
Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

This paper by Braun et al describes an ambitious attempt to understand working memory dynamics, by 

employing network control theory. Specifically, they aim to investigate working memory as a switch 

between stable and transitional states mediated by dopaminergic reception in line with dual-state 

theory of prefrontal dopamine function. They model brain network dynamics during a simple motor task 

and a more cognitively demanding 2-back task, as a function of white matter connectivity tracts and 

regional control energy. They find that the 2-back task state is less stable than the control state and that 

the stability is associated with WM accuracy. Moreover, transitioning to the more demanding phase 

requires more control energy than the opposite. To further support the validity of their model, they use 

pharmacological, GWAS as well as patient studies. The PCI results relate stable states to the D1 pathway 

and transitions to the D2 pathway, the latter also backed by the pharmacological results with 

amisulpiride. Schizophrenia is used as a model of a perturbed system leading to decreased stability of 

working memory representations and a more diverse energy landscape. 

While the questions posed in this paper are very timely and highly interesting, and the results mostly 

impressive, we have some difficulty seeing through the 'magic'. 

From the main text, it is unclear how the key network control measures were derived, what was the 

rationale for their specific use, and for using (or methods of) DTI. When considering the supp mats, 

various key details become clear but many other details do not. 

One specific concern is that there was no attempt to clarify the added value of assessing these indices 

over and above more standard overall BOLD signal patterns. The supp mats clarify that ‘control energy 

can be interpreted as the effort of a brain region needed to steer the activity pattern of itself and its 

connected brain regions into the desired final activation state’ but there is a need to clarify why 

shouldn’t such effort not also translate into changes in standard BOLD signal. 

Related to this, there was no theoretical attempt to conceptually relate the findings in terms of e.g. 

stability and required control energy to extensive prior evidence for increases in frontoparietal BOLD 

signal during cognitive effort and in default mode network regions during cognitive leisure, as well as 

greater frontoparietal BOLD signal when switching to an easy task vs switching to a difficult task 

(consider prior work in relation to the task-set inertia construct ). This makes it hard to evaluate novel 

contribution of the findings e.g. in Figure 1. 

While we can infer from the supp mats that network control analyses controlled for overall BOLD signal 

differences between task conditions, I am unclear whether this was done in a region- or voxel-specific 

manner or just by taking the average signal differences across the brain as a whole. The latter seems 

suboptimal. 



We also felt the paper was poorly embedded in extant literature. No reference to extensive literature 

(empirical evidence from pharmacological work with nonhuman primates, rodents, humans as well as 

neural network modelling of the basal ganglia) on subcortical, striatal contributions to working memory 

gating and the flexibility/stability tradeoff (including a variety of studies reporting effects of D2 receptor 

agents on task switching). 

Is it the case that effects are restricted to cortex? 

Much of the key conclusion by the authors rely on indirect inferences about the role of prefrontal D1 

and D2 receptors. However, without studying the supplementary materials, it is also unclear how the 

authors arrived at the genetic score, for example whether genetic data were actually obtained from the 

subjects whose n-back-related imaging data were considered. When considering the supp mats, it 

becomes clear that this analysis is based on GWAS data from only 63 subjects who also provided DTI and 

MRI data, but the paragraphs describing the procedures and rationales for achieving the ‘PCI’s’ 

‘polygenic co-expression index calculation’ are unclear. There is extensive reference to various other 

studies addressing effects of these PCIs on nback related BOLD signals, but this then raises the question 

again how do we evaluate the added and unique value of the control measure effects over and above 

voxel-specific BOLD measures. 

Various of the effects (in the pharmacological and patient study) are borderline, hovering around the 

0.05 threshold. I see no evidence of correction for multiple comparisons. This is an issue because 

emphasis is put on effects that are just below the 0.05 threshold (e.g. sulpiride) while some effects just 

above the 0.05 threshold hide in the supp mats (e.g. risperidone). 

The title states ‘Brain state stability during working memory is explained by network control theory’. 

However, for such a conclusion to carry weight, one would want to see that data are better fit from this 

theory than other theories. Comparison with alternative model(s) would be good. 

The fact that the pharmacological study in healthy volunteers involved both administration of the 

selective agent amisulpiride as well as the more unselective (also serotonergic) agent risperidone was 

not mentioned in the main text, nor is the rationale for this design. 

Also regarding the drug study we have access to actual datapoints reflecting only one fairly marginal 

effect on ‘necessary control energy’, but not to overall BOLD signals, other network control analysis 

outputs, like stability. This prevents the evaluation of the specificity of the effects. The same general 

point holds for the schizophrenia study. 

In the patient study, medication status and disease severity are important potential confounds, and 

should be added as covariates to the models. 

Overall, we think the authors packed take-home conclusions/results from too many experiments into 

one paper, preventing readers from evaluating the scientific basis of the conclusions. Using this format, 



there was insufficient space for highlighting specific questions, predictions and rationales for each of the 

subcomponent elements of the studies. We strongly recommend that the paper is revised for a much 

more extensive format. The experiments are worth it. 

Other minor comments: 

Also, based on what reasoning were the first 5 genetic PCA components included as covariates of no 

interest? The supp matts refer to ‘the PCA on the linkage-disequilibrium pruned set of autosomal SNPs’. 

Which PCA? 

The 2-back is not process-pure and requires both flexibility and stability. This observation has motivated 

various researchers to decompose the task into its subcomponent elements, e.g. in the reference back 

paradigm, but there are other examples. While we recognize that the present analyses leveraged 

stationary patterns of activity to infer ‘meta-level’ brain states, this process impurity should be 

recognized explicitly. 

Check typos in lines: 134, 142 and 150 

Reviewer #2 (Remarks to the Author): 

The manuscript "Brain state stability during working memory is explained by network control theory, 

modulated by dopamine D1/D2 receptor function, and diminished in schizophrenia" by Braun and 

colleagues presents a set of highly interesting and relevant investigations into the brain dynamics 

underlying working memory and their relationship to dopamine functioning, as indexed by whole-

genome based co-expression indices of D1 and D2 receptors and pharmacological manipulation with 

amisulpride. A sample of schizophrenia patients was also included, in order to validate tthe results but 

also to demonstrate clinical implications of the findings. 

The authors draw upon a very impressive array of different methods, including fMRI, connectomics, 

network control theory and brain network dynamics, molecular genetics and bioinformatics, 

pharmacological challenges, as well as clinical neuroscience. All methods are combined to assess 

theoretical predictions from the literature. 

While the broad methodological approach is a clear strength of the work, it also comes with its own 

downsides: Large parts of the methodology are only superficially described, not well justified, and 

difficult to evaluate, even for a person who is familiar with almost all of the mentioned analyses. 

As a general remark: I suggest to expand (at least) the supplement with much more information on the 

theoretical background, parameter choices, software code used, and additional explanations on the 

different procedures (connectome reconstruction, network control theory, genetic co-expression 



analysis). I would further suggest to discuss results more in depth and with regard to methodological 

choices. The samples, recruitment, and experiments are described in great detail which I highly 

appreciate. But the manuscript would clearly benefit from including as much detail for all other analysis 

procedures as well. On the sample level, for instance, even miniscule detail on psychological control 

variables is given. Why do the other parts of the paper fall short of a similar level of detail? 

General: 

- The concepts of "energy", "energy barrier", and "energy landscape" require more elaboration. 

Particularly, since the energy concept is "loosely defined" (unquote) based on control signals that are 

themselves not intrroduced in depth 

- Figure 1D: I find this analysis interesting but it is difficult to assess results in depth. In the main text it is 

mentioned that "other analyses" suggest fronto-parietal involvement in transitions, however, not much 

more information is given. A 20%-thresholding was applied to the figure. But information on this 

thresholding procedure, let alone a justification of this threshold is lacking. 

- why is dopamine receptor expression a good candidate? It would be important to read more about the 

theoretical underpinnings and implicatons of the choice to study these particular variables. 

- connectome reconstruction: crucial information on stopping rules / abortion criteria are missing (other 

than streamlines of <10 mm length) 

- connectome reconstruction: Did you apply any thresholding to the FA matrices? Any particular reason 

to use FA and no alternative edge weight such as streamline volume density? [edit: Now that I read 

paragraph 9.4 this becomes a bit clearer]. 

- It is unclear whether particpant level or group level conenctome matrices were used. Either way: There 

is almost no information on thresholding, differences in network density, and information on how 

individual matrices were combined at the group level (if at all). I strongly advise the authors to be more 

specific here. 

- network control theory: As with any new development in our fastly developing field I would appreciate 

more information here, rather than refering to previous work and stating the formulas. While it is quite 

straightforward to understand the conceptual logic behind the steps, a few more explanations and 

justifications throughtout the section would make the whole manuscript more assessible for more 

readers. 

- network control theory: More information on code availability and /or reference to the matlab 

functions 

- genotyping: Step 1 and 2 of QC pipeline. Wahat is meant by "numbers of SNPs"? 

- Paragraph 8 statistical inference: It is somewhat confusing how "energy" and "activity" are 

conceptually intertwined. Wwould you mind clarifying? 

- null models: Is there any reason the signed-network script was used? I am not sure how edge weights 

in FA weighted matrices could be negative. 

- null models: Is there a way to quantify the interaction effect? Would be intersting to see how SCZ 

patients are different. 

- null models: Plese add information on the spatial randomization of brain activity. 



Reviewer #3 (Remarks to the Author): 

Thank you for inviting me to review this manuscript by Braun and colleagues, in which the authors apply 

a linear controllability analysis to structural brain imaging data from a large-sample of healthy 

individuals, and then use this information to infer the control theoretic principles required to shift 

between 0-back and 2-back activity on a cognitive task. As expected, shifting the brain into a cognitively-

demanding 2-back task was associated with the need for greater control energy, suggesting that the 

state was more difficult to instantiate and maintain. The authors frame their results in the context of a 

previous hypothesis linking different cortical dopaminergic receptor families (D1 and D2 receptors) to 

deepening and flattening of an energy landscape, respectively. They test these predictions using a 

separate small cohort (N=16) of individuals that performed an N-back task following the administration 

of amisulpride (a D2-receptor agonist) and found results commensurate with their predictions. They also 

analysed a small (N=24) cohort of individual with clinically-diagnosed schizophrenia, and found similar 

impairments in control energy for the 2-back (but in this case, not the 0-back) condition 

Overall, the manuscript was clearly written and technically impressive. There was a wide range of 

analytic techniques used, and as mentioned, analyses were conducted across multiple unique datasets. 

That said, I do have some reservations with the analyses as they are currently presented. I have outlined 

these concerns below, which I hope will help to improve the manuscript: 

* The link between dopaminergic function and working memory is well-defined in prior literature, 

however I find the authors interpretation of the relationship between dopamine and the energy 

landscape somewhat puzzling. After reading the source material (Durstewitz and Seamans), I am 

confident that this issue relates to a focus on the impact of dopamine receptors on the activity patterns 

within the cerebral cortex. Although the impact of dopamine on the cortex is well-described using the 

energy landscape framework, I am less convinced that the same could be said for the effects of 

dopamine on the basal ganglia (which is their main site of action in the CNS, I might add). The circuitry of 

the basal ganglia and thalamus are quite distinct from the cerebral cortex, and there is good reason to 

believe that the effects of dopamine might be contrary to those acting locally on pyramidal cells in the 

cortex. For these reasons, I recommend that the authors make explicit their focus on the impact of 

dopamine on cortical circuits, and ensure that they are not incorrectly concluding that their effects 

should scale to the level of the entire system. 

* I’m not sure that the term ‘brain state’ should be used to describe the spatial pattern of beta 

estimates from a general linear model (p5/6 Methods). These patterns instead represent a statistical 

map, which may or may not have recurred en masse, as one might expect for a ‘brain state’ -- indeed, it 

is quite possible for a region to be associated with a strong beta value from a GLM while only arising on 

a proportion of trials within an experiment. The authors may wish to choose a different term, or perhaps 

to confirm that the brain state was indeed a brain-wide state, and not just a statistical artefact. 



* The authors mention that some of the subjects in the pharmacological study were administered 

Risperidone. Why were these data not reported? 

* Is the choice to define the input matrix as an identity matrix well founded? This contrasts with my 

expectation that associative cortical regions should have a greater ability to influence sensory and motor 

regions of the cortex than vice versa. Would taking this into account change your results? 

Minor: 

* I couldn’t find the value ‘ñ’ defined on p7 of the Methods. 

