Supporting Information (SI)

Langmuir adsorption kinetics in liquid media: interface reaction model

Md Akhtarul Islam*, Myisha Ahmed Chowdhury, Md. Salatul Islam Mozumder, Md. Tamez

Uddin*

Center for Environmental Process Engineering, Department of Chemical Engineering and

Polymer Science, Shahjalal University of Science and Technology (SUST), Sylhet-3114,

Bangladesh.

*E-mail: <u>islamsust@yahoo.com; mislam@sust.edu</u>, <u>mtuddin-cep@sust.edu</u>

Appendix A: Conversion of standard equations for saturation type curves into PFO and PSO kinetic equations

Standard Equation I for saturation type curves:

Linearizing Eq.(7) from the main text, we have

$$-\ln\left(1-\frac{q}{q_e}\right) = at\tag{S1}$$

With $a = k_{E1}$, the Eq. (S1) is identical with the linearized pseudo-first-order (PFO) kinetic equation (Eq. (4)) in EA.

Differentiating the Eq. (7) with respect to t, we have

$$\frac{dq}{dt} = q_e(ae^{-at}) \tag{S2}$$

Combining Eqs. (7) & (S2), we have

$$\frac{dq}{dt} = a(q_e - q) \tag{S3}$$

Again, with $a = k_{E1}$, the Eq. (S3) is identical with the pseudo-first-order (PFO) kinetic equation in differential form (Eq. (3) in EA.

Standard Equation II for saturation type curves:

Linearizing Eq.(8) we have

$$\frac{t}{q} = \frac{1}{bq_e} + \frac{1}{q_e}t \tag{S4}$$

For $b = k_{E2}q_e$, the Eq. (S4) is identical with the linearized pseudo-second-order (PSO) kinetic equation (Eq. (6)) in EA.

Differentiating the Eq. (8) with respect to t, we have

$$\frac{dq}{dt} = q \frac{b}{e} \frac{1}{(1+bt)^2}$$
(S5)

Combining Eq. (8) & (S5), we have

$$\frac{dq}{dt} = \frac{b}{q_e}(q_e - q)^2 \tag{S6}$$

Again, for $b = k_{E2}q_e$, the Eq. (S6) is identical with the pseudo-second-order (PSO) kinetic equation in differential form (Eq. (5)) in EA.

Appendix B: Derivation of kinetic equation (Eq. (22)) in Hybrid Order Approach (HOA)

Rearranging Eq. (15) from the main text, we have

$$W\frac{dq}{dt} = k_a w_a q^2 - (k_a q_\infty w_a + k_a C_{A,0} + k_d)q + k_a C_{A,0} q_\infty$$
(S7)

Rewriting the Eq. (S7) for equilibrium:

$$0 = k_a w_a q_e^2 - (k_a q_\infty w_a + k_a C_{A,0} + k_d) q_e + k_a C_{A,0} q_\infty$$
(S8)

Subtracting Eq. (S8) from Eq. (S7) and after simple algebraic manipulation, one obtains,

$$W \frac{dq}{dt} = k_a w_a (q_e - q)^2 - k_a w_a \cdot 2q_e (q_e - q)$$

$$+ k_a (q_\infty w_a + C_{A,0} + 1/K) (q_e - q)$$
(S9)

Rearranging Eq. (19), we have

$$w_a \cdot 2q_e = (q_{\infty}w_a + C_{A,0} + 1/K) - \sqrt{\Delta}$$
(S10)

Inserting Eq. (S10) in Eq. (S9), we obtain Eq. (22).

$$\frac{dq}{dt} = k_{H1}(q_e - q) + k_{H2}(q_e - q)^2$$
(22)

Appendix C: Derivation of the expression for the dimensionless number, $N_{OD,\theta}$ (Eq. (40))

Rearranging the Eq. (21), one obtains

$$\frac{\sqrt{\Delta}}{w_a q_e} = \frac{q_\infty}{q_e} + \frac{C_{A,0}}{w_a q_e} + \frac{1}{K} \cdot \frac{1}{w_a q_e} - 2$$
(S11)

Combining Eqs. (39) and (S11), we have

$$N_{OD,0} = \frac{q_{\infty}}{q_e} + \frac{C_{A,0}}{w_a q_e} + \frac{1}{K} \cdot \frac{1}{w_a q_e} - 2$$
(S12)

Rearranging the Eq. (1), we have

$$\frac{1}{K} = C_{A,e} \left(\frac{q_{\infty}}{q_e} - 1 \right) \tag{S13}$$

Inserting Eq. (S13) in Eq(S12), we have

$$N_{OD,0} = \frac{q_{\infty}}{q_e} + \frac{C_{A,0}}{w_a q_e} + \frac{C_{A,e}}{w_a q_e} \cdot \left(\frac{q_{\infty}}{q_e} - 1\right) - 2$$
(S14)

From the material balance at equilibrium:

$$VC_{A,e} + Wq_e = VC_{A,0} \tag{S15}$$

Rearranging Eq. (S15), we can write

$$\frac{C_{A,e}}{w_a q_e} = \frac{C_{A,0}}{w_a q_e} - 1 \tag{S16}$$

Inserting Eq. (S16) in Eq. (S14), we have

$$N_{OD,0} = \frac{q_{\infty}}{q_e} + \frac{C_{A,0}}{w_a q_e} + \left(\frac{C_{A,0}}{w_a q_e} - 1\right) \cdot \left(\frac{q_{\infty}}{q_e} - 1\right) - 2$$
(S17)

In terms of Dimensionless numbers, N_1 and N_2 , the Eq. (S17) will take the form of Eq. (40).

