
S1

Supporting Information (SI)

Langmuir adsorption kinetics in liquid media: interface reaction model 

Md Akhtarul Islam*, Myisha Ahmed Chowdhury, Md. Salatul Islam Mozumder, Md. Tamez 

Uddin*

Center for Environmental Process Engineering, Department of Chemical Engineering and 

Polymer Science, Shahjalal University of Science and Technology (SUST), Sylhet-3114, 

Bangladesh.

*E-mail: islamsust@yahoo.com; mislam@sust.edu, mtuddin-cep@sust.edu

mailto:islamsust@yahoo.com
mailto:mislam@sust.edu


S2

Appendix A: Conversion of standard equations for saturation type curves into PFO and 

PSO kinetic equations

Standard Equation I for saturation type curves:

Linearizing Eq.(7) from the main text, we have

― ln (1 ―
𝑞
𝑞𝑒) = 𝑎𝑡

(S1)

With a = kE1, the Eq. (S1) is identical with the linearized pseudo-first-order (PFO) kinetic 

equation (Eq. (4)) in EA. 

Differentiating the Eq. (7) with respect to t, we have

𝑑𝑞
𝑑𝑡 = 𝑞𝑒(𝑎𝑒 ―𝑎𝑡)

(S2)

Combining Eqs. (7) & (S2), we have

𝑑𝑞
𝑑𝑡 = 𝑎(𝑞𝑒 ― 𝑞)

(S3)

Again, with a = kE1, the Eq. (S3) is identical with the pseudo-first-order (PFO) kinetic equation 

in differential form (Eq. (3) in EA. 

Standard Equation II for saturation type curves:

Linearizing Eq.(8) we have

𝑡
𝑞 =

1
𝑏𝑞𝑒

+
1
𝑞𝑒

𝑡
(S4)

For b = kE2qe, the Eq. (S4) is identical with the linearized pseudo-second-order (PSO) kinetic 

equation (Eq. (6)) in EA. 

Differentiating the Eq. (8) with respect to t, we have
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𝑑𝑞
𝑑𝑡 = 𝑞

𝑒
𝑏

1

(1 + 𝑏𝑡)2
(S5)

Combining Eq. (8) & (S5), we have

𝑑𝑞
𝑑𝑡 =

𝑏
𝑞𝑒

(𝑞𝑒 ― 𝑞)2 (S6)

Again, for b = kE2qe, the Eq. (S6) is identical with the pseudo-second-order (PSO) kinetic 

equation in differential form (Eq. (5)) in EA. 

Appendix B: Derivation of kinetic equation (Eq. (22)) in Hybrid Order Approach (HOA) 

Rearranging Eq. (15) from the main text, we have

𝑊
𝑑𝑞
𝑑𝑡 = 𝑘𝑎𝑤𝑎𝑞2 ― (𝑘𝑎𝑞∞𝑤𝑎 + 𝑘𝑎𝐶𝐴,0 + 𝑘𝑑)𝑞 + 𝑘𝑎𝐶𝐴,0𝑞∞

(S7)

Rewriting the Eq. (S7) for equilibrium:

0 = 𝑘𝑎𝑤𝑎𝑞2
𝑒 ― (𝑘𝑎𝑞∞𝑤𝑎 + 𝑘𝑎𝐶𝐴,0 + 𝑘𝑑)𝑞𝑒 + 𝑘𝑎𝐶𝐴,0𝑞∞ (S8)

Subtracting Eq. (S8) from Eq. (S7) and after simple algebraic manipulation, one obtains,

𝑊
𝑑𝑞
𝑑𝑡 = 𝑘𝑎𝑤𝑎(𝑞𝑒 ― 𝑞)2 ― 𝑘𝑎𝑤𝑎.2𝑞𝑒(𝑞𝑒 ― 𝑞)

+ 𝑘𝑎(𝑞∞𝑤𝑎 + 𝐶𝐴,0 + 1/𝐾)(𝑞𝑒 ― 𝑞) 

(S9)

 Rearranging Eq. (19), we have

𝑤𝑎.2𝑞𝑒 = (𝑞∞𝑤𝑎 + 𝐶𝐴,0 + 1/𝐾) ― ∆ (S10)

Inserting Eq. (S10) in Eq. (S9), we obtain Eq. (22).