* I did not see the number of individuals with Schizophrenia mentioned in the main text. 
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Reviewers' comments: 

Reviewer #1 (Remarks to the Author):

This paper by Braun et al describes an ambitious attempt to understand working memory dynamics, 
by employing network control theory. Specifically, they aim to investigate working memory as a 
switch between stable and transitional states mediated by dopaminergic reception in line with dual-
state theory of prefrontal dopamine function. They model brain network dynamics during a simple 
motor task and a more cognitively demanding 2-back task, as a function of white matter connectivity 
tracts and regional control energy. They find that the 2-back task state is less stable than the control 
state and that the stability is associated with WM accuracy. Moreover, transitioning to the more 
demanding phase requires more control energy than the opposite. To further support the validity of 
their model, they use pharmacological, GWAS as well as patient studies. The PCI results relate 
stable states to the D1 pathway and transitions to the D2 pathway, the latter also backed by the 
pharmacological results with amisulpiride. Schizophrenia is used as a model of a perturbed system 
leading to decreased stability of working memory representations and a more diverse energy 
landscape.  

While the questions posed in this paper are very timely and highly interesting, and the results mostly 
impressive, we have some difficulty seeing through the 'magic'.  

1. From the main text, it is unclear how the key network control measures were derived, what 
was the rationale for their specific use, and for using (or methods of) DTI. When considering 
the supp mats, various key details become clear but many other details do not.  
We thank the reviewers for this comment. The manuscript was originally submitted as 
a short communication format including strict word limitations, but the current 
requirements of Nature Communication allows for a more detailed and thorough 
description of the methods and ideas. Therefore, we have substantially extended and 
reorganized the manuscript to give the reader a more comprehensive but also more 
intuitive understanding of the key concepts and methods, in particular explaining the 
rationale for including DTI methods. 
Specifically, we have added a figure explaining the key methods (Figure 1), and we 
have also added the following paragraphs to main manuscript: 

page 3: 
“The complex dynamics of state transitions unfold upon the underlying structural scaffold whose 
architecture shapes the structure-function relationship (17, 18) and constrains the dynamic repertoire 
enabling executive functioning (19-21).” 

page 5: 
“We define individual brain states as spatial patterns of estimates associated with activity across 
brain regions of interest during a working memory condition (2-back) and during an attention control 
condition requiring motor response (0- back). It is important to note that our definition of brain states 
relates to the statistical spatial pattern of estimates from a general linear model and does not reflect 
neuronal activity occurring en masse as, for example, in neurophysiological animal experiments. To 
quantify the energy efforts associated with a specific transition from an initial state x0 to a target state 
xT, we approximate brain dynamics locally by a simple linear dynamical system, �(̇�) = ��(�) + ��(�), 
where x(t) is the brain state of the system, A is a structural connectome inferred from DTI data, u is 
the control input, and B is a matrix describing which regions enact control or receive control input. 
After finding the optimal control input u that enables a transition, the control energy of each node is 
calculated as the squared integral over time of u; intuitively, this quantity measures the control input 
that the node has to exhibit to facilitate the transitions from the initial state to the target state. 
Similarly, the stability of a brain state can be defined as the inverse control energy needed to maintain 
in a specific state. In this framework, control energy can be interpreted as the effort of a brain region 
needed to steer the activity pattern of itself and its connected brain regions into the desired final 
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activation state; relatedly, stability can be interpreted as the effort of a brain region needed to maintain 
a given activity pattern of itself and its connected brain regions. For a more detailed mathematical 
description of the network control framework, please see the Methods section and Supplemental 
Information.” 

Page 18 & 19: 
“To model the transition between 0-back and 2-back brain states, we used the framework of optimal 
control, following prior work (23, 24, 76) implemented in MATLAB. Based on individual brain states 
X=[x1,…xn] (in our case simplified to n = 2 states: 0-back and 2-back, see above) and a structural 
brain network A for each subject, we approximated the local brain dynamics by a linear continuous-
time equation, �(̇�) = ��(�) + ��(�), to model the flow among task-related brain activity states. In the 
model, x(t) is the state of the system at time t, A is the wiring diagram of the underlying network, B
denotes an input matrix defining the control nodes, and u(t) is the time-dependent control signal (23, 
41). Note that while the initial state (x0) and the target state (xT) are empirically defined, any states of 
the system at other times are virtual intermediate steps in the trajectories of the state-space model. In 
that state-space, we aim to identify a trajectory between state x0 and state xT that is minimal in terms 
of the necessary control input signals as well as the distance of the trajectory. This choice is 
motivated by two complementary ideas: first, that the brain minimizes its energy expenditure to 
perform that transition, and second, that optimal transitions between states should be non-random 
walks in state space. These notions can be formalized by defining an optimization problem that 
minimizes a given cost function. We define this cost function by the weighted sum of the energy cost 
of the transition and the integrated squared distance between the transition states and the target 
state. 
The problem of finding an optimal control energy u* that induces a trajectory from an initial state x0 to 
a target state xT reduces to the problem of finding an optimal solution to the minimization problem of 
the corresponding Hamiltonian: 
(2) min[H(p, x, u, t) = xTx + ñuTu + pT (Ax + Bu)] (24). 
The parameter ñ in this equation allows to penalize the energy used by the optimal input in relation to 
the deviation from the optimal trajectory when solving for the optimal control. As we had no specific 
hypothesis that either of these elements of the cost function should prevail, we used the default of ñ = 
1.  
By setting the input matrix B = INxN, the identity matrix, we allow all brain regions to be independent 
controllers (41, 76). This is motivated by our analysis question to use a system-level and data-driven 
approach to identify regions contributing most to the transitions in an unbiased way in line with 
previous work (77-79).” 

In addition, we have added a section giving further details regarding parameter 
choices to the Supplement. See SI Section 4. Network Control Theory. 

2. One specific concern is that there was no attempt to clarify the added value of assessing 
these indices over and above more standard overall BOLD signal patterns. The supp mats 
clarify that ‘control energy can be interpreted as the effort of a brain region needed to steer 
the activity pattern of itself and its connected brain regions into the desired final activation 
state’ but there is a need to clarify why shouldn’t such effort not also translate into changes 
in standard BOLD signal. 

We thank the reviewers for raising this important question. Indeed, the association of 
control energy and BOLD activity is complex and the added value of using the control 
theory framework requires further elaboration.

First, in the control theory framework, the control energy (u) of a node and the state of 
that same node (x) are highly interrelated. For example, if we consider a simplified 
system consisting of only one node, then the control energy E necessary to change 
the state of that node from an initial state (x0) to a target state (xT) is basically a 
function of the squared difference in that node’s state [E ~ (x0 - xT)

2]. As our definition 
of brain states is based on  estimates that depend on BOLD activity, in such a 
simplified system control energy would not give any additional information other than 
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the usual contrast images 2back-0back. However, if we consider a more complex 
system with more than one node, and where all nodes are connected via either direct 
or indirect links as summarized in the connectivity matrix A, then the control energy 
of a single node is not a simple function of the squared differences in its state but 
additionally accounts for the influence of other connected neighbors. 

Second, as the reviewers remark below, our definition of brain states is built on 
stationary activity patterns that summarize “meta-level” information about different 
cognitive processes. Here, it is important to note that our analysis was not intended 
(and because of the design of our N-back task also not suited) to study the switching 
between BOLD activity patterns related to cognitive flexibility and stability. Instead, 
we investigate processes at a more abstract, system-level perspective that might not 
find a direct expression in BOLD signal changes.  
To demonstrate the additional value of our analytical approach to more conventional 
GLM approaches in regards to the reported neurobiological associations and group 
differences, we performed several additional analyses, which we describe below. 

1) Association of control energy with DRD1 and DRD2 expression: 
We extracted the parameter estimates from the respective peak voxels 
reported in Fazio et al. (1) at [-29 53 24] for DRD1 associated brain activity 
and Selvaggi et al. (2) at [-33 49 13] for DRD2 associated brain activity and 
included them as covariates in our main analysis. Importantly, our results 
were unchanged. 
Specifically, regarding the stability, for the DRD1 score  0-back relation 
we found b = 0.184, p = 0.036, and for the DRD1 score  2-back relation, we 
found b = 0.242, p = 0.008. In this analysis, age, sex, brain activity, first 5 
genetic PCA components and brain activity at [-29 53 24] were included as 
covariates of non-interest. Regarding the control energy, for the DRD2 
score  0- to 2-back relation we obtained b = -0.075, p = 0.042, and for the 
DRD2 score  2- to 0-back relation we obtained b = -0.139, p = 0.062. Like 
the previous analysis, here we included age, sex, stability, difference in 
brain activity, first 5 genetic PCA components and brain activity at [-33 49 
13] as covariates of non-interest. 
These results demonstrate that our control measures explain additional 
variance beyond pure brain activation and are potentially associated with 
differential neurobiological mechanisms. 

2) D2 receptor manipulation using Amisulpride: 
We performed a conventional SPM analysis for Placebo versus 
Amisulpride, using the 2-back>0back contrast and included the same 
covariates as in our control theory analysis. We could not detect any 
significant activation differences, either for the Placebo > Amisulpride nor 
the opposite contrast, even at a lenient threshold of P < 0.001 uncorrected. 
These results demonstrate that our control measures can identify 
meaningful intervention effects in the absence of pure activation 
differences. 

3) Stability and Control Energy in Schizophrenia: 
We performed a conventional SPM analysis for schizophrenia patients 
versus healthy controls, using the 2-back>0back contrast and included the 
same covariates as in our control theory analysis. At a lenient threshold of 
P < 0.001 uncorrected, we detected two significant clusters of voxels in our 
target regions, comprising dorsolateral prefrontal cortex, hippocampus, 
and parietal cortex (HC > SZ: right hippocampus at [42 -37 -13] and HC<SZ: 
right parietal cortex at [51 -43 17]). We extracted the peak voxel  estimates 
and used partial correlations to demonstrate that the control energy and 
stability values of our analysis are not associated with the more 
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conventional activity measures. In particular, the  estimates at the right 
hippocampus [42 -37 -13] were not significantly correlated with 0-back 
stability (rpar = -0.005, p = 0.961), 2-back stability (rpar = 0.139, p = 0.167), 0- 
to 2-back control energy (rpar = -0.115, p = 0.253) or 2- to 0-back control 
energy (rpar = 0.150, p = 0.135). Furthermore, the estimates at [51 -43 17] 
were not significantly correlated with 0-back stability (rpar = -0.079, p = 
0.431), 2-back stability (rpar = -0.106, p = 0.293), 0- to 2-back control energy 
(rpar = -0.144, p = 0.151), or 2- to 0-back control energy (rpar = -0.100, p = 
0318). These results again demonstrate the relative independence of our 
control measures from more conventional group activation differences. 

In the revised manuscript, we have added these additional analyses to the 
Supplemental Material. Together, we believe that these additional results demonstrate 
the additional value of our analytical approach to more conventional GLM 
approaches. 

3. Related to this, there was no theoretical attempt to conceptually relate the findings in terms 
of e.g. stability and required control energy to extensive prior evidence for increases in 
frontoparietal BOLD signal during cognitive effort and in default mode network regions 
during cognitive leisure, as well as greater frontoparietal BOLD signal when switching to an 
easy task vs switching to a difficult task (consider prior work in relation to the task-set inertia 
construct). This makes it hard to evaluate novel contribution of the findings e.g. in Figure 1. 

We thank the reviewers for this comment and agree that a conceptual discussion of 
the relation between our findings and prior work in task switching is of interest to the 
readers. Accordingly, we have added the following paragraphs to pages 10-11 of the 
main manuscript: 

“Further, switching to the cognitively more demanding and less stable state required more control 
energy than the inverse transition. The direction of this difference suggests that the cognitively more 
demanding state was more difficult to access, a notion that is in line with the idea of associated switch 
costs when turning to more difficult tasks (42). Importantly, these analyses were performed while 
controlling for the effects of mean brain activation; therefore, the results cannot be explained as mere 
epiphonema of global or local brain activity levels as measured by fMRI, which have previously been 
shown to be task- and cognitive load-dependent (36, 43). When examining the regional contributions 
of brain areas to the control of state switching, we are able to differentiate between (i) a universal set 
of brain regions mainly located in prefrontal and parietal cortices supporting both transitions, and (ii) 
medial structures in default-mode related areas that showed particularly strong involvement in 0- to 2-
back transitions. These results are in line with previous predictions from network control studies 
indicating that PFC areas are essential for controlling transitions into hard-to-reach states (22, 44), 
and further support the assumed role of frontal-parietal circuits in steering brain dynamics (45) and 
their prominent role in shifting tasks (9,46-48). The findings also emphasize the importance of the 
coordinated behavior of brain systems commonly displaying deactivations during demanding cognitive 
tasks (49).” 

