_R_5mv 

218 Glasser_R_23c 

219 Glasser_R_5L 

220 Glasser_R_24dd 

221 Glasser_R_24dv 

222 Glasser_R_7AL 

223 Glasser_R_SCEF 

224 Glasser_R_6ma 

225 Glasser_R_7Am 

226 Glasser_R_7PL 

227 Glasser_R_7PC 

228 Glasser_R_LIPv 

229 Glasser_R_VIP 

230 Glasser_R_MIP 

231 Glasser_R_1 

232 Glasser_R_2 

233 Glasser_R_3a 

234 Glasser_R_6d 

235 Glasser_R_6mp 

236 Glasser_R_6v 
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237 Glasser_R_p24pr 

238 Glasser_R_33pr 

239 Glasser_R_a24pr 

240 Glasser_R_p32pr 

241 Glasser_R_a24 

242 Glasser_R_d32 

243 Glasser_R_8BM 

244 Glasser_R_p32 

245 Glasser_R_10r 

246 Glasser_R_47m 

247 Glasser_R_8Av 

248 Glasser_R_8Ad 

249 Glasser_R_9m 

250 Glasser_R_8BL 

251 Glasser_R_9p 

252 Glasser_R_10d 

253 Glasser_R_8C 

254 Glasser_R_44 

255 Glasser_R_45 

256 Glasser_R_47l 

257 Glasser_R_a47r 

258 Glasser_R_6r 

259 Glasser_R_IFJa 

260 Glasser_R_IFJp 

261 Glasser_R_IFSp 

262 Glasser_R_IFSa 

263 Glasser_R_p9-46v 

264 Glasser_R_46 

265 Glasser_R_a9-46v 

266 Glasser_R_9-46d 

267 Glasser_R_9a 

268 Glasser_R_10v 

269 Glasser_R_a10p 

270 Glasser_R_10pp 

271 Glasser_R_11l 

272 Glasser_R_13l 

273 Glasser_R_OFC 

274 Glasser_R_47s 

275 Glasser_R_LIPd 

276 Glasser_R_6a 

277 Glasser_R_i6-8 

278 Glasser_R_s6-8 

279 Glasser_R_43 

280 Glasser_R_OP4 

281 Glasser_R_OP1 

282 Glasser_R_OP2-3 

283 Glasser_R_52 

284 Glasser_R_RI 
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285 Glasser_R_PFcm 

286 Glasser_R_PoI2 

287 Glasser_R_TA2 

288 Glasser_R_FOP4 

289 Glasser_R_MI 

290 Glasser_R_Pir 

291 Glasser_R_AVI 

292 Glasser_R_AAIC 

293 Glasser_R_FOP1 

294 Glasser_R_FOP3 

295 Glasser_R_FOP2 

296 Glasser_R_PFt 

297 Glasser_R_AIP 

298 Glasser_R_EC 

299 Glasser_R_PreS 

300 Glasser_R_H 

301 Glasser_R_ProS 

302 Glasser_R_PeEc 

303 Glasser_R_STGa 

304 Glasser_R_PBelt 

305 Glasser_R_A5 

306 Glasser_R_PHA1 

307 Glasser_R_PHA3 

308 Glasser_R_STSda 

309 Glasser_R_STSdp 

310 Glasser_R_STSvp 

311 Glasser_R_TGd 

312 Glasser_R_TE1a 

313 Glasser_R_TE1p 

314 Glasser_R_TE2a 

315 Glasser_R_TF 

316 Glasser_R_TE2p 

317 Glasser_R_PHT 

318 Glasser_R_PH 

319 Glasser_R_TPOJ1 

320 Glasser_R_TPOJ2 

321 Glasser_R_TPOJ3 

322 Glasser_R_DVT 

323 Glasser_R_PGp 

324 Glasser_R_IP2 

325 Glasser_R_IP1 

326 Glasser_R_IP0 

327 Glasser_R_PFop 

328 Glasser_R_PF 

329 Glasser_R_PFm 

330 Glasser_R_PGi 

331 Glasser_R_PGs 

332 Glasser_R_V6A 
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333 Glasser_R_VMV1 

334 Glasser_R_VMV3 

335 Glasser_R_PHA2 

336 Glasser_R_V4t 

337 Glasser_R_FST 

338 Glasser_R_V3CD 

339 Glasser_R_LO3 

340 Glasser_R_VMV2 

341 Glasser_R_31pd 

342 Glasser_R_31a 

343 Glasser_R_VVC 

344 Glasser_R_25 

345 Glasser_R_s32 

346 Glasser_R_pOFC 

347 Glasser_R_PoI1 

348 Glasser_R_Ig 

349 Glasser_R_FOP5 

350 Glasser_R_p10p 

351 Glasser_R_p47r 

352 Glasser_R_TGv 

353 Glasser_R_MBelt 

354 Glasser_R_LBelt 

355 Glasser_R_A4 

356 Glasser_R_STSva 

357 Glasser_R_TE1m 

358 Glasser_R_PI 

359 Glasser_R_a32pr 

360 Glasser_R_p24 

504 HO_Left_Thalamus 

505 HO_Left_Caudate 

506 HO_Left_Putamen 

507 HO_Left_Pallidum 

509 HO_Left_Hippocampus 

510 HO_Left_Amygdala 

511 HO_Left_Accumbens 

515 HO_Right_Thalamus 

516 HO_Right_Caudate 

517 HO_Right_Putamen 

518 HO_Right_Pallidum 

519 HO_Right_Hippocampus 

520 HO_Right_Amygdala 

521 HO_Right_Accumbens 
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