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1 Accuracy and robustness of ‘MeshMonk’ surface registration on 

dysmorphic faces 

1.1 Background and Rationale 

The purpose of spatially-dense non-rigid image registration is to automatically impose a 

standard number of points onto each image such that the anatomical meaning of each point 

in one image is the same as in all the others. E.g. if point 400 is on the tip of the nose in one 

image it should be on the tip of the nose in all images. This is accomplished by gradually 

warping a standard template face into the shape of each face to be analyzed. This is done is 

such a way that the points of the template retain their anatomical meaning during the 

warping so that (e.g.) the tip of the nose of the template ends up on the tip of the nose on 

the target. The co-ordinates of these points now represent the shape of the target face using 

a standard set of points. When this is applied to many faces it allows for their shapes to be 

compared and combined for multivariate analysis. 

 

In this work we apply the open source MeshMonk toolbox for performing this non-rigid 

registration.  This toolbox was initially tested (1) using adult European faces. In this 

supplement we assess its performance on faces with various facial dysmorphisms, of varying 

ages including children. To do so we: 1. learn which points of the template correspond to 

particular anatomical loci and 2. visually assess the resulting positions on a sample of target 

faces to identify gross failures of the registration algorithm and report their success rate. We 

then compare these resulting positions to landmark points that have been manually 

annotated on the images. These manual annotations are considered a quasi ‘ground truth’ 
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for anatomical correspondence, which are compared to the correspondence induced by the 

registration.  

 

1.2 Learning anatomical loci on the template mesh 

 

For visualization and validation of the resulting correspondences it is necessary to know which 

positions of the template mesh correspond to particular anatomical loci. For this, 10 faces 

without known genetic disorders or craniofacial trauma, not otherwise used in the study, 

were manually annotated with 20 landmarks by author PH. The demographic characteristics 

of these individuals is shown in S1 Text Table 1. These faces were non-rigidly registered with 

the MeshMonk pipeline, producing a version of the face that shares the template topology, 

but is in the shape of target face. The locations of the landmarks on each target face were 

recorded as their barycentric co-ordinates in terms of the three closest points on the 

registered version of the face. These 10 landmark indications were then transferred into the 

3D Cartesian co-ordinate system of the original unwarped template mesh, by reconstructing 

their Cartesian co-ordinates from the barycentric co-ordinates. These 10 landmark indications 

were averaged and projected to the surface of the template mesh. These averaged locations 

were then again recorded as barycentric co-ordinates, giving a robust indication of the 

positions of these landmarks in terms of the template topology. The locations of these 

landmarks on the template are shown in S1 Text Figure 1. Once these locations are known 

and coded in this way on the template they can be easily visualized on any registered face 

and compared to manual landmark placements to assess the accuracy of the 

correspondences visually and quantitatively. 
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S1 Text Table 1 Demographics of 10 individuals used to learn the anatomical locations of the landmarks. 

Subject Age 
(years) Sex 

1 58.2 M 
2 73.5 M 
3 30.6 M 
4 44.4 M 
5 39.2 M 
6 51.1 F 
7 38.5 M 
8 39.8 F 
9 44.7 M 

10 32 M 
 

 

 

 

S1 Text Figure 1 Locations on template mesh, corresponding to anatomical landmarks. This figure was generated in MATLAB 

2021a (https://www.mathworks.com/). 
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1.3 Assessing registration failures and precision of the achieved correspondences 

1.3.1 Test sample 

The test sample comprised individuals with various disorders affecting craniofacial shape as 

well as a control sample without known genetic conditions. Each image was visually screened 

and faces with facial hair or a non-neutral facial expression were excluded. A facial expression 

was considered ‘neutral’ if the individual was not laughing, crying, smiling or otherwise 

emoting. The lips were sometimes parted and the mouth open. S1 Text Figure 2 displays 

demographic characteristics of this sample. Each face was manually annotated with the same 

20 landmarks by author PH. 
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S1 Text Figure 2 Demographic characteristics of the test samples in all groups. This figure was generated in MATLAB 2021a 

(https://www.mathworks.com/). 

 

1.3.2 Image processing and non-rigid registration 

If necessary each image was cleaned to remove extra-facial areas that might make the 

registration difficult. Experience suggests that any hair on the forehead must be removed as 

well as structure close to the chin. E.g. if the face is nestled into the neck or if the face is very 

obese so that the fat of the neck renders the chin ill-defined, then the neck needs to be 

carefully removed. Five landmarks were roughly positioned on the inner corners of the eyes, 

the outer corners of the mouth and the tip of the nose on each facial image and on the 

template. A rigid Procrustes transformation calculated from the landmarks on the template 

to the landmarks on the target was applied to the template image to roughly align it to the 

target. This was followed by a rigid iterative closest point and non-rigid iterative closest point 

registration (as described in (1)), bringing the points of the template image onto the surface 

of the target image.  