$$N_{OD,0} = \frac{\sqrt{\Delta}}{w_a q_e} = \frac{1}{N_1} + \frac{1}{N_2} + \left(\frac{1}{N_1} - 1\right)\left(\frac{1}{N_2} - 1\right) - 2$$
(40)

Appendix D: Validation of IRA and HOA for systems 2c, 3a & 4a

Figure S1: IRA validation (Eq. (17)): $W \frac{dlnq}{dt} vs. \left[\frac{K}{RQ} - 1\right]$ plot for the System 2c

Figure S2: IRA validation (Eq. (17)): $W \frac{dlnq}{dt} vs. \left[\frac{K}{RQ} - 1\right]$ plot for the System 3a

Figure S3: IRA validation (Eq. (17)): $W \frac{dlnq}{dt} vs. \left[\frac{K}{RQ} - 1\right]$ plot for the System 4a

Figure S4:HOA validation (Eq. (26)): $d(1/(q_e-q))/dt$ vs $\left[\frac{1}{(q_e-q)} + \frac{w_a}{\sqrt{\Delta}}\right]$ plot for the System 2c

Figure S5: HOA validation (Eq. (26)): $d(1/(q_e-q))/dt$ vs $\left[\frac{1}{(q_e-q)} + \frac{w_a}{\sqrt{\Delta}}\right]$ plot for the System 3a

Figure S6: HOA validation (Eq. (26)): $d(1/(q_e-q))/dt$ vs $\left[\frac{1}{(q_e-q)} + \frac{w_a}{\sqrt{\Delta}}\right]$ plot for the System 4a

Appendix E: Validation of PFO and PSO kinetics in EA for the system 2c , 3a and 4c

Figure S7:dq/dt vs. $(q_e - q)$ plot (Eq. (3)) for the System 2c

Figure S8:- $\ln(1-q/q_e)$ vs. t plot (Eq. (4)) for the System 2c

Figure S9:dq/dt vs. $(q_e - q)^2$ plot (Eq. (5)) for the System 2c

Figure S10: t/q vs. t plot (Eq. (6)) for the System 2c

Figure S11: dq/dt vs. $(q_e - q)$ plot (Eq. (3)) for the System 3a

Figure S12: $-\ln(1-q/q_e)$ vs. t plot (Eq. (4)) for the System 3a

Figure S13: dq/dt vs. $(q_e - q)^2$ plot (Eq. (5)) for the System 3a

Figure S14: t/q vs. t plot (Eq. (6)) for the System 3a

Figure S15: dq/dt vs. $(q_e - q)$ plot (Eq. (3)) for the System 4a

Figure S16: $-\ln(1-q/q_e)$ vs. *t* plot (Eq. (4)) for the System 4a

Figure S17: dq/dt vs. $(q_e - q)^2$ plot (Eq. (5)) for the System 4a

Figure S18:t/q vs. t plot (Eq. (6)) for the System 4a

Table S1: Pseudo-rate constants obtained from linear fit to: i) $-\ln(1-q/q_e)$ vs. t (Eq. (4)) and ii) dq/dt vs. $(q_e - q)$ (Eq. (3)) plots for PFO kinetics, and iii) t/q vs. t (Eq. (6)) and iv) dq/dt vs. $(q_e - q)^2$ (Eq. (5)) plots for PSO kinetics

↓Systems	For PFO kinetics, fit to:			For PSO kinetics, fit to:		
\downarrow	Eq. (4)	Eq. (4)	Eq. (3)	Eq. (6)	Eq. (6)	Eq. (5)
	(in	(this work)	(this work)	(in source)	(this work)	(this work)
	source)					
Paramete	$K_{E1} \times 10^{5}$	$K_{EI} \times 10^5$	$K_{El} \times 10^5$	$K_{E2} \times 10^4$	$K_{E2} \times 10^4$	$K_{E2} \times 10^{4}$
r→	(R ² =)	(R ² =)	(R ² =)	(R ² =)	(R ² =)	(R ² =)
System	33.3	46.5	39.3	11600	9980	7700
1a	(0.97)	(0.99)	(0.98)	(1.00)	(0.97)	(0.90)
System	31.7	44.7	38.5	6690	4730	4090
1b	(0.99)	(0.99)	(0.99)	(1.00)	(0.99)	(0.88)
System	23.3	37.7	36.6	2730	2515	2980
1c	(0.99)	(0.99)	(0.99)	(1.00)	(0.99)	(0.96)
System	5.43	7.19	7.22	2.55	2.11	6.62
2a	(0.99)	(1.00)	(0.98)	(0.99)	(1.00)	(0.77)
System	4.80	5.79	5.55	1.35	1.32	3.44
2b	(0.99)	(1.00)	(0.98)	(0.97)	(1.00)	(0.67)
System	5.08	5.77	5.63	1.02	0.94	2.16
2c	(1.00)	(0.98)	(0.95)	(0.99)	(1.00)	(0.76)
System	1.73	1.72	1.77	3.08	2.21	7.18
3a		(1.00)	(0.98)	-	(1.00)	(0.82)

System	1.80	1.78	1.74	2.72	1.90	5.67
3b		(1.00)	(0.91)	-	(0.99)	(0.57)
System	1.86	1.83	1.83	2.37	1.87	4.89
3c		(1.00)	(0.81)		(0.99)	(0.50)
System	103	118	72.9	420	670	273
4a	(0.95)	(0.94)	(0.99)	(0.99)	(0.98)	(0.96)
System	96.7	105	97.9	445	344	469
4b	(0.99)	(0.98)	(0.99)	(0.99)	(0.99)	(0.97)
System	88.3	132	141	498	372	921
4c	(0.96)	(0.98)	(0.99)	(0.99)	(0.99)	(0.96)

 $(R^2=)$: correlation coefficient of curve-fitting