4. While we can infer from the supp mats that network control analyses controlled for overall 
BOLD signal differences between task conditions, I am unclear whether this was done in a 
region- or voxel-specific manner or just by taking the average signal differences across the 
brain as a whole. The latter seems suboptimal.  

We thank the reviewers for the question. In our analyses, we controlled for brain-wide 
differences in  estimates as a reflection of associated BOLD signal changes. This is 
necessary, as our primary interest is in the global system`s effort that is needed to 
change brain activity patterns independent of global changes in the BOLD signal. 
Correcting for differences of activity on the individual node level would be infeasible, 
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as this would remove precisely the effects that we are interested in studying, namely 
the change in regional signal amplitude.

5. We also felt the paper was poorly embedded in extant literature. No reference to extensive 
literature (empirical evidence from pharmacological work with nonhuman primates, rodents, 
humans as well as neural network modelling of the basal ganglia) on subcortical, striatal 
contributions to working memory gating and the flexibility/stability tradeoff (including a variety 
of studies reporting effects of D2 receptor agents on task switching).  

We thank the reviewers for this suggestion. The main focus of our paper was two-
fold: first, we aimed to study prefrontal contributions to stability and state switching 
during working memory involving brain-wide activity patterns and secondly, the 
modulation of these mechanisms by prefrontal dopamine receptor signaling. We 
recognize and highly appreciate evolving efforts to study the influence of striatal 
dopamine on gating mechanisms contributing to the stability/flexibility tradeoff 
during working memory and task switching. However, as the reviewers themselves 
point out later, the paradigm employed here is not designed to disentangle the 
differential contribution of striatal activity (or dopamine) on stability or task switching 
during working memory. For that reason, we have kept our focus on cortical 
contributions to the process, but now explicitly mention that said focus and discuss 
the emerging field of striatal contributions to task switching and working memory. In 
the revised manuscript, we have added the following passages: 

Page 3: 
“Recent accounts extend the idea of dopamine’s impact on working memory from a local prefrontal to 
a brain-wide network perspective (5-7), emphasizing the dual role of dopamine in regulating the 
complex interplay between striatal and prefrontal circuits critical for balancing the stability-flexibility 
tradeoff. Indeed, several lines of research support the notion that dopamine actions in frontal-parietal 
regions contribute to both maintaining cortical representations (8-10) and the flexible switching 
between different representations (2, 11, 12). Notably, a large body of evidence further demonstrates 
that the latter process additionally involves striatal-cortical interactions (6, 9), suggesting a gating 
function of the striatum for cortical memory representations (7). These accounts highlight the 
contribution of widespread neural circuits and their regulation by dopamine to working memory.”

Page 11 + 12: 
“Secondly, in line with the prediction of the dual-state theory of network function, we show that the 
ability to control brain dynamics during working memory is differentially modulated by D1/D2 
dopamine receptor functioning. D1-receptor signaling in frontal circuits has been previously shown to 
facilitate working memory by tuning signal-to-noise ratios in pyramidal neurons (1, 50), enabling stable 
network activation patterns that support maintenance of neural representations (4, 51). In contrast, 
D2-receptor activation in PFC can lead to decreased GABA and NMDA receptor-related currents, 
thereby counteracting D1-receptor activity and ultimately enabling higher flexibility and switching 
between cognitive representations (4). While these insights focus on cortical microcircuits and are 
derived from animal studies and theoretical modelling, our results complement previous work 
demonstrating that similar principles govern the modulatory actions of D1 (and D2 receptors) at the 
macroscopic level of brain-wide networks, particularly in frontal-parietal circuits (6).  

It is important to note that our data provide association of whole brain processes with polygenic co-
expression indices derived from prefrontal areas, and that previous studies have demonstrated 
differential expression patterns of dopamine receptors for prefrontal and striatal areas as well as 
differential (and even antagonist) behavior of dopamine receptor stimulation in striatal and prefrontal 
circuits (6, 52). Therefore, it seems plausible that our results mainly reflect dopamine actions as 
observed in PFC-related circuits, which are also the dominant control nodes in our model facilitating 
both state transitions. Both observations would support a model of frontal-parietal circuits serving as 
hub regions modulated by D2-receptor signaling, which controls and facilitates the flexible adaptation 
of brain-wide activity and connectivity patterns (14, 46, 47, 53, 54). While our model concentrates on 
PFC related dopamine action, it does not exclude the increasingly important concept that emphasizes 
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the additional role of striatal input and output gating as dopamine-related mechanisms contributing to 
a stability-flexibility tradeoff critical for cognitive control, task-switching, and working memory (7, 55, 
56). However, studying the differential contributions of striatal and frontal dopamine signaling on 
working memory in future studies will require a finer grained task design to disentangle the several 
cognitive subprocesses that are currently mingled in the two conditions of our N-back task. 

The idea of dopamine related frontal-parietal circuits as important regions for flexibly controlling the 
reconfiguration of brain-wide activity patterns is further supported by our pharmacological intervention, 
where we observe a specific increase of control energy for switching brain activation patterns after 
D2-blockade, but no effect on the stability of these patterns. Here, future work quantifying brain-wide 
D1- and D2-receptor levels in vivo in combination with pharmacological manipulations would provide 
valuable and strongly needed data to disentangle the specific contributions of the spatial distribution 
and different receptor subtypes to working memory processes.” 

6. Is it the case that effects are restricted to cortex?  

We appreciate the reviewer’s question. The effects are not restricted to the cortex 
since our work is based on a brain parcellation spanning both cortical and subcortical 
areas. Importantly, we also replicate our results using a different whole-brain 
parcellation scheme to show the robustness of our findings. We described the details 
of that parcellation in the supplement and have added a line explicitly mentioning its 
coverage in the main manuscript: 

Page 4: “Building on a brain parcellation spanning both cortical and subcortical areas (see Methods), 
…”

7. Much of the key conclusion by the authors rely on indirect inferences about the role of 
prefrontal D1 and D2 receptors. However, without studying the supplementary materials, it is 
also unclear how the authors arrived at the genetic score, for example whether genetic data 
were actually obtained from the subjects whose n-back-related imaging data were 
considered. When considering the supp mats, it becomes clear that this analysis is based on 
GWAS data from only 63 subjects who also provided DTI and MRI data, but the paragraphs 
describing the procedures and rationales for achieving the ‘PCI’s’ ‘polygenic co-expression 
index calculation’ are unclear. There is extensive reference to various other studies 
addressing effects of these PCIs on nback related BOLD signals, but this then raises the 
question again how do we evaluate the added and unique value of the control measure 
effects over and above voxel-specific BOLD measures.  

We apologize for the unclear description of the polygenic co-expression scores used 
in our analyses. The scores in our analysis are computed by a weighted sum of 
predefined single nucleotide polymorphisms (SNP), similar to a polygenic risk score. 
The scores are computed based on genome-wide SNP data for each individual and 
then used as a proxy of D1 and D2 receptor expression in the DLPFC of that 
individual. The weights and the set of SNPs contributing to both scores have been 
derived from relating co-expression patterns of DRD1 and DRD2 mRNA from post 
mortem brains in the dorso-lateral prefrontal cortex (Braincloud dataset) to genetic 
polymorphisms, as described in detail in previous publications (1-3). As described in 
the Supplementary Material, the initial samples for defining and replicating the 
calculation of these scores were much larger than the n = 63 in our study. The 
subsample in our study was determined by the number of healthy subjects that had 
whole-genome genotype data available. In the revised manuscript, we have added a 
clearer description and detailed explanation of how these scores were constructed. 

First, on page 7 of the main manuscript, we have added a more detailed description of 
how we constructed these scores. 
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“To estimate individual prefrontal D1 receptor expression in each participant, we utilized methods 
relating prefrontal cortex D1 and D2 receptor expression to genetic variation in their co-expression 
partner, thereby enabling us to predict individual dopamine receptor expression levels from genotype 
data across the whole genome (26, 27). Specifically, previous work using weighted Gene Co-
expression Network Analysis (28) applied on the Braincloud dataset of post-mortem DLPFC gene 
expression (29) had identified 67 non-overlapping sets of genes based on their expression pattern. 
The co-expression gene sets including DRD1 and DRD2 were summarized into Polygenic Co-
expression Indices (PCIs) based on weighted SNPs that predicted co-expression of these genes. 
Based on these weighted sums of SNPs, we calculated individual PCI scores related to D1 and D2 
receptor expression for a subset of 63 individuals for which whole genome genotyping data were 
available (for more details see Methods and SI).”

In addition, as mentioned above, we demonstrated the added value of our analysis, by 
extracting the BOLD measures from the voxels reported in Fazio et al (1) and Selvaggi 
et al (2) and including them a covariates in our main analysis. This did not change our 
results significantly. Specifically, regarding the stability, for the DRD1 score  0-back 
relation we found b = 0.184, p = 0.036, and for the DRD1 score  2-back relation, we 
found b = 0.242, p = 0.008. In this analysis, age, sex, brain activity, first 5 genetic PCA 
components and brain activity at [-29 53 24] as peak voxel reported in Fazio et al were 
included as covariates of non-interest. Regarding the control energy, for the DRD2 
score  0- to 2-back relation we obtained b = -0.075, p = 0.042, and for the DRD2 
score  2- to 0-back relation we obtained b = -0.139, p = 0.062. Like the previous 
analysis, here we included age, sex, stability, difference in brain activity, first 5 
genetic PCA components and brain activity at [-33 49 13] as peak voxel reported in 
Selvaggi et al as covariates of non-interest. 
These results demonstrate that our control measures explain additional variance 
beyond pure brain activation and are potentially associated with differential 
neurobiological mechanisms. 

We have added these results demonstrating the added values of our analysis to the 
Supplemental information, Section 6.8. 

8. Various of the effects (in the pharmacological and patient study) are borderline, hovering 
around the 0.05 threshold. I see no evidence of correction for multiple comparisons. This is 
an issue because emphasis is put on effects that are just below the 0.05 threshold (e.g. 
sulpiride) while some effects just above the 0.05 threshold hide in the supp mats (e.g. 
risperidone).  

We thank the reviewers for this suggestion. Based on the theoretical and 
experimental rationale of study, our main hypothesis in the pharmacological study 
was that D2 receptor manipulation impacts transition energy, which we tested using 
amisulpride, as it has the highest selectivity for the D2 receptor. Because the data 
was acquired as part of a larger study and also included the acquisition of risperidone 
in the same subjects, we felt that for reasons of transparency we should analyze the 
data for risperdone as well; our hypothesis was that we would detect similar but 
weaker effects when using a less selective D2 receptor agent. We now mention these 
results in the main text and refer the readers to the extensive set of post-hoc control 
and specificity analyses that we were asked to perform to prove that our results are 
robust to parameter choices and specific to the variables presented in the main text. 

9. The title states ‘Brain state stability during working memory is explained by network control 
theory’. However, for such a conclusion to carry weight, one would want to see that data are 
better fit from this theory than other theories. Comparison with alternative model(s) would be 
good.  
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We agree that this statement is overly bold, as we do not test different models here. 
Therefore, we have changed the title to: 
“Brain state stability during working memory as assessed by network control theory, is 
modulated by dopamine D1/D2 receptor function, and diminished in schizophrenia” 

10. The fact that the pharmacological study in healthy volunteers involved both administration of 
the selective agent amisulpiride as well as the more unselective (also serotonergic) agent 
risperidone was not mentioned in the main text, nor is the rationale for this design.  

The pharmacological data were acquired as part of larger study testing the differential 
effects of a broad range of psychotropic drugs, including for example ketamine and 
scopolamine. In each group of healthy volunteers, two active substances (here: 
amisulpride and risperidone) were tested in a randomized, three-arm, controlled trial. 
As our main goal in the current manuscript was to selectively perturb dopamine D2-
receptor activity, we focused our analysis on the effects of amisulpride, as it has the 
highest selectivity for the D2 receptor and therefore should have the strongest and 
cleanest effect. However, for reasons of transparency we analyzed the data for 
risperdone as well, hypothesizing that we would detect similar but weaker effects 
when using a less selective D2 receptor agent. We included these additional data in 
the Supplementary Material due to the length limitations of our original submission.  
Given the current, more generous word limit, we are happy to include the results for 
risperidone in the main manuscript. 