 

1.3.3 Visual assessment of registration failures 

The anatomical correspondence induced by the registration was first visually assessed by 

viewing the original image of each individual, overlaid with the deformed template, with the 

anatomical positions (see above) emphasized as colored points. E.g. S1 Text Figure 3 shows 

the results of the mapping of an image of author HM.  
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S1 Text Figure 3 Visualizing the anatomical correspondences. The deformed template image (blue wireframe) visualized in 

the same window as the original image. The points of the template that correspond to the anatomical loci are emphasized 

as red points. The accuracy of the correspondences can be assessed by comparing the position of these points with the 

corresponding anatomical locations on the target image. All points are quite accurately placed, although a slight error is 

visible on the left exocanthion. This figure was generated in MATLAB 2021a (https://www.mathworks.com/). 

 

 

Registration is considered to have failed when multiple landmarks are moved significantly 

from their true anatomical location. Small differences from perfect anatomical precision (as 

can be seen for the right palpebral superius in the figure above) are not classed as failures 

and are assessed in the next section. 

 

1.3.4 Types of registration failures 

The two most common types of registration failures are 1) that the lower lip of the template 

(as indicated by the position of the labiale inferius) is mapped to the vermillion or cutaneous 

upper lip of the target, or to the palate (which can occur if the mouth is open) and 2) that the 

eyes are mapped to the lower or upper contour of the orbits, or to the cheek. Two examples 

of each type are shown in S1 Text Figure 4. 
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S1 Text Figure 4 Illustration of types of registration failures. This figure was generated in MATLAB 2021a 

(https://www.mathworks.com/). 

 

1.3.5 Frequencies of registration failures 

S1 Text Table 2 shows the registration success rate within each disease group (row)  and S1 

Text Table 3 shows the success rate for different ages. We noted 100% success rates for the 

faces of controls. In contrast, the more unusual facial shapes in the various disease groups 

lead to a lower success rate of ~87-100%. The success rates observed in all age groups are 

between 90-100%. 

 

S1 Text Table 2 Success rate within each disease group as percentages and counts. 

Group Success rate 
Control 100.0% (38/38) 
22q11.2 Del 93.3% (70/75) 
Costello 87.0% (20/23) 
Prader Willi 100.0% (21/21) 
Rubinstein Taybi 100.0% (21/21) 
Wolf Hirschhorn 92.8% (103/111) 
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Total 94.5% (273/289) 
 

S1 Text Table 3 Success rate within different age brackets as percentages and counts. 

Age Success rate 
0-2 93.8% (15/16) 
2-4 92.5% (37/40) 
4-6 92.3% (36/39) 
6-8 91.9% (34/37) 
8-10 91.2% (31/34) 
10-12 95.2% (20/21) 
12-14 100.0% (19/19) 
14-16 90.9% (10/11) 
16-18 100.0% (10/10) 
18-75 98.4% (61/62) 
Total 94.5% (273/289) 

 

 

1.3.6 Anatomical precision of the mapping 

To quantitatively evaluate the precision of the correspondences induced by the registration 

the anatomical landmarks on the template were reconstructed on each registered face (as 

shown in S1 Text Figure 3). The Euclidean distance between these landmarks and the 

landmarks manually annotated on each face were calculated. S1 Text Table 4 plots the median 

and 5th and 95th percentiles of these distances per landmark for each disease group. S1 Text 

Table 5 plots the same statistics for different age groups.  
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S1 Text Table 4 Median (5th-95th percentiles) of the distance (mm) between the landmarks automatically placed by the non-rigid registration and the ground truth landmarks manually indicated 1 

onto each face by disease group. 2 

 al_l al_r ch_l ch_r cp_l cp_r en_l en_r ex_l ex_r gn li ls n pi_l pi_r prn ps_l ps_r sn 

Control 
1.56 (0.54-
2.82) 

0.99 (0.39-
2.26) 

1.21 (0.38-
4.87) 

1.19 (0.47-
4.00) 

1.42 (0.38-
3.02) 

1.38 (0.29-
2.29) 

1.58 (0.64-
3.76) 

1.57 (0.66-
3.30) 

1.67 (0.53-
3.23) 

1.83 (0.58-
3.53) 

2.66 (0.91-
5.25) 

1.50 (0.41-
3.15) 

0.88 (0.32-
2.46) 

1.85 (0.50-
3.31) 

1.52 (0.61-
3.30) 

1.49 (0.42-
3.25) 

0.77 (0.35-
1.92) 

1.16 (0.29-
4.09) 

1.64 (0.44-
4.14) 

0.91 (0.40-
2.51) 

22q11_2 
Del 

1.55 (0.55-
2.83) 

1.19 (0.41-
2.90) 

1.77 (0.34-
9.16) 

1.56 (0.30-
7.16) 

2.53 (0.62-
4.88) 

2.15 (0.54-
5.01) 

2.43 (1.08-
4.17) 

2.05 (0.86-
3.78) 

1.53 (0.43-
3.63) 

1.55 (0.64-
3.84) 

4.18 (1.76-
7.41) 

2.86 (1.07-
15.21) 

2.40 (0.61-
4.76) 