𝑑𝑞
𝑑𝑡 = 𝑘𝐻1(𝑞𝑒 ― 𝑞) + 𝑘𝐻2(𝑞𝑒 ― 𝑞)2 (22)
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Appendix C: Derivation of the expression for the dimensionless number, NOD,0 (Eq. (40))

Rearranging the Eq. (21), one obtains

∆
𝑤𝑎𝑞𝑒

=
𝑞∞

𝑞𝑒
+

𝐶𝐴,0

𝑤𝑎𝑞𝑒
+

1
𝐾.

1
𝑤𝑎𝑞𝑒

― 2
(S11)

Combining Eqs. (39) and (S11), we have

𝑁𝑂𝐷,0 =
𝑞∞

𝑞𝑒
+

𝐶𝐴,0

𝑤𝑎𝑞𝑒
+

1
𝐾.

1
𝑤𝑎𝑞𝑒

― 2
(S12)

Rearranging the Eq. (1), we have

1
𝐾 = 𝐶𝐴,𝑒(𝑞∞

𝑞𝑒
― 1) (S13)

Inserting Eq. (S13) in Eq(S12), we have

𝑁𝑂𝐷,0 =
𝑞∞

𝑞𝑒
+

𝐶𝐴,0

𝑤𝑎𝑞𝑒
+

𝐶𝐴,𝑒

𝑤𝑎𝑞𝑒
.(𝑞∞

𝑞𝑒
― 1) ― 2

(S14)

From the material balance at equilibrium:

𝑉𝐶𝐴,𝑒 + 𝑊𝑞𝑒 = 𝑉𝐶𝐴,0 (S15)

Rearranging Eq. (S15), we can write

𝐶𝐴,𝑒

𝑤𝑎𝑞𝑒
=

𝐶𝐴,0

𝑤𝑎𝑞𝑒
― 1

(S16)

Inserting Eq. (S16) in Eq. (S14), we have

𝑁𝑂𝐷,0 =
𝑞∞

𝑞𝑒
+

𝐶𝐴,0

𝑤𝑎𝑞𝑒
+ ( 𝐶𝐴,0

𝑤𝑎𝑞𝑒
― 1).(𝑞∞

𝑞𝑒
― 1) ― 2

(S17)

In terms of Dimensionless numbers, N1 and N2, the Eq. (S17) will take the form of Eq. (40). 

𝑁𝑂𝐷,0 =
∆

𝑤𝑎𝑞𝑒
=

1
𝑁1

+
1

𝑁2
+ ( 1

𝑁1
― 1)( 1

𝑁2
― 1) ― 2

(40)



S5

Appendix D: Validation of IRA and HOA for systems 2c, 3a & 4a
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Figure S1: IRA validation (Eq. (17)):  plot for the System 2c𝑊
𝑑𝑙𝑛𝑞

𝑑𝑡 𝑣𝑠.  [ 𝐾
𝑅𝑄 ― 1]
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Figure S2: IRA validation (Eq. (17)):  plot for the System 3a𝑊
𝑑𝑙𝑛𝑞

𝑑𝑡 𝑣𝑠.  [ 𝐾
𝑅𝑄 ― 1]
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Figure S3: IRA validation (Eq. (17)):  plot for the System 4a𝑊
𝑑𝑙𝑛𝑞

𝑑𝑡 𝑣𝑠.  [ 𝐾
𝑅𝑄 ― 1]
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Figure S4:HOA validation (Eq. (26)): d(1/(qe-q))/dt vs plot for the System 2c [ 1
(𝑞𝑒 ― 𝑞) +

𝑤𝑎

∆] 
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Figure S5: HOA validation (Eq. (26)): d(1/(qe-q))/dt vs plot for the System 3a [ 1
(𝑞𝑒 ― 𝑞) +

𝑤𝑎

∆] 
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Figure S6: HOA validation (Eq. (26)): d(1/(qe-q))/dt vs plot for the System 4a [ 1
(𝑞𝑒 ― 𝑞) +