Page 8: 
“Importantly, we were able to trend-wise replicate the results of the pharmacological intervention with 
risperidone, a substance showing lower D2-receptor selectivity (repeated measures ANOVA with drug 
and transition as within-subject factors, main effect of drug: F(1,10) = 3.490, p = 0.091; repeated 
measures ANOVA with drug and stability as within-subject factors, main effect of drug: F(1,8) = 1.057, 
p = 0.334, see Table S3).”

11. Also regarding the drug study we have access to actual datapoints reflecting only one fairly 
marginal effect on ‘necessary control energy’, but not to overall BOLD signals, other network 
control analysis outputs, like stability. This prevents the evaluation of the specificity of the 
effects. The same general point holds for the schizophrenia study.  

We have added plots for control energy, stability, and overall BOLD signals to the 
Supplementary Materials, section 7.2. and 7.3. For our pharmacological study, as 
reported in the manuscript and the SI, we find a significant main effect of drug for 
control energy but not for stability. In addition, we do not find a significant main effect 
of drug for overall BOLD signal (repeated measures ANOVA with drug and brain 
activity as within-subject factors, main effect of drug: F(1,12) = 1.106, p = 0.314, sex, 
and drug order as covariates of non-interest). 
For our patient study, as reported in the manuscript and the SI, we find a significant 
main effect of patient group on the control energy of the transition from 0-back to 2-
back and the stability of the 2-back state. Regarding brain activity, we find a trend-
wise significant effect of patient group on the 0-back activity (F(1,100) = 3.235, p = 
0.075, age, sex as covariates of non-interest) and a significant effect of patient group 
on the 2-back activity (F(1,100) = 4.860, p = 0.030, same covariates of non-interest). As 
we use brain activity and difference in brain activity in our main analyses as 
covariates of non-interest, these results supports the specificity of our results. 

12. In the patient study, medication status and disease severity are important potential 
confounds, and should be added as covariates to the models.  
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In Section 6.5. of the Supplementary Materials, we have performed control analyses to 
demonstrate that medication status and disease severity/duration are not correlated 
with our primary control parameters. However, we did not add those potential 
confounds as covariates in our ANOVA analysis because doing so would significantly 
reduce our ability to detect group differences, as these presence and absence of 
these confounds are plausibly tight to group status (healthy controls received no 
medication, etc.). 

Supplement, page 13+14: 
“In patients, the potential relationship between control energy and stability, antipsychotic drug dose 
(expressed in chlorpromazine equivalents (CPZE), n=20), and clinical parameters (illness duration, 
illness severity as indexed by global functioning (GAF) and Positive and Negative Symptom Scale 
(PANSS)) were explored using a Pearson correlation. Neither the control energy for the 0-back to 2-
back transition nor the opposite transition or the stability of either state were significantly associated 
with CPZE (N = 20, 0- to 2-back: r = 0.078, p = 0.767; 2- to 0-back: r = 0.320, p = 0.210; 0- back 
stability: r = 0.150, p = 0.564; 2- back stability: r = 0.096, p = 0.713), with illness duration (N = 23, 0- 
to 2-back: r = 0.017, p = 0.937; 2- to 0-back: r = -0.226, p = 0.299; 0- back stability: r = 0.110, p = 
0.644; 2- back stability: r = 0.281, p = 0.230), or with GAF (N = 24, 0- to 2-back: r = -0.086, p = 0.690; 
2- to 0-back: r = -0.254, p = 0.230; 0- back stability: r = -0.135, p = 0.570; 2- back stability: r = 0.066, p 
= 0.793).”

13. Overall, we think the authors packed take-home conclusions/results from too many 
experiments into one paper, preventing readers from evaluating the scientific basis of the 
conclusions. Using this format, there was insufficient space for highlighting specific 
questions, predictions and rationales for each of the subcomponent elements of the studies. 
We strongly recommend that the paper is revised for a much more extensive format. The 
experiments are worth it.  

We thank the reviewers for their appreciation of our analyses and are confident that 
our significantly reworked and extended manuscript can provide a more detailed, 
clearer, and thorough picture of the rationale, experiments, and results to support our 
conclusions. 

Other minor comments: 
1. Also, based on what reasoning were the first 5 genetic PCA components included as 

covariates of no interest? The supp matts refer to ‘the PCA on the linkage-disequilibrium 
pruned set of autosomal SNPs’. Which PCA? 

We thank the reviewer for this comment . A principal component analysis is applied to 
the GWAS data set after the included SNPs have been pruned based on linkage 
disequilibrium. The resulting set of principal components is used to infer genetic 
ancestry. Genetic ancestry or genetic population stratification is a critical source of 
error and false positive associations in GWAS and PRS analysis (4-6). Therefore, we 
included principal components reflecting genetic ancestry as covariates of no interest 
in our statistical models to control for population stratification. To balance rigorous 
control of population structure with overfitting of our model we decided to include the 
first five principle components.

2. The 2-back is not process-pure and requires both flexibility and stability. This observation 
has motivated various researchers to decompose the task into its subcomponent elements, 
e.g. in the reference back paradigm, but there are other examples. While we recognize that 
the present analyses leveraged stationary patterns of activity to infer ‘meta-level’ brain 
states, this process impurity should be recognized explicitly.  
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We agree that the current task design imposes several limitations on our analyses. In 
the revised manuscript, we now discuss the process-impurity and brain state 
definition explicitly in our limitations section. 

Page 13: 
“Firstly, to relate brain dynamics to cognitive function, we focus on discrete “meta-level” brain states 
where each state is summarized by a single brain activation pattern rather than a linear combination 
of multiple brain activity patterns. These brain states do not purely reflect a single process but instead 
involve several cognitive subprocesses. Future studies could use specific paradigms to disentangle 
these subprocesses, in combination with more direct and time-resolved measures of brain activity 
such as MEG.” 

3. Check typos in lines: 134, 142 and 150 

Thank you for spotting these typographical errors. We have corrected them in the 
revised manuscript. 
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Reviewer #2 (Remarks to the Author):

The manuscript "Brain state stability during working memory is explained by network control theory, 
modulated by dopamine D1/D2 receptor function, and diminished in schizophrenia" by Braun and 
colleagues presents a set of highly interesting and relevant investigations into the brain dynamics 
underlying working memory and their relationship to dopamine functioning, as indexed by whole-
genome based co-expression indices of D1 and D2 receptors and pharmacological manipulation 
with amisulpride. A sample of schizophrenia patients was also included, in order to validate the 
results but also to demonstrate clinical implications of the findings. 

The authors draw upon a very impressive array of different methods, including fMRI, connectomics, 
network control theory and brain network dynamics, molecular genetics and bioinformatics, 
pharmacological challenges, as well as clinical neuroscience. All methods are combined to assess 
theoretical predictions from the literature.  

While the broad methodological approach is a clear strength of the work, it also comes with its own 
downsides: Large parts of the methodology are only superficially described, not well justified, and 
difficult to evaluate, even for a person who is familiar with almost all of the mentioned analyses.  

As a general remark: I suggest to expand (at least) the supplement with much more information on 
the theoretical background, parameter choices, software code used, and additional explanations on 
the different procedures (connectome reconstruction, network control theory, genetic co-expression 
analysis). I would further suggest to discuss results more in depth and with regard to methodological 
choices. The samples, recruitment, and experiments are described in great detail which I highly 
appreciate. But the manuscript would clearly benefit from including as much detail for all other 
analysis procedures as well. On the sample level, for instance, even miniscule detail on 
psychological control variables is given. Why do the other parts of the paper fall short of a similar 
level of detail? 

We thank the reviewer for their appreciation of our manuscript. We have now substantially 
restructured and expanded the manuscript and supplementary materials to include more 
details on the theoretical background, the parameter choices, and the methodological 
choices used in the study. We have also added more explanations and justifications for 
these choices, especially in regard to the more novel framework of network control theory.

General: 
1. The concepts of "energy", "energy barrier", and "energy landscape" require more 

elaboration. Particularly, since the energy concept is "loosely defined" (unquote) based on 
control signals that are themselves not introduced in depth 

We thank the reviewer for this comment and are sorry for the confusion. Our 
manuscript focuses on control energy, which quantifies the energetic effort needed to 
enable state transitions; that is, the effort necessary to drive the system from one 
activity state to another. In this framework, control energy is explicitly defined and 
can be calculated as the squared integral over time of the control. Our initial wording 
of “loosely defined” was admittedly poorly chosen, but reflected the fact that control 
energy in our case cannot be directly related to the physical definition of the word 
energy.  Control energy is given in arbitrary units, and not in Joules; a mapping from 
the arbitrary units to physical units would be needed for us to determine a direct 
metabolic cost.  

Additionally, the concepts and language of energy landscape and energy barrier are 
based on previous work in non-linear systems. Our work is built on a framework 
using linear system approaches, which make the computations of control signals 
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tractable. A direct comparison of linear and non-linear approaches is not possible, but 
a local approximation of a non-linear system (as the brain certainly is) to a linear 
system can be accurate (7, 8). In that context, an energy barrier between two states in 
the multi-dimensional state-space should be reflected in less control energy efforts to 
stabilize that state, but this relation has not yet been formalized mathematically. 

However, we see that this wording led to confusion and we now explicitly explain how 
control energy is defined and calculated in the main text and the supplement, thereby 
highlighting these points: 

E.g., supplement, page 7:

“Control energy for each node ki, i = 1…m (m = total number of brain nodes), was defined as 

(3)   ��� = ∫ ��∗��(�)�
�
��
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i.e. the squared integral over time of energy input that the node has to exhibit to facilitate the 
transitions from the initial state to the target state (9-11). While the neurobiological 
foundations of control properties in the brain are not yet well understood, and our framework 
for defining control energy is based on a linear systems approach and cannot be directly 
related to the physical definition of the word energy (with joule as a derived unit), this 
definition can be interpreted as the effort of a brain region needed to steer the activity pattern 
of itself and its connected brain regions into the desired final activation state, for example by 
tuning their internal firing or activity patterns by recurrent inhibitory connections.” 

In addition, we have adapted a clearer separation of the word energy in the context of 
our dynamical model. We now refer to the input variables of our dynamical model 
(formerly baseline energy) as brain activity, while maintaining the terminology of 
control energy for the output of the control analysis (see response to comment #10 
below). 

2. Figure 1D: I find this analysis interesting but it is difficult to assess results in depth. In the 
main text it is mentioned that "other analyses" suggest frontal-parietal involvement in 
transitions, however, not much more information is given. A 20%-thresholding was applied to 
the figure. But information on this thresholding procedure, let alone a justification of this 
threshold is lacking.   

We thank the reviewer for this comment. Please note that this figure does not 
illustrate the outcome of any of our main, hypothesis-driven and whole-brain network-
based analyses. The purpose of this figure is largely descriptive and exploratory in 
nature, since we wanted to give readers the opportunity to visually explore the rather 
unique or rather shared contributions of different brain areas to the examined whole-
brain network effects. As suggested, we have described the procedure in more detail 
in the main text. Specifically, and following Ref. (11) to quantify the contribution of 
each node to a transition, we have computed the control impact of each node by 
iteratively removing one node from the control set and recomputing the necessary 
control energy. By dividing the recomputed control energy EN-1 by the control energy 
needed when enabling the full control set EN, we get a relative quantitative indicator of 
how much a specific node makes that transition harder or easier. Figure 1D is a 
visualization of the control impact for both transitions (0- to 2-back and vice versa); 
although the calculations were performed for all regions, here in the visualization we 
only show the 20% nodes with the highest impact for both transitions separately. We 
now explicitly mention the chosen threshold and exploratory nature of the figure in 
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the figure legend (see legend to Fig. 2 in the main text). Moreover, since we agree that 
the 20% threshold for illustration purposes is arbitrary, we now also provide 
additional figures for different thresholds as well as raw values in the supplement 
(see Fig. S4 in the supplement).

Main manuscript, page 6:
“Exploratory visualization of the 20% of brain regions that exhibited the highest control 
impact in both transitions suggested that prefrontal and parietal cortices may steer both 
types of transitions, while default mode areas may be preferentially important for switching to 
the more cognitively demanding state (Fig. 2d; see SI for illustration of alternative 
thresholds).“ 

Figure legend Fig 1: 
“For illustrative purposes, we projected the computed control impact of each brain region for 
the respective transitions on a 3D structural template, displaying regions with the 20% 
highest control impact for each transition (see SI for illustration of alternative thresholds).” 