1.67 (0.76-
4.01) 

1.56 (0.53-
3.57) 

1.49 (0.58-
3.43) 

1.16 (0.28-
2.20) 

1.97 (0.44-
4.97) 

2.02 (0.74-
4.86) 

1.51 (0.43-
3.56) 

Costello 
2.06 (1.04-
3.79) 

1.92 (0.75-
4.05) 

2.16 (0.32-
10.25) 

1.86 (0.59-
9.94) 

2.98 (0.82-
7.82) 

2.46 (1.15-
7.36) 

2.39 (0.74-
7.25) 

1.68 (0.81-
6.77) 

2.65 (0.90-
7.58) 

2.51 (0.68-
7.03) 

4.90 (1.94-
14.62) 

3.33 (0.87-
23.04) 

2.85 (0.45-
9.54) 

1.81 (0.43-
4.03) 

2.09 (0.64-
10.67) 

1.94 (0.68-
10.65) 

1.28 (0.24-
3.02) 

1.80 (0.49-
9.42) 

1.72 (0.60-
8.96) 

0.79 (0.40-
2.41) 

Prader Willi 
2.92 (0.65-
6.49) 

2.25 (0.40-
4.27) 

1.82 (0.54-
5.72) 

1.76 (0.59-
5.64) 

1.78 (0.82-
4.95) 

1.52 (0.43-
3.00) 

2.68 (0.48-
3.68) 

1.76 (0.50-
3.35) 

1.88 (0.58-
4.74) 

1.89 (0.80-
3.93) 

9.19 (1.27-
15.79) 

2.75 (0.36-
5.59) 

1.70 (0.39-
5.49) 

1.75 (0.40-
2.80) 

2.01 (0.81-
3.90) 

1.90 (0.58-
3.50) 

1.15 (0.40-
2.68) 

2.22 (0.94-
4.23) 

1.72 (0.85-
3.36) 

2.78 (1.32-
5.33) 

Rubinstein 
Taybi 

0.92 (0.45-
2.45) 

1.02 (0.30-
2.30) 

1.46 (0.28-
4.20) 

1.48 (0.59-
5.81) 

1.72 (0.43-
3.81) 

1.57 (0.27-
3.06) 

2.56 (0.70-
4.06) 

1.98 (0.51-
3.11) 

1.59 (0.57-
6.16) 

2.26 (0.63-
6.57) 

6.19 (2.17-
11.08) 

2.12 (0.35-
4.99) 

1.73 (0.63-
3.98) 

1.43 (0.22-
3.71) 

1.23 (0.42-
4.65) 

1.84 (0.43-
4.53) 

0.92 (0.33-
1.66) 

2.11 (0.53-
5.68) 

1.70 (0.49-
3.99) 

2.15 (0.81-
3.56) 

Wolf 
Hirschhorn 

1.35 (0.50-
3.08) 

1.02 (0.25-
2.28) 

1.62 (0.47-
5.54) 

1.68 (0.50-
5.73) 

2.51 (1.07-
6.14) 

2.48 (0.91-
5.45) 

2.02 (0.68-
6.78) 

1.48 (0.63-
4.37) 

2.35 (0.67-
7.88) 

2.49 (0.90-
7.15) 

3.57 (0.96-
8.20) 

2.19 (0.62-
4.98) 

2.25 (0.90-
5.29) 

2.48 (0.61-
6.16) 

2.22 (0.46-
8.13) 

2.54 (0.65-
6.61) 

1.12 (0.29-
2.46) 

2.13 (0.59-
8.42) 

1.97 (0.47-
7.46) 

1.09 (0.27-
3.16) 

Total 
1.50 (0.53-
3.58) 

1.14 (0.34-
2.98) 

1.65 (0.40-
5.57) 

1.58 (0.43-
5.78) 

2.33 (0.74-
5.68) 

2.06 (0.53-
5.16) 

2.28 (0.71-
4.87) 

1.76 (0.67-
4.12) 

1.84 (0.57-
6.34) 

2.01 (0.66-
6.55) 

3.98 (1.05-
10.11) 

2.28 (0.60-
5.87) 

2.06 (0.56-
5.13) 

1.92 (0.57-
4.70) 

1.84 (0.53-
5.98) 

1.90 (0.58-
5.24) 

1.08 (0.30-
2.29) 

1.93 (0.47-
7.18) 

1.93 (0.57-
5.97) 

1.30 (0.39-
3.51) 

 3 

  4 
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S1 Text Table 5 Median (5th-95th percentiles) of the distance (mm) between the landmarks automatically placed by the non-rigid registration and the ground truth landmarks manually indicated 5 

onto each face by age group. 6 

 al_l al_r ch_l ch_r cp_l cp_r en_l en_r ex_l ex_r gn li ls n pi_l pi_r prn ps_l ps_r sn 

0-2 

1.47 
(0.77-
2.50) 

1.04 (0.22-
2.10) 

1.44 (0.53-
8.04) 

1.31 (0.25-
6.45) 

