
 

 

SUPPLEMENTAL METHODS 

Expression data pre-processing 

 

For each therapeutic trial, baseline and post-treatment samples for improvers and non-improvers 

were pre-processed separately. Non-centered gene expression data were imputed for missing 

values and collapsed to unique genes via corresponding GenePattern  (Reich et al., 2006) 

modules with default settings and median-centered via Cluster 3.0  (de Hoon et al., 2004). 

 

Functional enrichment analyses and differential pathway expression 

 
 
All functional enrichment analyses throughout the work were performed using the gprofiler 

function in the gProfileR R package  (Reimand et al., 2011) with default parameters. 

Differentially expressed pathways were identified using Gene Set Enrichment Analysis (GSEA)  

(Subramanian et al., 2005) and the Hallmark database  (Liberzon et al., 2015). Hallmarks with 

False Discovery Rate ≤5% were treated as significant. GSEA runs were done via the 

GenePattern module with default settings except for permutation type, which was changed to 

‘gene set’ due to the small sample sizes. 

 

Hallmarks hit by multiple drugs were investigated in more detail. For each drug, core enrichment 

genes (genes that contribute most to the enrichment) for a given significant Hallmark were 

compared to core enrichment genes from this Hallmark hit by other drugs. This way, for each 

Hallmark we generated core enrichment gene signatures hit by multiple drugs.  

 



 

 

Functional association between drug signatures 

 

For performing functional associations between drug signatures, the top-ranking 250 genes from 

each signature were considered the “gene set” for that drug. Those gene symbols were converted 

to Entrez IDs using gconvert as implemented in the gProfileR R package  (Reimand et al., 2011). 

Functional association scores (z-scores) were calculated as described in Huttenhower, et al.  

(Huttenhower et al., 2009) and Greene, et al.  (Greene et al., 2015). Briefly, for drug pair i and j, 

the t-statistic between the two gene sets is calculated as follows: 
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where Xw is the mean weight of all edges between the drug gene sets, Xb is the mean weight of all 

edges incident to either gene set in the GIANT skin network, and s and n are the standard 

deviation and size of the distributions. The z-score (functional association statistic) was 

calculated by generating a null distribution (1,000 random gene set pairs of the same sizes as 

drug gene sets i and j), where ti,j is the t-statistic between the drug pair (as calculated above) and 

µ and s are the mean and standard deviation of the null distribution, respectively. 

zi , j = ti , j − µ
s

  

Figure S2A, S2B and S2C were generated by calculating the functional association between 

different drugs’ improver signatures, non-improver signatures, and the same drugs’ improver and 

non-improver signatures (“within drug”), respectively. 

 

Functional module analyses 
 
 



 

 

Functional modules were detected using the top edges version of the GIANT skin network 

downloaded from the GIANT webserver (giant.princeton.edu). Fast-greedy modularity 

maximization (as implemented in the igraph R package (v0.7)  (Csardi and Nepusz, 2006)) was 

applied iteratively until all communities were 150 genes or smaller. This was motivated by the 

fact that the average size of hallmark gene sets is ~150 genes and the average size of canonical 

pathways is ~50 genes. A histogram size of the functional modules detected is supplied as 

Figure S4. 

 
For the improver lists, the SVM scores of genes in functional modules were compared to the 

overall SVM score distribution by two-sided Wilcoxon test. The raw p-values were Bonferroni 

adjusted; only functional modules with Bonferroni adj. p < 0.001 were further considered. We 

calculated the intersection between drugs’ top or bottom 20 significant functional modules (as 

ranked by median SVM score [improver lists]) to generate Table 2. For the comparison of 

functional modules between the abatacept and MMF improver lists, SVM scores were 

standardized (we calculated z-scores). 

 
Fresolimumab base and MMF post list comparisons 

 

The extrapolated version of rank biased overlap (RBO) was calculated using the gespeR package  

(Schmich et al., 2015). The extrapolated RBO formula (Webber et al., 2010) is: 
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where p is a weighting parameter (we selected p = 1 to place an emphasis on the top of the list), 

L and S are lists of depths l and s respectively, and d is the depth. X refers to the overlap (size of 



 

 

the intersection) of lists S and T at the specified depth. The null distribution displayed in Figure 

4A was generated by permuting the gene symbol labels of the MMF post ranked list. The KS-

like test described as part of Connectivity Map  (Lamb et al., 2006) was implemented in R. The 

permuted p-value was calculated by generating a null distribution of the KS statistic for gene sets 

of the same size (250 genes). 
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SUPPLEMENTAL FIGURES 

 

Figure S1. B cell genes, at either the gene expression (IRIS) or protein (HPRD) level, have 
significantly higher rituximab SVM scores than random gene sets of the same size. IRIS SVM score 
Mann-Whitney-Wilcoxon p = 0.029, IRIS t-statistic Mann-Whitney-Wilcoxon p = 0.38. 
 

 
  



 

 

 
 
Figure S2. Z-scores were calculated to measure functional association between different drug 
signatures. Drug signatures were the 250 top-ranked genes (SVM scores) or all genes with positive 
scores (whichever list was smaller).  High scores are indicative of significant association between 
signatures. (A) Improver signature associations. Genes that decrease post-treatment in improvers are 
highly significantly functionally related, suggesting common pathways are necessary for the resolution of 
skin disease regardless of drug mechanism of action. (B) Non-improver signature associations. Genes that 
decrease during treatment in patients with stable or slightly worse skin disease severity are functionally 
related, but less so than improver drug signatures. (C) Improver and non-improver signatures from the 
same drug — ‘within drug’ association — are significantly functionally related suggesting some common 
perturbation or ‘treatment-effect’ that can be detected using this approach. Network analysis techniques 
can be used to distinguish treatment network signature from improvement. 
 