3. why is dopamine receptor expression a good candidate? It would be important to read more 
about the theoretical underpinnings and implications of the choice to study these particular 
variables.  

We thank the reviewer for this question. Dopamine receptor expression is a good 
candidate since a large body of evidence links dopamine to working memory and 
prefrontal circuit function  (12-16) and several common single nucleotide 
polymorphisms that influence cortical (and other regional) dopamine receptor 
expression have been found to influence working memory performance and prefrontal 
activity and connectivity (17-20). In addition, recent results suggest that dopamine 
receptor expression can predict prefrontal activity (1-3), thus strengthening the idea 
that genetically-encoded expression of dopamine receptor levels in PFC influence 
prefrontal function.  

In the revised manuscript, we have extended our description of the rationale for 
studying dopamine receptor expression in the context of working memory and 
prefrontal cortex function. We also now note the limitations of studying receptor 
expression as an indirect measure of dopamine function in the absence of in-vivo
data on, for example, dopamine binding capacity that might give a more accurate and 
complex picture of dopamine signaling. In particular, we have added the following 
passages to the revised manuscript: 

Page 3: 
“Recent accounts extend the idea of dopamine’s impact on working memory from a local prefrontal to 
a brain-wide network perspective (5-7), emphasizing the dual role of dopamine in regulating the 
complex interplay between striatal and prefrontal circuits critical for balancing the stability-flexibility 
tradeoff. Indeed, several lines of research support the notion that dopamine actions in frontal-parietal 
regions contribute to both maintaining cortical representations (8-10), and the flexible switching 
between different representations (2, 11, 12). Notably, a large body of evidence further demonstrates 
that the latter process additionally involves striatal-cortical interactions (6, 9), suggesting a gating 
function of the striatum for cortical memory representations (7). These accounts highlight the 
contribution of widespread neural circuits and their regulation by dopamine to working memory.”. 

Page 11 + 12: 
“Secondly, in line with the prediction of the dual-state theory of network function, we show that the 
ability to control brain dynamics during working memory is differentially modulated by D1/D2 
dopamine receptor functioning. D1-receptor signaling in frontal circuits has been previously shown to 
facilitate working memory by tuning signal-to-noise ratios in pyramidal neurons (1, 50), enabling stable 
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network activation patterns that support maintenance of neural representations (4, 51). In contrast, 
D2-receptor activation in PFC can lead to decreased GABA and NMDA receptor-related currents, 
thereby counteracting D1-receptor activity and ultimately enabling higher flexibility and switching 
between cognitive representations (4). While these insights focus on cortical microcircuits and are 
derived from animal studies and theoretical modelling, our results complement previous work 
demonstrating that similar principles govern the modulatory actions of D1 (and D2 receptors) at the 
macroscopic level of brain-wide networks, particularly in frontal-parietal circuits (6).  

It is important to note that our data provide association of whole brain processes with polygenic co-
expression indices derived from prefrontal areas, and that previous studies have demonstrated 
differential expression patterns of dopamine receptors for prefrontal and striatal areas as well as 
differential (and even antagonist) behavior of dopamine receptor stimulation in striatal and prefrontal 
circuits (6, 52). Therefore, it seems plausible that our results mainly reflect dopamine actions as 
observed in PFC-related circuits, which are also the dominant control nodes in our model facilitating 
both state transitions. Both observations would support a model of frontal-parietal circuits serving as 
hub regions modulated by D2-receptor signaling, which controls and facilitates the flexible adaptation 
of brain-wide activity and connectivity patterns (14, 46, 47, 53, 54). While our model concentrates on 
PFC related dopamine action, it does not exclude the increasingly important concept that emphasizes 
the additional role of striatal input and output gating as dopamine-related mechanisms contributing to 
a stability-flexibility tradeoff critical for cognitive control, task-switching and working memory (7, 55, 
56). However, studying the differential contributions of striatal and frontal dopamine signaling on 
working memory in future studies will require a finer grained task design to disentangle the several 
cognitive subprocesses that are currently mingled in the two conditions of our N-back task. 

The idea of dopamine related frontal-parietal circuits as important regions for flexibly controlling the 
reconfiguration of brain-wide activity patterns is further supported by our pharmacological intervention, 
where we observe a specific increase of control energy for switching brain activation patterns after 
D2-blockade, but no effect on the stability of these patterns. Here, future work quantifying brain-wide 
D1- and D2-receptor levels in vivo in combination with pharmacological manipulations would provide 
valuable and strongly needed data to disentangle the specific contributions of the spatial distribution 
and different receptor subtypes to working memory processes. 

4. connectome reconstruction: crucial information on stopping rules / abortion criteria are 
missing (other than streamlines of <10 mm length) 
We apologize for not including this important information in the previous manuscript. 
We have used default settings recommended in the documentation of DSI studio. In 
particular, a maximum angle of 75 degrees was applied as a termination criterion in 
addition to the minimal streamline length of 10 mm. We used a step size of 1mm and 
did not apply smoothing. In the revised manuscript, we have added these and other 
relevant details to the methods section; see “Connectome construction”.  

5. connectome reconstruction: Did you apply any thresholding to the FA matrices? Any 
particular reason to use FA and no alternative edge weight such as streamline volume 
density? [edit: Now that I read paragraph 9.4 this becomes a bit clearer].  

We appreciate the opportunity to clarify. Indeed, we used fractional anisotropy to 
weight the elements of the matrix, and also to index the fiber threshold. The value of 
this threshold was determined automatically using Otsu’s threshold multiplied by a 
factor of 0.6, which is the recommended default setting of DSI studio (21). To ensure 
that our results were stable across different estimates of anatomical connectivity, we 
used both fractional anisotropy and the number of streamlines normalized by the 
respective size of the regions as edges in the construction of structural connectivity 
matrices (22-27). Notably, we replicated all main results across these two 
complimentary edge definitions, thus confirming that our findings are robust to the 
measure of structural connectivity. For more details on these analyses and 
associated results, please see Supplementary Table 1.
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6. It is unclear whether participant level or group level conenctome [sic] matrices were used. 
Either way: There is almost no information on thresholding, differences in network density, 
and information on how individual matrices were combined at the group level (if at all). I 
strongly advise the authors to be more specific here.  

We apologize for our unclear description here. For all parts of the analysis, except for 
the pharmacological data, we used individual reconstructed connectomes as outlined 
in the Methods section. Because diffusion data was not acquired in the 
pharmacological study, we used an averaged connectome across all healthy subjects 
in the associated main analysis. The average connectome was computed by 
averaging the FA values of all links following previous work (28, 29). In the revised 
manuscript, we now describe this procedure explicitly on page 8 of the main text:

“Importantly, because no DTI data was acquired in this study, we used a link-wise averaged 
connectivity matrix from all healthy subjects in study 1, following previous work, following previous 
work (30, 31).” 

In addition, we have added a supplemental table quantifying several core graph 
metrics describing the individual structural connectivity matrices used in our 
analyses (see Table S2). 

7. network control theory: As with any new development in our fastly developing field I would 
appreciate more information here, rather than referring to previous work and stating the 
formulas. While it is quite straightforward to understand the conceptual logic behind the 
steps, a few more explanations and justifications throughout the section would make the 
whole manuscript more assessible for more readers.  

We thank the reviewer for this comment and are happy to further clarify our methods, 
particularly when they utilize more novel approaches. We have substantially reworked 
the manuscript and have included many more details and thorough explanations. In 
particular, we sought to give the reader a more intuitive understanding of the 
measures and parameters of network control theory. For ease of review, we provide 
the most heavily reworked passages below. 

page 5: 
“We define individual brain states as spatial patterns of estimates associated with activity across 
brain regions of interest during a working memory condition (2-back) and during an attention control 
condition requiring motor response (0- back). It is important to note that our definition of brain states 
relates to the statistical spatial pattern of estimates from a general linear model and does not 
reflect neuronal activity occurring en masse as, for example, in neurophysiological animal 
experiments. To quantify the energy efforts associated with a specific transition from an initial state x0 
to a target state xT, we approximate brain dynamics locally by a simple linear dynamical system, �̇(�) 
= ��(�) + ��(�), where x(t) is the brain state of the system, A is a structural connectome inferred from 
DTI data, u is the control input, and B is a matrix describing which regions enact control or receive 
control input. After finding the optimal control input u that enables a transition, the control energy of 
each node is calculated as the squared integral over time of u; intuitively, this quantity measures the 
control input that the node has to exhibit to facilitate the transitions from the initial state to the target 
state. Similarly, the stability of a brain state can be defined as the inverse control energy needed to 
maintain in a specific state. In this framework, control energy can be interpreted as the effort of a 
brain region needed to steer the activity pattern of itself and its connected brain regions into the 
desired final activation state; relatedly, stability can be interpreted as the effort of a brain region 
needed to maintain a given activity pattern of itself and its connected brain regions. For a more 
detailed mathematical description of the network control framework, please see the Methods section 
and Supplemental Information.” 

Page 18: 
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“In that state-space, we aim to identify a trajectory between state x0 and state xT that is minimal in 
terms of the necessary control input signals as well as the distance of the trajectory. This choice is 
motivated by two complimentary ideas: first that the brain minimizes its energy expenditure to perform 
that transition and second, that optimal transitions between states should be non-random walk in state 
space. These notions can be formalized by defining an optimization problem that minimizes a given 
cost function. We define this cost function by the weighted sum of the energy cost of the transition and 
the integrated squared distance between the transition states and the target state.” 

In addition, we have added a section on parameter choices and justifications on the 
network control theory part to section 4 of the Supplementary Material.

8. network control theory: More information on code availability and /or reference to the matlab 
functions  

We have included a statement on code availability as well as a link, where the 
MATLAB functions can be found. 

9. genotyping: Step 1 and 2 of QC pipeline. What is meant by "numbers of SNPs"? 

We would like to thank the reviewer for raising this question. The filtering step is part 
of the quality control (QC) procedure we used on the genotyping data set prior to 
calculating the PCI scores. The applied QC procedure is not specific for the 
hypotheses tested in the current study, but part of a commonly used QC pipeline for 
genome-wide genotyping data (30). In that pipeline, filtering of data is performed at 
two different levels: SNPs as well as samples which do not pass quality control are 
excluded from any further analyses.  
One step within this quality control procedure is examining heterozygosity on the X 
chromosome in male participants. Given the haploid nature of the male X 
chromosome, the occurrence of a high number of heterozygous SNPs on the X 
chromosome in males is not plausible and most likely due to genotyping errors or 
erroneous assignments of sex in the metadata. Therefore, SNPs and samples with 
high heterozygosity on the male X-chromosome were excluded during QC. 

10. Paragraph 8 statistical inference: It is somewhat confusing how "energy" and "activity" are 
conceptually intertwined. Would you mind clarifying? 

We apologize for our unclear description and appreciate the opportunity to clarify. In 
this paragraph we use the term energy in reference to control energy as defined in the 
Methods section on network control analysis. The activity we refer to is task-related 
activation: as mentioned earlier and now described in greater depth, brain states are 
defined as region-wise GLM parameters without any units. Because the output and 
input to the dynamical model should, in theory, have the same units, we refer to both 
as energy. However, we recognize that such terminology could make it difficult to 
relate these concepts to neurobiological quantities. In the revised manuscript, we 
have therefore clarified our presentation by referring to the input variables (formerly 
baseline energy) as brain activity, while maintaining the terminology of control energy 
for the output of the control analysis. We believe this presentation will be much more 
intuitive to readers.

11. null models: Is there any reason the signed-network script was used? I am not sure how 
edge weights in FA weighted matrices could be negative.  
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Thank you for pointing this out. We have rerun our analyses using the 
randmio_und_connected function from the Brain Connectivity Toolbox and have 
updated the respective sections in the supplement. Importantly, this change did not 
alter our main results that human brain structural networks seem to be optimized to 
control brain state transitions in healthy controls, but annihilated the difference 
between randomized networks in schizophrenia (see below), see Supplemental 
Section 6.1.

12. null models: Is there a way to quantify the interaction effect? Would be interesting to see 
how SCZ patients are different. 

We thank the reviewer for pointing this out. We have now directly tested for a group 
interaction effect on both of our control analyses. We observed no significant group 
by randomization effect for the randomized structural networks. However, we did 
observe a significant effect for randomized brain states, which could potentially 
suggest a more randomized activity pattern during working memory in schizophrenia. 
We have updated the Supplementary Material accordingly, see Supplemental Sections 
6.1. and 6.2. 

13. null models: Please add information on the spatial randomization of brain activity. 