2.77 (1.14-
6.61) 

2.07 (0.84-
5.72) 

2.38 (0.76-
6.57) 

1.85 (0.54-
4.93) 

1.87 (0.90-
7.46) 

1.95 (0.90-
6.66) 

5.24 (1.57-
9.82) 

1.32 (0.56-
13.98) 

2.08 (0.77-
7.15) 

1.86 (1.19-
4.53) 

2.22 (0.37-
7.35) 

2.22 (1.02-
5.77) 

1.15 (0.50-
2.14) 

1.40 (0.53-
7.03) 

2.34 (0.83-
5.46) 

1.10 (0.36-
2.80) 

2-4 

1.42 
(0.44-
2.75) 

0.97 (0.29-
2.20) 

1.57 (0.54-
8.86) 

1.63 (0.65-
9.58) 

2.43 (1.19-
5.08) 

2.10 (0.99-
4.59) 

2.95 (0.97-
5.67) 

2.11 (0.73-
3.96) 

1.79 (1.04-
4.41) 

2.01 (0.85-
5.48) 

4.36 (1.75-
11.07) 

2.06 (0.73-
16.82) 

2.16 (0.75-
4.62) 

2.28 (1.04-
4.43) 

1.77 (0.50-
5.87) 

1.70 (0.55-
5.13) 

1.09 (0.36-
2.39) 

2.19 (0.53-
6.30) 

2.58 (0.50-
5.53) 

1.26 (0.23-
2.79) 

4-6 

1.50 
(0.60-
3.74) 

1.14 (0.27-
3.33) 

1.61 (0.36-
4.63) 

1.27 (0.49-
5.99) 

2.49 (0.42-
4.14) 

2.26 (0.83-
4.61) 

2.35 (1.02-
6.91) 

1.79 (0.81-
6.18) 

1.97 (0.73-
7.63) 

2.06 (1.09-
7.29) 

4.43 (2.48-
10.30) 

2.72 (1.00-
5.89) 

2.40 (0.90-
4.45) 

2.06 (0.53-
5.83) 

1.82 (0.44-
9.26) 

1.58 (0.58-
9.00) 

1.16 (0.20-
2.04) 

2.22 (0.24-
8.22) 

2.02 (0.72-
8.28) 

1.24 (0.34-
3.17) 

6-8 

1.48 
(0.63-
3.18) 

1.11 (0.27-
2.12) 

1.71 (0.63-
3.95) 

1.70 (0.34-
4.25) 

1.98 (0.82-
5.55) 

2.06 (0.39-
4.69) 

2.54 (0.76-
4.67) 

2.08 (0.65-
4.12) 

1.55 (0.53-
6.28) 

1.53 (0.72-
5.91) 

4.39 (1.13-
8.02) 

2.35 (0.48-
5.46) 

2.06 (0.56-
5.03) 

1.87 (0.55-
5.77) 

2.20 (0.52-
5.74) 

1.98 (0.37-
4.28) 

1.25 (0.26-
1.83) 

1.78 (0.43-
8.98) 

1.62 (0.61-
8.95) 

1.35 (0.42-
3.14) 

8-10 

1.27 
(0.36-
3.62) 

1.15 (0.31-
2.78) 

1.96 (0.23-
5.56) 

1.85 (0.32-
5.62) 

2.49 (0.91-
4.90) 

2.27 (0.81-
5.09) 

2.16 (0.54-
6.38) 

1.80 (0.79-
4.80) 

1.93 (0.29-
8.10) 

1.91 (0.61-
6.88) 

3.51 (1.06-
9.89) 

2.35 (1.40-
7.03) 

2.32 (0.37-
4.79) 

1.79 (0.42-
4.92) 

1.47 (0.50-
8.60) 

1.68 (0.56-
7.56) 

0.95 (0.28-
2.60) 

1.78 (0.78-
8.20) 

1.77 (0.62-
7.40) 

1.91 (0.28-
3.64) 

10-12 

1.48 
(0.65-
3.15) 

1.35 (0.28-
3.19) 

1.81 (0.63-
8.32) 

1.53 (0.49-
7.59) 

2.66 (1.17-
6.57) 

2.65 (0.75-
5.70) 

2.10 (0.56-
4.75) 

1.60 (0.81-
4.16) 

1.82 (0.66-
4.07) 

1.69 (0.49-
4.37) 

3.86 (1.80-
12.42) 

2.64 (0.70-
12.70) 

2.31 (0.65-
5.93) 

2.34 (0.70-
4.74) 

1.70 (0.64-
4.46) 

1.90 (0.49-
4.12) 

0.95 (0.36-
2.27) 

2.22 (0.69-
4.65) 

1.69 (0.46-
4.26) 

0.96 (0.43-
3.75) 

12-14 

1.46 
(0.25-
3.36) 

1.26 (0.41-
2.88) 

1.77 (0.56-
6.59) 

1.16 (0.51-
6.50) 

2.67 (1.58-
6.64) 

2.57 (1.27-
6.36) 

