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Appendix A: Conversion of standard equations for saturation type curves into PFO and

PSO Kkinetic equations
Standard Equation I for saturation type curves:

Linearizing Eq.(7) from the main text, we have

—In (1—2)=at (S1)

de

With a = kg, the Eq. (S1) is identical with the linearized pseudo-first-order (PFO) kinetic

equation (Eq. (4)) in EA.
Differentiating the Eq. (7) with respect to ¢, we have

dq (S2)
- —at
dt qe(ae )

Combining Egs. (7) & (S2), we have

dq S3
2t = 4qe—a) 52

Again, with a = kg, the Eq. (S3) 1s identical with the pseudo-first-order (PFO) kinetic equation

in differential form (Eq. (3) in EA.
Standard Equation 11 for saturation type curves:
Linearizing Eq.(8) we have

1 1 S4
+—t (84)
bq.  q.

t
q
For b = kgyq., the Eq. (S4) is identical with the linearized pseudo-second-order (PSO) kinetic

equation (Eq. (6)) in EA.
Differentiating the Eq. (8) with respect to ¢, we have

S2



dq 1 (S5)

Combining Eq. (8) & (S5), we have

dg b (S6)
T 2
it~ g9~

Again, for b = kpq., the Eq. (S6) is identical with the pseudo-second-order (PSO) kinetic

equation in differential form (Eq. (5)) in EA.
Appendix B: Derivation of kinetic equation (Eq. (22)) in Hybrid Order Approach (HOA)

Rearranging Eq. (15) from the main text, we have

dq S7
WE = kawaq2 - (kaqooWa + kqCppo + kd)q + kaC0q0 (57)

Rewriting the Eq. (S7) for equilibrium:
0= kaWaqg - (kaqooWa + kqCapo + kd)Qe + kaC 4,090 (S8)

Subtracting Eq. (S8) from Eq. (S7) and after simple algebraic manipulation, one obtains,

dq (S9)
WE = kawa(qe - q)z — kaWa-qu(Qe - Q)
+ ka(CIooWa + CA,O + I/K) (Qe - q)
Rearranging Eq. (19), we have
We2q, = (quoWe + Cag + 1/K) —~/A (S10)
Inserting Eq. (S10) in Eq. (S9), we obtain Eq. (22).
dq (22)

E = kHl(Qe - Q) + kHZ(qe - q)Z
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Appendix C: Derivation of the expression for the dimensionless number, Ngp y (Eq. (40))

Rearranging the Eq. (21), one obtains

N/ qoo+CA,o 1 1 (S11)

= -, -2
WaGe qe Wade Kwgqe

Combining Egs. (39) and (S11), we have

N CIoo_l_ Cao N 1 1 5 (S12)
opo = e Wade KWweqe

Rearranging the Eq. (1), we have

1 oo (S13)
X CA,e(_ — 1)

e

Inserting Eq. (S13) in Eq(S12), we have

oo Cao  Cae (9o (S14)
Nopo=—+ + |—=1|-2
' e Wa(e Wga{e\{e

From the material balance at equilibrium:
VCpe+Wq,=VCyp (S15)

Rearranging Eq. (S15), we can write

Cae  Cap (S16)

Wa(e Bl Wa(e
Inserting Eq. (S16) in Eq. (S14), we have

oo Cap Cao Goo (S17)
Nopo=—+ + —1)||l—=1]=2
' e Wqaqe Wa{e qe

In terms of Dimensionless numbers, N; and N,, the Eq. (S17) will take the form of Eq. (40).