We apologize for the incomplete information. In the revised manuscript, we now 
include a detailed description on the algorithmic implementation, and we have 
updated the information regarding the number of repetitions. 

“Randomization was done using the randperm function in MATLAB for the paired vectorized 
brain activation patterns (related to 0- and 2-back) followed by a recalculation of the control 
energy. This procedure was repeated 100 times and the averaged brain-wide control energy 
over all 100 iterations for each subject was used in the subsequent analysis.”  
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Reviewer #3 (Remarks to the Author):

Thank you for inviting me to review this manuscript by Braun and colleagues, in which the authors 
apply a linear controllability analysis to structural brain imaging data from a large-sample of healthy 
individuals, and then use this information to infer the control theoretic principles required to shift 
between 0-back and 2-back activity on a cognitive task. As expected, shifting the brain into a 
cognitively-demanding 2-back task was associated with the need for greater control energy, 
suggesting that the state was more difficult to instantiate and maintain. The authors frame their 
results in the context of a previous hypothesis linking different cortical dopaminergic receptor 
families (D1 and D2 receptors) to deepening and flattening of an energy landscape, respectively. 
They test these predictions using a separate small cohort (N=16) of individuals that performed an N-
back task following the administration of amisulpride (a D2-receptor agonist) and found results 
commensurate with their predictions. They also analysed a small (N=24) cohort of individual with 
clinically-diagnosed schizophrenia, and found similar impairments in control energy for the 2-back 
(but in this case, not the 0-back) condition 

Overall, the manuscript was clearly written and technically impressive. There was a wide range of 
analytic techniques used, and as mentioned, analyses were conducted across multiple unique 
datasets. That said, I do have some reservations with the analyses as they are currently presented. 
I have outlined these concerns below, which I hope will help to improve the manuscript:  

1. The link between dopaminergic function and working memory is well-defined in prior 
literature, however I find the authors interpretation of the relationship between dopamine and 
the energy landscape somewhat puzzling. After reading the source material (Durstewitz and 
Seamans), I am confident that this issue relates to a focus on the impact of dopamine 
receptors on the activity patterns within the cerebral cortex. Although the impact of 
dopamine on the cortex is well-described using the energy landscape framework, I am less 
convinced that the same could be said for the effects of dopamine on the basal ganglia 
(which is their main site of action in the CNS, I might add). The circuitry of the basal ganglia 
and thalamus are quite distinct from the cerebral cortex, and there is good reason to believe 
that the effects of dopamine might be contrary to those acting locally on pyramidal cells in 
the cortex. For these reasons, I recommend that the authors make explicit their focus on the 
impact of dopamine on cortical circuits, and ensure that they are not incorrectly concluding 
that their effects should scale to the level of the entire system. 

We thank the reviewer for this comment. As you correctly pointed out, the main focus 
of our paper was on the impact of prefrontal dopamine actions. We recognize and 
highly appreciate the evolving field of studying the influence of striatal dopamine on 
gating mechanisms contributing to working memory and task switching, but the 
design of the paradigm employed here is not suited to meaningfully disentangle the 
differential contribution of striatal activity (or dopamine) on stability or task switching 
during working memory. For that reason, we have kept our focus on cortical 
contributions to the process, but now explicitly mention said focus and discuss the 
emerging field of striatal gating. 
In response to the reviewer´s comment, we have added the following lines:

Page 3: 
“Recent accounts extend the idea of dopamine’s impact on working memory from a local prefrontal to 
a brain-wide network perspective (5-7), emphasizing the dual role of dopamine in regulating the 
complex interplay between striatal and prefrontal circuits critical for balancing the stability-flexibility 
tradeoff. Indeed, several lines of research support the notion that dopamine actions in frontal-parietal 
regions contribute to both maintaining cortical representations (8-10), and the flexible switching 
between different representations (2, 11, 12). Notably, a large body of evidence further demonstrates 
that the latter process additionally involves striatal-cortical interactions (6, 9), suggesting a gating 
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function of the striatum for cortical memory representations (7). These accounts highlight the 
contribution of widespread neural circuits and their regulation by dopamine to working memory.”

Page 11 + 12: 
“Secondly, in line with the prediction of the dual-state theory of network function, we show that the 
ability to control brain dynamics during working memory is differentially modulated by D1/D2 
dopamine receptor functioning. D1-receptor signaling in frontal circuits has been previously shown to 
facilitate working memory by tuning signal-to-noise ratios in pyramidal neurons (1, 52), enabling 
stable network activation patterns that support maintenance of neural representations (4, 53). In 
contrast, D2-receptor activation in PFC can lead to decreased GABA and NMDA receptor-related 
currents, thereby counteracting D1-receptor activity and ultimately enabling higher flexibility and 
switching between cognitive representations (4). While these insights focus on cortical microcircuits 
and are derived from animal studies and theoretical modelling, our results complement previous work 
demonstrating that similar principles govern the modulatory actions of D1 (and D2 receptors) at the 
macroscopic level of brain-wide networks, particularly in frontal-parietal circuits (6).  

It is important to note that our data provide association of whole brain processes with polygenic co-
expression indices derived from prefrontal areas, and that previous studies have demonstrated 
differential expression patterns of dopamine receptors for prefrontal and striatal areas as well as 
differential (and even antagonist) behavior of dopamine receptor stimulation in striatal and prefrontal 
circuits (6, 54). Therefore, it seems plausible that our results mainly reflect dopamine actions as 
observed in PFC-related circuits, which are also the dominant control nodes in our model facilitating 
both state transitions. Both observations would support a model of frontal-parietal circuits serving as 
hub regions modulated by D2-receptor signaling, which controls and facilitates the flexible adaptation 
of brain-wide activity and connectivity patterns (14, 48, 49, 55, 56). While our model concentrates on 
PFC related dopamine action, it does not exclude the increasingly important concept that emphasizes 
the additional role of striatal input and output gating as dopamine-related mechanisms contributing to 
a stability-flexibility tradeoff critical for cognitive control, task-switching and working memory (7, 57, 
58). However, studying the differential contributions of striatal and frontal dopamine signaling on 
working memory in future studies will require a finer grained task design to disentangle the several 
cognitive subprocesses that are currently mingled in the two conditions of our N-back task. 

The idea of dopamine related frontal-parietal circuits as important regions for flexibly controlling the 
reconfiguration of brain-wide activity patterns is further supported by our pharmacological intervention, 
where we observe a specific increase of control energy for switching brain activation patterns after 
D2-blockade, but no effect on the stability of these patterns. Here, future work quantifying brain-wide 
D1- and D2-receptor levels in vivo in combination with pharmacological manipulations would provide 
valuable and strongly needed data to disentangle the specific contributions of the spatial distribution 
and different receptor subtypes to working memory processes.” 

2. I’m not sure that the term ‘brain state’ should be used to describe the spatial pattern of beta 
estimates from a general linear model (p5/6 Methods). These patterns instead represent a 
statistical map, which may or may not have recurred en masse, as one might expect for a 
‘brain state’ -- indeed, it is quite possible for a region to be associated with a strong beta 
value from a GLM while only arising on a proportion of trials within an experiment. The 
authors may wish to choose a different term, or perhaps to confirm that the brain state was 
indeed a brain-wide state, and not just a statistical artefact. 

We thank the reviewer for raising this important point. Indeed, our definition of brain 
states does not correspond to the definition usually used for example in 
neurophysiological animal experiments, but rather reflects statistical associations of 
meta-level brain activity. However, our definition does indeed correspond to the use 
of the term in the control theory framework, which defines a state as single point in a 
multi-dimensional state space. To be consistent its use in network control theory and 
to better enable readers from both fields to easily translate concepts between fields, 
we have used the term “brain state” to describe these activity patterns. To sensitize 
our readers to the different definition of the term “brain state”, we have added an 
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explicit definition of the term as we use it in our manuscript as well as a clear 
delineation of the more common definition in neurobiology. 

Page 5: 
“It is important to note that our definition of brain states relates to the statistical spatial pattern of beta 
estimates from a general linear model and does not reflect neuronal activity occurring en masse as, 
for example, in neurophysiological animal experiments.” 

We further discuss this important limitation and suggest further directions for a more 
translatable definition of brain states on page 13: 

“Firstly, to relate brain dynamics to cognitive function, we focus on discrete “meta-level” brain states 
where each state is summarized by a single brain activation pattern rather than a linear combination 
of multiple brain activity patterns. These brain states do not purely reflect a single process but instead 
involve several cognitive subprocesses. Future studies could use specific paradigms to disentangle 
these subprocesses, in combination with more direct and time-resolved measures of brain activity 
such as MEG.” 

3. The authors mention that some of the subjects in the pharmacological study were 
administered Risperidone. Why were these data not reported? 

Thank you for this question. To clarify, the pharmacological data were acquired as 
part of larger study testing the differential effects of a broad range of psychotropic 
drugs, including for example ketamine and scopolamine. In each group of healthy 
volunteers, two active substances in a randomized, three-armed, placebo-controlled 
crossover trial (here: amisulpride, risperidone, placebo). As our main goal in the 
current manuscript was to selectively perturb dopamine D2-receptor activity, we 
focused our analysis on the effects of amisulpride, as it has the highest selectivity for 
the D2 receptor and therefore should have the strongest and cleanest effect. In 
comparison to amisulpride, risperidone is a more unselective agent also influencing 
serotonergic receptors. As previously described in the supplement, we analyzed the 
risperidone data as well, thereby expecting a diminished effect on dopamine-related 
control properties. We now mention these results in the main text and provide further 
detailed information in the supplement. 

Page 8: 
“Importantly, we were able to trend-wise replicate the results of the pharmacological intervention with 
risperidone, a substance showing lower D2-receptor selectivity (repeated measures ANOVA with drug 
and transition as within-subject factors, main effect of drug: F(1,10) = 3.490, p = 0.091; repeated 
measures ANOVA with drug and stability as within-subject factors, main effect of drug: F(1,8) = 1.057, 
p = 0.334, see Table S3).”

4. Is the choice to define the input matrix as an identity matrix well founded? This contrasts 
with my expectation that associative cortical regions should have a greater ability to 
influence sensory and motor regions of the cortex than vice versa. Would taking this into 
account change your results? 

Thank you for raising this important question. The choice to use the identity matrix as 
the input matrix was explicitly motivated by taking an data-driven and system-level 
approach, allowing us identify regions contributing most to the transitions in an 
unbiased fashion (31-33), which was our primary question. Restricting the set of 
nodes that can exert control, for example to cortical regions or the frontal-parietal 
control network, would ask different questions such as “Can these set of nodes 
control transitions?” or “Does this set of nodes require less/more energy to facilitate 
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a transition”. While the former question involves the difficulty of identifying and 
dealing with an unstable dynamical system, the latter question does require 
appropriate null models (i.e. a comparison to a set of brain regions that for example 
has the same number of nodes while still being biologically meaningful). For those 
reason, we chose to use the identity matrix. We now explain that rationale explicitly in 
the Methods sections. 

Methods section (page 19) 
“By setting the input matrix B = INN, the identity matrix, we allow all brain regions to be independent 
controllers (43, 78). This is motivated by our analysis question to use a system-level and data-driven 
approach to identify regions contributing most to the transitions in an unbiased way in line with 
previous work (79-81).”

Minor: 

1. I couldn’t find the value ‘ñ’ defined on p7 of the Methods. 
We thank the reviewer for pointing this out. The parameter ñ in this equation allows to 
penalize the energy used by the optimal input (the second term of the internal) more 
or less than the deviation from the optimal trajectory (the first term of the integral) 
when solving for the optimal control. As we had no specific hypothesis that either of 
these parts of the cost function should prevail, we set ñ = 1. We have added this 
explanation to the manuscript, see page 18: 

“The parameter ñ in this equation allows to penalize the energy used by the optimal input in 
relation to the deviation from the optimal trajectory when solving for the optimal control. As 
we had no specific hypothesis that either of these elements of the cost function should 
prevail, we used the default of ñ = 1.” 

2. I did not see the number of individuals with Schizophrenia mentioned in the main text. 

Thank you. We apologize for not mentioning that information and have added the 
number of schizophrenia patients (n = 24) to the main text. 
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<b>REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

Many thanks for this revision and rebuttal. The new manuscript does a much better job at detailing the 

methods (including how to arrive at control energy measures, polygenic coexpression scores etc), and its 

specific rationales. Its embedding within existing literature is also much clarified. The title now does 

justice to the content of the paper. I also appreciate the full reporting of the pharmacological study 

including the risperidone effects as well as the supplementary analyses showing the added value of 

these control energy measures over and above more standard task contrast-related BOLD signals. 