1.90 (0.76-
3.52) 

1.48 (0.71-
2.67) 

1.75 (0.69-
4.37) 

2.19 (0.97-
6.04) 

3.67 (1.22-
6.13) 

2.91 (1.10-
5.52) 

3.07 (0.35-
7.09) 

2.00 (0.71-
5.29) 

1.71 (0.65-
3.35) 

1.92 (0.99-
5.73) 

1.17 (0.31-
2.19) 

1.92 (0.47-
2.57) 

1.38 (0.51-
4.47) 

1.26 (0.43-
3.80) 

14-16 

2.08 
(1.11-
4.22) 

1.34 (0.64-
3.40) 

2.16 (0.34-
12.25) 

2.44 (0.98-
11.78) 

2.05 (0.83-
7.65) 

1.57 (0.57-
7.23) 

2.34 (1.04-
4.75) 

1.56 (0.33-
2.08) 

1.68 (0.97-
7.77) 

3.03 (0.94-
6.66) 

5.84 (0.81-
23.96) 

2.60 (0.40-
21.87) 

2.06 (0.75-
9.66) 

1.39 (0.54-
2.53) 

2.39 (1.61-
8.43) 

2.54 (1.10-
3.87) 

1.12 (0.61-
2.16) 

2.71 (0.38-
7.02) 

1.62 (0.63-
4.66) 

1.31 (0.21-
2.13) 

16-18 

1.74 
(0.92-
6.52) 

1.16 (0.35-
3.49) 

1.58 (0.37-
5.21) 

1.69 (0.85-
6.71) 

2.48 (1.18-
6.15) 

2.05 (0.39-
3.42) 

2.16 (0.74-
7.87) 

2.01 (1.35-
3.12) 

1.44 (1.10-
7.88) 

1.53 (0.37-
4.08) 

3.88 (1.59-
7.53) 

2.99 (1.56-
7.29) 

2.08 (1.12-
4.95) 

2.19 (0.44-
3.47) 

1.82 (0.77-
6.33) 

2.46 (0.56-
3.09) 

1.06 (0.37-
2.27) 

1.31 (0.86-
8.23) 

2.12 (0.46-
4.93) 

2.24 (0.18-
4.65) 

18-75 

1.65 
(0.51-
3.71) 

1.15 (0.42-
4.02) 

1.56 (0.36-
4.67) 

1.42 (0.40-
5.70) 

1.51 (0.29-
7.54) 

1.56 (0.39-
7.42) 

1.48 (0.57-
3.80) 

1.41 (0.59-
3.86) 

1.89 (0.56-
6.30) 

2.21 (0.61-
6.57) 

3.39 (0.71-
10.49) 

1.66 (0.43-
5.11) 

1.18 (0.48-
6.65) 

1.83 (0.39-
3.30) 

1.96 (0.60-
3.89) 

1.87 (0.51-
3.82) 

0.95 (0.31-
2.61) 

1.76 (0.49-
6.35) 

1.79 (0.56-
5.31) 

1.27 (0.46-
3.96) 

Total 

1.50 
(0.53-
3.58) 

1.14 (0.34-
2.98) 

1.65 (0.40-
5.57) 

1.58 (0.43-
5.78) 

2.33 (0.74-
5.68) 

2.06 (0.53-
5.16) 

2.28 (0.71-
4.87) 

1.76 (0.67-
4.12) 

1.84 (0.57-
6.34) 

2.01 (0.66-
6.55) 

3.98 (1.05-
10.11) 

2.28 (0.60-
5.87) 

2.06 (0.56-
5.13) 

1.92 (0.57-
4.70) 

1.84 (0.53-
5.98) 

1.90 (0.58-
5.24) 

1.08 (0.30-
2.29) 

1.93 (0.47-
7.18) 

1.93 (0.57-
5.97) 

1.30 (0.39-
3.51) 

7 
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2 Constructing age appropriate models of normal variation  

2.1 Constructing models of normal variation. 

2.1.1 General 

The 3D ‘growth curves’ comprise a series of age and sex-specific expected faces and models 

of the variation around this expected face. In general, we adopt an approach similar to the 

Nadaraya-Watson kernel regression, more informally known as a ‘sliding window’ approach. 

Essentially, each model is derived from the training data in a way that emphasizes the 

influence of cases closest in age while downplaying the influence of cases further away in age. 

 

2.1.2 Computing observation weights 

Each model is based on the training data in such a way that the observations most similar in 

age to the target age are given more weight and those further away are given less. For a 

particular target age !, within either sex group each observation’s age "!  was converted into 

a z score according to a normal distribution centered on a with standard deviation s.  

 

#! =	
"! − !
'

 

 

The weight for each observation (!  was then calculated by evaluating the standard normal 

probability density function at	#!: 

 

(! =
1

√2,
	-
"#!"
$  
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In the foregoing calculations we included only cases with -3<zi<3 for computational efficiency. 

 

The term s is the only tunable parameter for the model. It controls the range of ages used to 

estimate the model. Those cases within +-1 '	of ! have the most influence and those further 

away have less.  We address the setting of this parameter in section 2.2. 