  



 

 

Figure S3. Boxplots of selected functional modules with significantly different standardized SVM 
scores between abatacept and MMF. Wilcoxon test, Bonferroni adj. p < 0.0001. 
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Figure S4. Distribution of genome-wide GIANT skin network functional module size (number of 
genes/vertices/nodes). 
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SUPPLEMENTAL TABLES 
Treatment 

N of patients 
in original 
study 

N of patients 
included in 
this study1 

Study type GEO 
accession 
number 

NCT number 

Abatacept 
7 (10)2 6 Phase 1, 2/RCT GSE66321 NCT00442611 

Fresolimumab 
15 10 Phase 1 GSE55036 NCT01284322 

MMF 
34 18 Open-label GSE76886 NCT00853788 

Nilotinib  
10 6 Phase 2/pilot GSE65405 NCT01166139 

Rituximab 
13 11 Pilot GSE32413 NA 

Table S1. Detailed information about clinical trials analyzed in this study. 
1 – number of patients for which baseline and post-treatment gene expression data were available 
2 – abatacept study was the only one in which patients were randomized to placebo (3/10). In order to be 
consistent, we have excluded gene expression data available for placebo patients from this study (2/3).  
GEO – Gene Expression Omnibus, NCT – National Clinical Trial, RCT – randomized controlled trial, 
NA – information not available. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
Functional Module Selected Enriched Biological Processes 

Higher in Abatacept 

127 
REACTOME Immunoregulatory interactions between a Lymphoid and Non-Lymphoid 
cell, GO BP positive regulation of gamma-delta T cell activation, GO BP interleukin-
12 production, GO BP defense response to bacterium 

129 GO BP vasculature development, GO BP angiogenesis, KEGG Wnt signaling, KEGG 
Vascular smooth muscle contraction 

277 
GO BP positive regulation of angiogenesis, GO BP elastic fiber assembly, GO CC 
complex of collagen trimers, REACTOME Collagen biosynthesis and modifying 
enzymes 

Higher in MMF 
285 REACTOME DNA repair, KEGG Cell Cycle, GO BP cellular response to DNA 

damage stimulus, GO BP ATP-dependent chromatin remodeling 

302 
REACTOME G2/M Checkpoints, REACTOME Separation of Sister Chromatids, GO 
BP small GTPase mediated signal transduction, GO BP CENP-A containing chromatin 
organization 

336 
REACTOME RIG-I/MDA5 mediated induction of IFN-alpha/beta pathways, 
REACTOME Antigen processing-Cross presentation, GO BP response to type I 
interferon, GO BP negative regulation of viral life cycle 

 
Table S2. Selected functional modules with significantly different standardized SVM scores 
between abatacept and MMF. Wilcoxon test, Bonferroni adj. p < 0.0001. Functional enrichment was 
performed using gProfileR  (Reimand et al., 2011). GO BP and CC stand for Gene Ontology Biological 
Process and Cellular Component, respectively. 
  



 

 

Drugs  Hallmarks Common core enrichment genes 
All EMT 

IGFBP3, LOXL2, MMP3, PTX3, THBS1, 
TNC, VCAM1 

Abatacept 
MMF 
Nilotinib 
Rituximab 

Allograft rejection 
 
 
 
 

 
Apoptosis 
 
 

 
 
Complement 
 
 

 
IFNA response 
 
 
 
 
 

 
 
IFNG response 
 
 
 
 
 

 
IL6/JAK/STAT3 signaling 
 

 
 
 
Inflammatory response 
 

 
 
TNFA/NFKB signaling 

BCL3, CCL2, CCR1, FAS, FYB, GZMA, 
GZMB, HLA-DMA, IFNGR1, LTB, SRGN, 
TNF, WARS 

 

CASP1, FAS, GPX1, PPT1, TAP1, TNF, 
TNFRSF12A 

 

C3, CASP1, CDH13, GCA, GZMA, GZMB, 
LAP3, LTF, PLEK, PLSCR1, SERPINE1 

 

BATF2, CASP1, CD74, IFI35, IFIH1, IFIT3, 
IFITM1, IRF7, IRF9, LAMP3, LAP3, LPAR6, 
NMI, PARP9, PLSCR1, SAMD9, SAMD9L, 
SP110, WARS 

 

APOL6, BATF2, CASP1, CCL2, CD74, 
CXCL9, FAS, GZMA, HLA-DMA, HLA-G, 
IFIH1, IFIT3, IFITM3, IL18BP, IRF7, LAP3, 
LYSMD2, NFKB1, NMI, OASL, PLSCR1, 
SLAMF7, SP110, TAP1, VAMP5, VCAM1, 
WARS 

 

A2M, CSF2RA, FAS, IFNGR1, IL1R1, LTB, 
SOCS3, STAT1, TNF, TNFRSF12A 

 

CCL2, CYBB, GPR183, IL15RA, IL1R1, 
LAMP3, NFKB1, NMI, SERPINE1 

BCL3, BHLHE40, CCL2, CYR61, DRAM1, 
KLF10, NFKB1, NFKB2, NFKBIE, PANX1, 
PLAU, PLEK, PTX3, RELB, SERPINE1, 
TAP1, TNC, TNF 

Abatacept 
Fresolimumab 
Nilotinib 
Rituximab 

TGFB signaling 
SERPINE1, THBS1 

Table S3. Hallmarks downregulated post-treatment in improvers. 