_NA 11 (1_1)(1_1)_2 (40)
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Appendix D: Validation of IRA and HOA for systems 2¢, 3a & 4a
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Figure S1: IRA validation (Eq. (17)): W%vs. [@ — 1] plot for the System 2¢
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Figure S2: IRA validation (Eq. (17)): W%vs. [% — 1] plot for the System 3a
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Figure S3: IRA validation (Eq. (17)): W%vs. [@ — 1] plot for the System 4a
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Figure S4:HOA validation (Eq. (26)): d(1/(q.-q))/dt vs [m + %] plot for the System 2c
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Figure S5: HOA validation (Eq. (26)): d(1/(q.-q))/dt vs [ﬂ + %] plot for the System 3a
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Figure S6: HOA validation (Eq. (26)): d(1/(q.-q))/dt vs [(qe 2
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Appendix E: Validation of PFO and PSO Kinetics in EA for the system 2c , 3a and 4¢
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Figure S7:dq/dt vs. (q. —q) plot (Eq. (3)) for the System 2¢
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Figure S8:—In(1-q/q.) vs. t plot (Eq. (4))for the System 2¢
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Figure S9:dq/dt vs. (q. —q)? plot (Eq. (5)) for the System 2c
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Figure S10: #/q vs. t plot (Eq. (6)) for the System 2¢
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Figure S11: dg/dt vs. (q. —q) plot (Eq. (3)) for the System 3a
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Figure S12: —In(1-g/q.) vs. t plot (Eq. (4)) for the System 3a
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Figure S13: dq/dt vs. (q. —q)? plot (Eq. (5)) for the System 3a
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Figure S14: t/q vs. t plot (Eq. (6)) for the System 3a
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Figure S15: dg/dt vs. (q. —q) plot (Eq. (3)) for the System 4a
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Figure S16: —In(1-q/q.) vs. t plot (Eq. (4)) for the System 4a
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Figure S17: dq/dt vs. (q. —q)? plot (Eq. (5)) for the System 4a
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Figure S18:t/q vs. t plot (Eq. (6)) for the System 4a
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Table S1: Pseudo-rate constants obtained from linear fit to: 1) —In(/-g/gq.) vs. ¢ (Eq. (4)) and

11) dg/dt vs. (g. —q) (Eq. (3)) plots for PFO kinetics, and iii) t/g vs. t (Eq. (6)) and iv) dq/dt vs.

(q.—q)* (Eq. (5)) plots for PSO kinetics

JSystems For PFO kinetics, fit to: For PSO kinetics, fit to:
\ Eq. (4) Eq. (4) Eq. (3) Eq. (6) Eq. (6) Eq. (5)
(in (this work) (this work) (in source) (this work) | (this work)
source)
Paramete | Kg; x10° Kg; x10° Kg; x10° Kpx10% Kpox10% Kgox10%
r—> (R*=) (R*=) (R*=) (R*=) (R*=) (R*=)
System 333 46.5 39.3 11600 9980 7700
la (0.97) (0.99) (0.98) (1.00) (0.97) (0.90)
System 31.7 44.7 38.5 6690 4730 4090
1b (0.99) (0.99) (0.99) (1.00) (0.99) (0.88)
System 233 37.7 36.6 2730 2515 2980
lc (0.99) (0.99) (0.99) (1.00) (0.99) (0.96)
System 5.43 7.19 7.22 2.55 2.11 6.62
2a (0.99) (1.00) (0.98) (0.99) (1.00) (0.77)
System 4.80 5.79 5.55 1.35 1.32 3.44
2b (0.99) (1.00) (0.98) (0.97) (1.00) (0.67)
System 5.08 5.77 5.63 1.02 0.94 2.16
2c (1.00) (0.98) (0.95) (0.99) (1.00) (0.76)
System 1.73 1.72 1.77 3.08 221 7.18
3a (1.00) (0.98) - (1.00) (0.82)
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System | 1.80 1.78 1.74 272 1.90 5.67
3b (1.00) (0.91) - (0.99) (0.57)
System | 1.86 1.83 1.83 2.37 1.87 4.89
3¢ (1.00) (0.81) (0.99) (0.50)
System | 103 118 72.9 420 670 273
4a (0.95) (0.94) (0.99) (0.99) (0.98) (0.96)
System | 96.7 105 97.9 445 344 469
4b (0.99) (0.98) (0.99) (0.99) (0.99) (0.97)
System | 883 132 141 498 372 921
4c (0.96) (0.98) (0.99) (0.99) (0.99) (0.96)

(R?2=): correlation coefficient of curve-fitting
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