 

2.1.3 Computing the expected face 

It is most common in morphometric analysis to define the expected shape of a population as 

the average shape. While the weighted average could be used for our purposes, it is 

undesirable as the average is biased when data are asymmetrically distributed about the 

target age. Here we adopt the same approach that we did in (2) and instead use a local linear 

regression to estimate the expected face. Firstly each face was scaled to a common size and 

co-aligned to the sample average by Generalized Procrustes Analysis. Each face was then 

represented by row vector containing the x, y and z co-ordinates for each point on the face. 

These were ordered so that the first three elements of each row were the co-ordinates of the 

first point followed by the co-ordinates of the second point and so on.  The number of 

response variables was therefore 3k (k = number of points with each point being a three 

dimensional co-ordinate). The matrix of response variables (Y) in the regression was a vertical 

concatenation of these vectors. The matrix of predictor variables (X) was a single column 

containing the ages of each observation. X and Y were column centered on their respective 

weighted means ("̅ and /0 ) and each row of each matrix was multiplied by the square root of 

their corresponding weight. PLSR was then performed without further column centering using 

the SIMPLS algorithm.4 
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This fitted the multivariate regression function is:  

12 = 34  

 

Evaluating this function at ! − "̅ and adding /0 back onto the results produced co-ordinates 

of the expected face at age !. 

 

2.1.4 Weighting, re-centering and statistical age adjustment 

To ensure the variation is calculated relative to this expected face, all faces in the training 

sample were co-aligned to the expected face by scaled rigid Procrustes superimpositions. To 

exclude variation due to including cases of different ages in the estimate, we statistically 

adjust for this variation. Essentially this synthetically transforms all faces to the target age, 

and its purpose is to make the estimate of variation as reflective as possible of variation at 

the target age. This age adjustment is achieved by fitting a second weighted PLSR of these re-

aligned shapes onto age. Y was this time column centered on the coordinates of the expected 

face and X was centered on the target age (a). The residuals of this regression model 5 

constitute weighted and age-adjusted displacements of the vertices of each face from the 

expected face.  

 

2.1.5 Modelling normal variation 

2.1.5.1 Pointwise standard deviations 

To calculate the standard deviations at each point the 3D displacements away from the 

expected face in each row of 5 were reshaped into a k (vertices) x 3 dimensions array. The 

displacements at each point was then projected separately onto each of the x, y and z axes 

(corresponding to the anatomical lateral-medial; superior-inferior; or anterior-posterior 
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directions), the direction perpendicular to the surface of the expected face, each giving a 

scalar displacement value 6%  for each jth point. The total displacement (the Euclidean length 

of the 3D displacement vector) was also calculated. The standard deviation at the jth point in 

a given direction was then calculated: 

7% =	8
∑ 6!%

$&
!'(
∑ (!
)
!'(

 

2.1.5.2 Statistical shape model 

The modes of variation were calculated using a singular value decomposition of 5. 

 

:;<* = = 

Where columns of V are the modes of variation. ‘Scores’ or ‘projections’ onto these modes of 

variation for each observation were calculated as: 

> = =< 

 

The character > is an c (observations) × l (modes of variation) matrix. The variance in scores 

along the mth mode is calculated: 

?+$ =	
∑ >!,+	$
)
!'(
∑ (!
)
!'(

 

Not all of the possible (n-1) modes of variation are meaningful. Therefore, each statistical 

shape model was trimmed to include only the modes of variation required to explain up to 

98 percent of the variation. Specifically modes were added (@ was increased) in order of 

decreasing variance until the following condition was satisfied: 

 

∑ ?+$-
+'(

∑ ?+$)"(
+'(

> .98 
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2.2 Age-adaptive bandwidth setting 

For defining age and sex-appropriate models of normal facial variation, using the framework 

described above, there is only one parameter to be set: the bandwidth of the function, 

determining the weights ('). This should be big enough so as to incorporate sufficient training 

observations to model the true variation at that age (avoiding over-fitting to the training 

data). However, it should also be kept as minimal as possible to reduce the potential of under-

fitting. In the extreme case, under-fitting would result in identical models being produced for 

every age.  

 

The degree to which a statistical shape model (SSM) represents the variation in the population 

can be operationalized as the degree to which individuals not used to train the model can be 

represented as a linear combination of the modes of variation. This is  termed ‘generalization’. 

The degree to which an individual can be represented on the modes of a given SSM can be 

expressed numerically by their reconstruction error (see section 4.4).  