I do think the manuscript itself would benefit from inclusion of something similar to the clarification 

provided in the rebuttal letter and here: 

‘First, in the control theory framework, the control energy (u) of a node and the state of that same node 

(x) are highly interrelated. For example, if we consider a simplified system consisting of only one node, 

then the control energy E necessary to change the state of that node from an initial state (x0) to a target 

state (xT) is basically a function of the squared difference in that node’s state [E ~ (x0 - xT)2]. As our 

definition of brain states is based on estimates that depend on BOLD activity, in such a simplified 

system control energy would not give any additional information other than the usual contrast images 

2back- 0back. However, if we consider a more complex system with more than one node, and where 

all nodes are connected via either direct or indirect links as summarized in the connectivity matrix A, 

then the control energy of a single node is not a simple function of the squared differences in its state 

but additionally accounts for the influence of other connected neighbors.’ 

I also think that a cautionary note regarding the potential confounds of medication status and disease 

severity should be added given that lack of between-subject correlations in small samples provide weak 

proof of evidence for a null effect 

Re my other comments: 

Why was inclusion of the first 5 principle components considered to optimally balance rigorous control 

of population structure with overfitting of the model? 

Reviewer #2 (Remarks to the Author): 

I would like to start my review by expressing my appreciation to the authors' effort with this thorough 

revision. The manuscript has benefited tremendously from the additional deetail, the intuitive 

explanations, and the provision of the matlab code. Most things are much clearer now and it is easier to 

follow all different analyses steps. This is impressive work! 

The genetic, connectomic, and neuroimaging (including patients and pharmacological) anaylses are clear 



by now and I have only few further questions. My most central question is on the concepts and 

procedures of the main network control analysis. 

The authors apply a new framework to analyze task fMRI data and - both importantly and impressively - 

show that their approach reveals incremental information that traditional mass-univariate analyses ar 

not able to pick up. But I am wondering if it is really justified to make so many recurrences to network 

control theory. I find this difficult to explain, but please let me try: The data are a traditional blocked 

fMRI paradigm with two conditions, each associatd with its spatial pattern of task-related brain 

responses, that the authors regard as brain states. While traditional analyses would now contrast the 

two conditions / state through a mass-univariate NHST to identify regional differences (i.e. which brain 

regions differ in task-evoked activity), the authors ask which brain regions contribute most in 

maintaining and switching states. To do this, they exploit information from the white matter scaffold (dti 

data, connectome). The main analyses is thus a linear mapping from state x0 to xt (which is the spatial 

distribution of task-evoked brain responses in the two conditions) that finds a vector u whose elements 

indicate for each brain region how much it contributes to the transition (or maintenance), given the 

connstraints from the white matter scaffold. This problem is solved by a set of methods from network 

control theory: A hypothetical trajectory is assumed through which x0 evolves into xt. This involves a lot 

of assumptions, particularly to define (assumed) equivalences betweeen the data and the constructs 

from control theory (state definition) and to make the problem computationally feasible (linear and 

continous transitions). These assumptions are of course well explained and reasonable. 

What I am struggling with is a clear distinction between the actual data level and the conceptual level 

from control theory. Sometimes I am under the impression that - just as I tried to summarize above - 

control theory is applied as a toolbox to solve a cognitve neuroscience neuroimaging problem. This s a 

great idea - we might need an assumption and maybe a simplification here and there, but it's stringent, 

reasonable, and informative. 

Sometimes, however, I am also under the impression that control theory with its concepts of states and 

energy might be taken too much as given prior ground truth and the neuroimaging data are squeezed 

into its 'theoretical corset' with assumptions that then justify the application of the theory and validate 

the theory at the same time. 

I would appreciate if the authors could elaborate along these lines. Maybe a bit more information (see 

also concrete questions below) would be helpful here. I believe that our field is in grave need of new 

methods to study the relationship between brain activity during tasks and brain connectivity, and I also 

believe that new conceptual frameworks and theories will be needed to advance cognitive 

neuroscience. I regard the present work as highly important and innovative contribution towards this 

goal. I would suggest to make sure that others will be able to use this work as reference for further 

investigations. 

Detailled questions: 

Line 490 (formula 5): Why is stability the *inverse* of the control energy required to maintain a state 

(xt==xt)? 



Connectome reconstruction: I find 75 degrees quite lenient for a stopping criterion. Other work often 

uses a 45 degree criterion. Of course, it is diffcult to validate parameter chices. I am just curious to learn 

the authors' motivation for this threshold? 

Supplementary Material: 

Paragraph 4.3. Stabilization of the dynamical system happens somewhat out of the blue. How is it that 

normalizing the system prevents implausible states? And does A denote the structural connectivity 

matrix? Is the stabilized or the unstabilized matrix passed into the optim_fun.m function? 

4.4. Time horizon: T = 1: What unit is 1? I understand from the code, that different intermediate states 

are caluclated between x0 and xt, from T=1 to T=1 in steps of .001. But this does not help understanding 

this paramter choice. Also: What is the rho parameter, and why is it set to 1? The input matrix S is likely 

to be zeros(numNodes,numNodes)? 

In line 446 it reads that B denotes an input matrix defining the control nodes. Line 116 reads "B is a 

matrix describing which regions enact control or receive control input". 

I find the definition in the methods section more appropriate: How can you distinguish between sending 

(control) and receiving nodes if not using some measure of effective connectivity? 

other issues: 

Is the following sentence correct? Are we talking about a diversified energy landscape or a less 

diversified energy landscape? 

"In a diversified energy landscape, we expected that the variation of trajectories around theminimum-

energy trajectory should be larger than expected in the less diversified energy landscape in 

schizophrenia, implying that small perturbations may have a more substantial impact. 

Figure S4: Is there any reason that subcortical regions were ommited from the figure? 

Reviewer #3 (Remarks to the Author): 

The authors have adequately addressed my concerns. 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

Many thanks for this revision and rebuttal. The new manuscript does a much better 
job at detailing the methods (including how to arrive at control energy measures, 
polygenic coexpression scores etc), and its specific rationales. Its embedding within 
existing literature is also much clarified. The title now does justice to the content of 
the paper. I also appreciate the full reporting of the pharmacological study including 
the risperidone effects as well as the supplementary analyses showing the added 
value of these control energy measures over and above more standard task contrast-
related BOLD signals.  

We thank the reviewer for their appreciation of our revisions and additions to the 
manuscript.

1. I do think the manuscript itself would benefit from inclusion of something similar to 
the clarification provided in the rebuttal letter and here:  
‘First, in the control theory framework, the control energy (u) of a node and the 
state of that same node (x) are highly interrelated. For example, if we consider a 
simplified system consisting of only one node, then the control energy E 
necessary to change the state of that node from an initial state (x0) to a target 
state (xT) is basically a function of the squared difference in that node’s state [E ~ 
(x0 - xT)2]. As our definition of brain states is based on estimates that depend on 
BOLD activity, in such a simplified system control energy would not give any 
additional information other than the usual contrast images 2back- 0back. 
However, if we consider a more complex system with more than one node, and 
where all nodes are connected via either direct or indirect links as summarized in 
the connectivity matrix A, then the control energy of a single node is not a simple 
function of the squared differences in its state but additionally accounts for the 
influence of other connected neighbors.’  

We thank the reviewer for this suggestion. We have added these sentences to the 
respective section in the Supplemental Information, and we now refer to that 
section in the main text. 

2. I also think that a cautionary note regarding the potential confounds of medication 
status and disease severity should be added given that lack of between-subject 
correlations in small samples provide weak proof of evidence for a null effect.  

We have mentioned this as a limitation in the main text and now explicitly 
highlight the difficulty of between-subject correlations in small samples in the 
relevant section of the Supplemental Information. 

Page 14:
“Thirdly, we cannot exclude the possibility that disorder severity, duration, 
symptoms, or medication may have influenced network dynamics in 
schizophrenia patients, although our supplemental analyses do not support this 
conclusion (see SI).”

SI page 8:



“Please note, that a lack of between-subject correlations in small samples can 
only provide weak proof of evidence for a null effect.”

3. Re my other comments: 
Why was inclusion of the first 5 principle components considered to optimally 
balance rigorous control of population structure with overfitting of the model? 

The exact number of principal components used varies between studies, ranging 
from none up to 10 (1, 2) with many imaging studies using an intermediate 
number of components (3, 4). Our choice of using the first five principal 
components was purely based on theoretical assumptions that an intermediate 
number of components should provide a decent balance between control for 
population structure and model overfitting, given the loss of degrees of freedom 
when adding more covariates of non-interest to our model given our sample size. 
Perhaps more importantly, however, our results are stable to variation in the 
number of included components, for example: DRD1 predicting 2-back stability 
(linear regression model, same covariates as in the main paper) 

No PCA component as a covariate: b = 0.226, p = 0.008; 
1 PCA component as a covariate: b = 0.251, p = 0.004; 
2 PCA components as covariates: b = 0.246, p = 0.005; 
3 PCA components as covariates: b = 0.253, p = 0.005; 
4 PCA components as covariates: b = 0.254, p = 0.005; 
5 PCA components as covariates: b = 0.242, p = 0.007.



Reviewer #2 (Remarks to the Author): 

I would like to start my review by expressing my appreciation to the authors' effort 
with this thorough revision. The manuscript has benefited tremendously from the 
additional detail, the intuitive explanations, and the provision of the matlab code. 
Most things are much clearer now and it is easier to follow all different analyses 
steps. This is impressive work!  

The genetic, connectomic, and neuroimaging (including patients and 
pharmacological) analyses are clear by now and I have only few further questions. 
My most central question is on the concepts and procedures of the main network 
control analysis. 

We thank the reviewer for the generous commendation of our revised manuscript, 
and for their helpful feedback that served to strengthen our presentation. We are also 
very happy to address the reviewer’s remaining concerns. 

1. The authors apply a new framework to analyze task fMRI data and - both 
importantly and impressively - show that their approach reveals incremental 
information that traditional mass-univariate analyses are not able to pick up. But I 
am wondering if it is really justified to make so many recurrences to network 
control theory. I find this difficult to explain, but please let me try: The data are a 
traditional blocked fMRI paradigm with two conditions, each associated with its 
spatial pattern of task-related brain responses, that the authors regard as brain 
states. While traditional analyses would now contrast the two conditions / state 
through a mass-univariate NHST to identify regional differences (i.e. which brain 
regions differ in task-evoked activity), the authors ask which brain regions 
contribute most in maintaining and switching states. To do this, they exploit 
information from the white matter scaffold (dti data, connectome). The main 
analyses is thus a linear mapping from 
state x0 to xt (which is the spatial distribution of task-evoked brain responses in 
the two conditions) that finds a vector u whose elements indicate for each brain 
region how much it contributes to the transition (or maintenance), given the 
constraints from the white matter scaffold. This problem is solved by a set of 
methods from network control theory: A hypothetical trajectory is assumed 
through which x0 evolves into xt. This involves a lot of assumptions, particularly to 
define (assumed) equivalences between the data and the constructs from control 
theory (state definition) and to make the problem computationally feasible (linear 
and continuous transitions). These assumptions are of course well explained and 
reasonable.  
What I am struggling with is a clear distinction between the actual data level and 
the conceptual level from control theory. Sometimes I am under the impression 
that - just as I tried to summarize above - control theory is applied as a toolbox to 
solve a cognitive neuroscience neuroimaging problem. This s a great idea - we 
might need an assumption and maybe a simplification here and there, but it's 
stringent, reasonable, and informative.  
Sometimes, however, I am also under the impression that control theory with its 
concepts of states and energy might be taken too much as given prior ground 
truth and the neuroimaging data are squeezed into its 'theoretical corset' with 
assumptions that then justify the application of the theory and validate the theory 
at the same time. 



I would appreciate if the authors could elaborate along these lines. Maybe a bit 
more information (see also concrete questions below) would be helpful here. I 
believe that our field is in grave need of new methods to study the relationship 
between brain activity during tasks and brain connectivity, and I also believe that 
new conceptual frameworks and theories will be needed to advance cognitive 
neuroscience. I regard the present work as highly important and innovative 
contribution towards this goal. I would suggest to make sure that others will be 
able to use this work as reference for further investigations.  