𝑤𝑎

∆] 
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Appendix E: Validation of PFO and PSO kinetics in EA for the system 2c , 3a and 4c
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Figure S7:dq/dt vs. (qe –q) plot (Eq. (3)) for the System 2c
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Figure S8:–ln(1-q/qe) vs. t plot (Eq. (4))for the System 2c
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Figure S9:dq/dt vs. (qe –q)2 plot (Eq. (5)) for the System 2c
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Figure S10: t/q vs. t plot (Eq. (6)) for the System 2c
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Figure S11: dq/dt vs. (qe –q) plot (Eq. (3)) for the System 3a
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Figure S12: –ln(1-q/qe) vs. t plot (Eq. (4)) for the System 3a
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Figure S13: dq/dt vs. (qe –q)2 plot (Eq. (5)) for the System 3a
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Figure S14: t/q vs. t plot (Eq. (6)) for the System 3a
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Figure S15: dq/dt vs. (qe –q) plot (Eq. (3)) for the System 4a
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Figure S16: –ln(1-q/qe) vs. t plot (Eq. (4)) for the System 4a
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Figure S17: dq/dt vs. (qe –q)2 plot (Eq. (5)) for the System 4a
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Figure S18:t/q vs. t plot (Eq. (6)) for the System 4a
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Table S1: Pseudo-rate constants obtained from linear fit to: i) –ln(1-q/qe) vs. t (Eq. (4)) and 

ii) dq/dt vs. (qe –q) (Eq. (3)) plots for PFO kinetics, and  iii) t/q vs. t (Eq. (6)) and iv) dq/dt vs. 

(qe –q)2 (Eq. (5)) plots for PSO kinetics

For PFO kinetics, fit to: For PSO kinetics, fit to:

Eq. (4)

(in 

source)

Eq. (4)

(this work)

Eq. (3)

(this work)

Eq. (6)

(in source)

Eq. (6)

(this work)

Eq. (5)

 (this work)

Systems



Paramete

r

KE1 105

(R2 =)

KE1 105

(R2 =)

KE1 105

(R2 =)

KE2104

(R2 =)

KE2104

(R2 =)

KE2104

(R2 =)

System 

1a

33.3

(0.97)

46.5

(0.99)

39.3

(0.98)

11600

(1.00)

9980

(0.97)

7700

(0.90)

System 

1b

31.7

(0.99)

44.7

(0.99)

38.5

(0.99)

6690

(1.00)

4730

(0.99)

4090

(0.88)

System 

1c

23.3

(0.99)

37.7

(0.99)

36.6

(0.99)

2730

(1.00)

2515

(0.99)

2980

(0.96)

System 

2a

5.43

(0.99)

7.19

(1.00)

7.22

(0.98)

2.55

(0.99)

2.11

(1.00)

6.62

(0.77)

System 

2b

4.80

(0.99)

5.79

(1.00)

5.55

(0.98)

1.35

(0.97)

1.32

(1.00)

3.44

(0.67)

System 

2c

5.08

(1.00)

5.77

(0.98)

5.63

(0.95)

1.02

(0.99)

0.94

(1.00)

2.16

(0.76)

System 

3a

1.73 1.72

(1.00)

1.77

(0.98)

3.08

-

2.21

(1.00)

7.18

(0.82)
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System 

3b

1.80 1.78

(1.00)

1.74

(0.91)

2.72

-

1.90

(0.99)

5.67

(0.57)

System 

3c

1.86 1.83

(1.00)

1.83

(0.81)

2.37 1.87

(0.99)

4.89

(0.50)

System 

4a

103

(0.95)

 118

 (0.94)

72.9

(0.99)

420

(0.99)

670

(0.98)

273

(0.96)

System 

4b

96.7

(0.99)

105

 (0.98)

97.9

(0.99)

445

(0.99) 

344

 (0.99)

469

(0.97)

System 

4c

88.3

(0.96)

132

(0.98)

141

(0.99) 

498

(0.99) 

372

(0.99)

921

(0.96)

(R2 =): correlation coefficient of curve-fitting