 

To tune the bandwidth of the weighting function we first model how SSM generalization 

changes as a function of age and bandwidth: each individual in the normative training data 

aged less than 70 years was held out of the training data in turn, and an age and sex 

appropriate model was built from the remaining data. The reconstruction error of the held-

out observation with respect to this model was calculated. This was repeated using 12 

bandwidths linearly spaced from 1-12 years inclusive. Below S1 Text Figure 5 illustrates how 

reconstruction error changes as a function of age and bandwidth. The top rows scatter 
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reconstruction error against age and bandwidth and shows a surface fitted to this scatter. The 

bottom row shows a height map of this fitted surface where color is indexed to the 

reconstruction error. To give some context to these values Booth et al (3) built an extremely 

comprehensive single SSM of the human face from 10 000 scans, achieving an overall mean 

reconstruction error value of ~0.3mm. In general, generalization decreases (reconstruction 

error increases), especially for males, in the older ages. This is likely the combined product of 

two factors: 1. The training data are relatively sparsely sampled at these ages and 2. variation 

may have less structure at these ages and require more training data in general to model it. 

 

The fluctuation in generalization suggests that no single bandwidth will be appropriate for all 

ages. Therefore, we allow the bandwidth to change depending on the particular age being 

modelled. Specifically, in the plot below we identified the isoline corresponding to a 

reconstruction error of 0.6mm. Following this isoline along the x-axis gives, for each age, the 

appropriate bandwidth to use to achieve a reconstruction error of 0.6mm. For each age, these 

are the bandwidths that we use.  Beyond the age of 52 for males we cannot achieve the 

desired amount of generalization. We therefore truncate the growth curve at age 52. 
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S1 Text Figure 5 Reconstruction error as a function of age and bandwidth. Top row shows the scatter of reconstruction errors, 

age and bandwidth. The fitted surface is a linear radial basis function interpolant fitted to the scattered data with smoothing 

constant set to 10, using MATLAB’s ‘rbfcreate’ function.  The bottom row shows a height map of the fitted surface applying 

the same color-map. The red line shows the isoline corresponding to a reconstruction error of 0.6mm and plots how the 

bandwidth of the models was changed as a function of age. This figure was generated in MATLAB 2021a 

(https://www.mathworks.com/). 

 

3 Patient Assessment from models of normal facial variation 

3.1 Patient assessment using age-appropriate models 

3.1.1 Facial Signatures 

Facial signatures are calculated by first aligning the face to the expected face of their age and 

sex appropriate model,  using a robust Procrustes transformation. The robust Procrustes 

algorithm iteratively defines ‘outlier weights’ for each point on the face based on the 
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distances between the points of the two configurations (section 4.1) and computing a 

Procrustes transformation weighted so as to increase the influence of those points that are 

most similar, relative to those that are most different (section 4.2). The purpose of this is to 

reduce the ‘pinnochio effect’ in superimposition whereby large and localized differences 

between two configurations have a deleterious effect on the superimposition (4). 

 

The z score of each point on the face is calculated by dividing the displacement of the face 

from the expected face along the desired dimension (x, y, z, normal or total) by the 

corresponding standard deviation of that point.  

 

3.1.2 Normal equivalent 

The normal equivalent algorithm aims to determine scores on the modes of variation of a 

statistical shape model that best represent the individual in question, while remaining within 

the bounds of normal facial variation. It comprises four steps that are iterated through until 

convergence. On the first iteration the normal equivalent face is initialized with the expected 

face of the statistical shape model and the outlier weights are initialized with ones. 

 

3.1.2.1 Step 1: Alignment to the model 

 The face is aligned to the normal equivalent face using a weighted Procrustes transformation 

(section 4.2). 

 

3.1.2.2 Step 2: Outlier weights 

Outlier weights between the patient and the normal equivalent face are estimated for each 

point on the face, detecting the regions that are ‘abnormal’ (section 4.1). Abnormal regions 
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are those points on the patient that are relatively poorly coded by the statistical shape model 

(i.e. those that are most different from the normal equivalent). 

 

3.1.2.3 Step 3: Weighted constrained projection of the patient onto the model 

In theory any ‘normal’ face from the modelled population can be reconstructed as a series of 

transformations along each mode of variation away from the expected face. More formally a 

face can be represented as series of scores (E) that are the coefficients of a linear combination 

of the modes of variation. In this algorithm scores are calculated via a weighted projection 

onto the modes of variation (section 4.3) which emphasizes the reconstruction of ‘normal’ 

regions with high weights and de-emphasizes the reconstruction of regions with low weights, 

essentially interpolating the regions of low weights based on the regions of high weights. 

 

To ensure this reconstruction lies within the normal range of variation E we make use of the 

Mahalanobis distance. Assuming multivariate normality, the squared Mahalanobis distance 

follows a chi-squared distribution with degrees of freedom equal to the number of modes of 

variation. This means that α can be constrained on statistical grounds with reference to a p 

value. By default we use a p-value of.05 although this can be altered by the user of the 

toolbox. Simply, we need to find the critical value of the Mahalanobis distance for a given p 

value and degrees of freedom. This is the square root of the critical value of chi-squared. We 

then calculate the Mahalanobis distance of α from the origin (F). 

F = 	GH I
E+
?+
J
$-

+'(
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Where	?+ is the square root of the variance along the mth mode. If F is greater than the critical 

value, α is scaled so that its Mahalanobis distance is equal to the critical value. This is done by 

multiplying each element in α by the ratio of the critical value of the Mahalanobis distance to 

F. 