We thank the author for this interesting and important comment. Indeed, in our 
analysis, we apply control theory as a statistical and theoretical tool to answer 
questions about neurobiological properties of brain function. The hypotheses that 
we aim to test are based on the dual-state theory framework, which also uses the 
terminology of brain states and energy. Translating and transferring across these 
three levels (control theory as a statistical tool, dual-state theory as a non-linear 
theoretical framework, brain imaging data defining meta-level brain states) is 
challenging and requires (reasonable) simplifications. We also appreciate the 
reviewer’s aim to ensure that others will be able to use this work as a reference 
for further investigations. With this aim in mind, we have made several additions 
and changes to the main text that serve to underscore the appropriate distinctions 
between these three levels. We highlight the utility of network control theory as a 
toolkit to address many other sorts of questions in cognitive neuroscience in the 
future. In addition, we have (already previously) agreed to publish the rebuttal 
letter alongside the manuscript, so that interested readers can follow the 
discussion here. 

Page 4: 
“A promising framework tool to study these questions and concepts derived from 
the dual-state theory is network control theory (NCT).” 

“Within this statistical framework, we test the following predictions of the dual-
state theory of brain network function and evaluate their implications for 
schizophrenia.“ 

Page 10: 
“We provide evidence that the stability of and switching between global brain 
activation patterns during working memory can be meaningfully explained
assessed by network control theory” 

In addition, we have added a paragraph discussing those ideas in more depth to 
the supplemental information, page SI 5 + 6: 

“4.6. On the use of control theory as a statistical framework 
In our analysis, we apply control theory as a statistical and theoretical tool to 
answer questions based on the theoretical “dual-state” framework regarding 
neurobiological properties of brain function. Translating and transferring across 
these three levels (control theory as a statistical tool, dual-state theory as a non-
linear theoretical framework, brain imaging data defining meta-level brain states) 
is challenging and requires (reasonable) simplifications. The hypotheses that we 
aim to test are based on the dual-state theory framework, which also uses the 



terminology of brain states and energy. In this framework, states and transitions 
are based on non-linear dynamics, corresponding to attractor basins, which 
translate to stable reoccurring activation patterns in neuronal ensembles (16-18). 
Abstracting these concepts to large-scale dynamics of brain macro-circuits 
provides the underlying basis for the idea that we aim to investigate here: 
relatively stable “meta”-level brain activation patterns as identified by 
neuroimaging (including all the caveats of the assumption of stationarity of brain 
activations measured by functional magnetic resonance imaging) populate a 
state-space for which we aim to identify the brain regions that are responsible for 
maintaining and shifting those activation patterns. To answer these cognitive 
neuroscience questions, we use network control theory as a toolkit that makes 
these questions computationally tractable in a linear dynamical system framework 
enabling us to quantify the associated “energy cost” of transitions on a brain 
region level. This effort requires certain (reasonable) assumptions, in particular to 
assume an equivalence between states defined by neuroimaging and states 
defined in the control theory framework, as well linear and continuous transitions 
between those states. Future work integrating biophysical models of task-induced 
brain activity in combination with network control theory and tailored imaging 
paradigms is critically needed to provide further evidence for the assumed 
relationships (and distinctions) between actual data, network control tools, and 
the theoretical framework.”

Detailed questions: 

2. Line 490 (formula 5): Why is stability the *inverse* of the control energy required 
to maintain a state (xt==xt)? 

We thank the reviewer for the question. The energy required to maintain a state is 
inversely related to the distance of the state from a local minimum on the energy 
landscape. States that are distant from a local minimum will also dissipate quickly 
under spontaneous activity, while states at the local minimum will not. Thus, the 
temporal stability of a state is inversely related to the control energy required to 
maintain a state (5). This inverse relationship is at once intuitive and relevant to 
the concepts of the dual-state theory. 

We have expanded the respective section in the methods and also point the 
interested reader to more didactic resources that provide further and more 
detailed explanations: 

Page 20:  
“The rationale here is, that the energy required to maintain a state is inversely 
related to the distance of the state from a local minimum on the energy 
landscape. States that are distant from a local minimum will also dissipate quickly 
under spontaneous activity, while states at the local minimum will not. Thus, the 
temporal stability of a state is inversely related to the control energy required to 
maintain a state. For further details, we refer the interested reader to Refs. (23, 
80, 82, 83).”



3. Connectome reconstruction: I find 75 degrees quite lenient for a stopping 
criterion. Other work often uses a 45 degree criterion. Of course, it is difficult to 
validate parameter choices. I am just curious to learn the authors' motivation for 
this threshold? 

We agree that 75 is at the upper portion of the distribution of stopping criteria 
found in the literature, which ranges between 15 to 90 degrees. As the reviewer 
remarks correctly, it is difficult to find the optimal or “correct” parameter choice 
due to the lack of our knowledge of the ground truth. We therefore have chosen to 
use the default parameter recommend by DSI studio and then confirmed that the 
resulting brain networks looked anatomically plausible.

4. Supplementary Material: 
Paragraph 4.3. Stabilization of the dynamical system happens somewhat out of 
the blue. How is it that normalizing the system prevents implausible states? And 
does A denote the structural connectivity matrix? Is the stabilized or the 
unstabilized matrix passed into the optim_fun.m function? 

The section that the reviewer refers to was initially added to the manuscript as a 
guide for potential future user of network control theory. When we say that we 
stabilize the system, we mean that we decrease the average weight of the 
connectome to prevent brain states from diverging over time. If we did not 
stabilize the matrix, then brain states would be allowed to increase in their levels 
of activity uncontrollably. We know that such uncontrolled levels of activity are not 
neurobiologically plausible, due to clear metabolic, electrical, and other physical 
constraints. We wish to be clear, however, that by removing the possibility of 
these hyper activity states, we do not necessarily ensure that we have removed 
all (potentially other types of) implausible states. Further work integrating 
experiment and theory is needed to more clearly define types of implausible 
states, and their respective mechanisms (e.g., metabolic, electrical, informational, 
or other physical constraints).   

To address the reviewer’s later questions, here A does indeed denote the 
structural connectivity matrix. The optim_fun.m function needs to be given the 
stabilized structural connectivity matrix in order to find an optimal open-loop 
control. We have added these clarifications to the respective paragraphs and to 
the README file of the MATLAB function, and have also provided references to 
several papers that provide a more in-depth introduction to network control theory 
and its use in the context of brain networks. 

SI page 5:  

“… A denotes the structural connectivity matrix…” 

“[…] We therefore chose to normalize the system by decreasing the average 
weight of the connectome such that it goes to zero over time […] 
Within the range of brain states that converge to zero over time, we cannot make 
statements regarding whether any of these intermediate brain states are 
biologically plausible or are realized in human brains. Further work integrating 
experiment and theory is needed to more clearly define types of implausible 
states, and their respective mechanisms (e.g., metabolic, electrical, informational, 



or other physical constraints). A more in-depth and mathematical introduction and 
discussion can be found in Refs. (12-14).” 

README file:
A      (NxN) stable structural connectivity matrix, e.g. stabilized   

A = (A / (| λ(A)max | + 1)) - 1

5. 4.4. Time horizon: T = 1: What unit is 1? I understand from the code, that different 
intermediate states are calculated between x0 and xt, from T=1 to T=1 in steps of 
.001. But this does not help understanding this parameter choice. Also: What is 
the rho parameter, and why is it set to 1? The input matrix S is likely to be 
zeros(numNodes,numNodes)?  

The parameter T is the final time instant allotted for the control to reach the final 
state. The parameter T determines how quickly the system is required to 
converge. Small values of T will make the system difficult to control (6). In theory, 
T is dimensionless if not coupled to external time domains. As we do not intend to 
model an evolving process in real time, we chose T = 1 to use a normalized time. 
We have expanded the respective paragraph and added further references to 
works providing a more general introduction: 

SI page 5:  
“The time horizon T specifies the time over which the control input is applied and 
the system can be pushed from one state to the other. It determines how quickly 
the system is required to converge and therefore small values might give the 
system insufficient time to reach the target state, making it hard to control. In 
theory, T is dimensionless if not coupled to external time domains. As we do not 
intend to model an evolving process in real time, we chose T = 1 to use a 
normalized time, in line with previous works (12), which allows the system to have 
adequate time to be controlled (13). For a systematic investigation of the influence 
of T on control processes in the context of brain networks, we refer the reader to 
(13), as well as to more general introductions of the control processes in linear 
dynamics (14, 15).” 

The parameter ρ allows the investigator to penalize the energy used by the 
optimal input in relation to the deviation from the optimal trajectory when solving 
for the optimal control. As we had no specific hypothesis that either of these 
elements of the cost function should prevail over the other, we used the default of 
ρ = 1. In the main text, we refer to it as ñ, which we have now harmonized. We 
apologize for the confusion. 

The matrix S is the n x n diagonal matrix with 1 on each diagonal entry for which 
the distance from the final target state is penalized. Since we were interested in 
studing the case in which all states reach the final target state, the input here was 
S = eye(n) (i.e., a diagonal matrix with all ones on the diagonal), as in previous 
publications (7). 

For the benefit of future readers, we have added a more detailed description of S
and T to the README file. 



README file:
S      (NxN) Selects nodes whose distance from the final target state you wish 

to penalize in the cost function. Define S so that there is a 1 on the 
diagonal of elements you want to constrain, and a zero otherwise. 

T      Time horizon: how long you allow for the state trajectory to reach the target 
state as a result of the input injected into the control nodes.  Small values of T 
will make the system difficult to control whereas large values of T will make the 
system easy to control. In theory, T is dimensionless if not coupled to external 
time domains; therefore T = 1 can be used to have a normalized time.

6. In line 446 it reads that B denotes an input matrix defining the control nodes. Line 
116 reads "B is a matrix describing which regions enact control or receive control 
input". 
I find the definition in the methods section more appropriate: How can you 
distinguish between sending (control) and receiving nodes if not using some 
measure of effective connectivity? 

We thank the reviewer for this comment. Indeed, we do not distinguish between 
enacting or receiving control nodes here and therefore have changed the 
description in line with your suggestion. For a discussion of controllability in 
directed connectomes, please see our earlier paper Kim et al. 2018 Nature 
Physics.

other issues: 

7. Is the following sentence correct? Are we talking about a diversified energy 
landscape or a less diversified energy landscape? 
"In a diversified energy landscape, we expected that the variation of trajectories 
around the minimum-energy trajectory should be larger than expected in the less 
diversified energy landscape in schizophrenia, implying that small perturbations 
may have a more substantial impact. 

We thank the reviewer for pointing out this crucial typo. The passage should 
indeed read as follows:

“In a diversified energy landscape, we expected that the variation of trajectories 
around the minimum-energy trajectory should be larger than expected in the less 
diversified energy landscape of healthy subjects, implying that small perturbations 
may have a more substantial impact in schizophrenia.” 

8. Figure S4: Is there any reason that subcortical regions were omitted from the 
figure? 

Subcortical regions do not score among the 50% most important control nodes, 
which is why we refrained from plotting the subcortical structures in the previous 
figures. However, for Fig S4 D and E, subcortical structures could be potentially 
informative, so we now display those results using a separate subcortical 
template.



Reviewer #3 (Remarks to the Author): 

The authors have adequately addressed my concerns. 

We thank the reviewer for their appreciation of our revisions. 
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<b>REVIEWERS' COMMENTS</b> 

Reviewer #1 (Remarks to the Author): 

The authors have adequately addressed my comments. I anticipate that the paper will be well received 

by the community 

Reviewer #2 (Remarks to the Author): 

I appreciate the authors' detailed responses to my questions. I hope that readers of the published 

manuscript will find the additional explanations as helpful as I did. 

I am impressed by the authors' work and intrigued by the new insights on dual state theory. I have 

nothing further to ask. 

Thanks for allowing me to be part in this review process. 

Best wishes 

Sebastian Markett 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have adequately addressed my comments. I anticipate that the paper will be well received by the 
community

We thank the reviewer for their time and helpful comments along the way, which 
helped to improve the manuscript significantly.



Reviewer #2 (Remarks to the Author):

I appreciate the authors' detailed responses to my questions. I hope that readers of the published manuscript will 
find the additional explanations as helpful as I did. 

I am impressed by the authors' work and intrigued by the new insights on dual state theory. I have nothing further 
to ask. 

Thanks for allowing me to be part in this review process. 
Best wishes 
Sebastian Markett 

We thank the reviewer for his time and effort in helping us to improve our manuscript 
significantly. We are especially thankful for his comments on the network control 
framework, which were essential in providing a thorough discussion and explanation 
to guide readers through these concepts. 