4 Further technical details 

4.1 Calculating outlier weights 

Outlier weights are calculated for each point on the face. They are based on the distribution 

of distances between two configurations of corresponding points P and Q and their value 

sharply decreases as the distance exceeds some user-defined threshold to classify the point 

as an outlier.  

 

First, we to calculate the distances (d) for each corresponding point between P and Q: 

 

6% =	LMN(,% − O(,% 	P
$
+ MN$,% − O$,% 	P

$
+ RMN.,% − O.,% 	P

$
S 

 

Then each distance is converted into a z score according to a distribution with a mean of zero 

and a standard deviation of σ: 

#% =
6%
7

 

where σ is:  

 

7 = 	8
∑ (6%

$U%)&
%'(
∑ U%&
%'(
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where o is a vector of outlier weights (usually from a previous iteration within an iterative 

algorithm or all set to one). Each z score is then plugged into the equation of the standard 

normal probability density function to give the vector of probabilities b.	

	

X% =
1

√2,
	-
"#!"
$  

The outlier weights o are then calculated: 

 

U% =
X%

X% − Z
 

where the value of λ is equal to:  

 

Z =
1

√2,
	-
"&!"
$  

 

and serves to modify the weights according to the user-defined cut-off κ. The value of κ is in 

standard deviations. In this work we set κ=2.   

4.2 Weighted Procrustes transformation 

In this section we describe how to calculate the weighted Procrustes transformation. The 

influence of each point on the head depends on its outlier weight oj. 

 

The two landmark configurations will be denoted by P and Q. Both are 3 x k (points on the 

face) arrays. The translation of P to Q is coded in the difference between their weighted 

means: ^̅ and _0 respectively, where (for example) _0 is calculated: 
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`
∑ O(,%
&
%'(
∑ U%&
%'(

,
∑ O$,%
&
%'(
∑ U%&
%'(

	 ,
∑ O.,%
&
!'(
∑ U%&
%'(

b 

 

The scaling factor to scale P to the size of Q is the ratio of the size of P to the size of Q. The 

size of each configuration is measured as the mean Euclidean distance of all points from their 

weighted means.  

 

Rotation in three dimensions is coded by a 3x3 rotation matrix. This is calculated by first 

centring P and Q on their weighted means, and then scaling each configuration so that the 

mean distance of all their points from the origin is equal to one. The weighted rotation can 

then be calculated by first performing a singular value decomposition: 

 

:;<* = OcN*  

 

where O is a diagonal matrix with the outlier weights along its main diagonal diag(o), then 

calculating a 3 x 3 rotation matrix H: 

g = <:*  

 

4.3 Weighted projection onto the statistical shape model. 

The weighted projection onto the modes of variation of the statistical shape model is 

accomplished as follows. First the 3k (number of co-ordinates of all k points in all 3 

dimensions) x l (modes of variation) in V modes of variation are each scaled according to their 

variances and the elements of each mode are scaled according to their outlier weights. 
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h = 	c<i 

 

Where W is an l x l diagonal matrix containing the variances along each mode of variation and 

O is a 3k x 3k diagonal matrix containing outlier weights corresponding the elements in the 

columns of V [U( U( U(…	U& U& U&]. 

 

The singular value decomposition of this matrix gives: 

 

:Εn* = h 

 

The projections onto the modes of variation are then: 

 

E = inΓ:*c" 

 

Where x is a column vector the co-ordinates (after subtracting the co-ordinates of the 

expected face that is the model center) of the observation to be projected onto the modes.  

The character Γ is an @ x	@ diagonal matrix with elements along the main diagonal equal to: 

p+ =
q+

q+$ + r
	 

 

Where q+is the mth singular value pulled from the main diagonal of Ε. The character r is an 

additional user-defined regularization factor. In previous work this has been used to constrain 

the normal equivalent to statistically plausible solutions (5). We employ a different approach 

to this constraint (see section 3.1.2.3). So r was always set to zero.  



S1 Text  26 

 

4.4 Computing reconstruction error 

To calculate this for an individual face it was translated, rotated and scaled to the expected 

face of the given model (as described in section 4.2, applying all equal outlier weights), then 

their scores on the SSM were computed: 

 

E = "< 

 

Where x is a 1 x 3k (k being the number of points on the face) vector containing co-ordinates 

of the face. V is a 3k x @ (modes of variation) matrix of the modes of variation. The character 

E is a 1 x @ vector of scores on each mode of variation. This operation is equivalent to the 

weighted projection (section 4.3) with equal weights and r = 0. 

 

The face was reconstructed: 

"t = <E*  

 

Then the co-ordinates of the expected face were added back on to "t.  The resulting co-

ordinates were then scaled rotated and translated back into the co-ordinate system of the of 

the original shape by inverting the Procrustes transformation estimated at the beginning of 

this section.  Then distance between corresponding points was calculated. The reconstruction 

error is the mean of these distances.  
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