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Description of individual-based modeling (IBM) software  

When selecting and designing our computational modeling framework, we have explicitly taken into 

consideration the following aspects: (A) It should be possible to directly test a wide variety of 

interventions, such as partial workplace and school closings, social distancing, and testing with 

subsequent isolation of infected individuals. (B) Each infected person should have a disease-state 

development where the stages have realistic time delays. If a lag in response time is not included, 

we anticipate that all estimated response times to interventions will be markedly wrong. This is 

especially evident for the correct estimation of R, and thus, the capacity to determine how quickly R 

responds to interventions. The mentioned challenges are inherent to most metapopulation-based 

models, whereas an IBM approach is not hampered with such issues. 

 

Guided by the above reasoning, we have developed a complex system modelling framework to 

describe the spread pattern of COVID-19 in mainland Norway. The model design and build features 

are chosen with the intent that it can be used to carefully assess a multitude of relevant intervention 

strategies. Briefly, the model is based on using an IBM based on complex network theory for each 

Norwegian municipality. The features of the model’s layers and each individual all adhere to high-

resolution demographic data specific for the respective municipality. The disease-state of each 

individual follows an epidemiological SEIR-type model. 

 

Our total model for all combined municipalities contains approximately 5.3 million people and 

simulates dynamics of spread through social interactions in layers such as households, schools and 

workplaces.  
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Stochastic IBM network with SEIR epidemiological transmission dynamics 

Structure of the municipality IBM network 

We generate a high-fidelity IBM for a single municipality by creating a set of households 

corresponding to the population Nm of that municipality. Each household consists of one or several 

nodes (people), to each of which we assign a list of attributes:  

1. Age 

2. Domicile 

3. Layer memberships / group membership within layers (see Supp. Figure 1) 

4. Disease state (see Supp. Figure 2), and date of last change in disease state 

5. Disease test state  

The model has 9 layers. Layer a)-h) each consist of many groups, and each individual is only member 

of one of these groups. Further, an individual can only be present in a single of the layers b)-h). The 

layers are: a) Household, b) Day-care, c) Primary school, d) Secondary school, e) High school, f) 

Workplace, g) Nursing home, h) Hospital, and i) Generic contact network. A group is designed as a k-

clique, i.e. where all members of a group are in contact.  The assignments that form the IBM contact 

Supplementary Figure  1. Structure of network IBM. (Left) Possible domicile indicated by person figure. Named 
circles show available layers that a person can be member of. (Right) Illustrative example of resulting connection 
network between individuals caused by shared group membership in different layers: household (blue), primary 
school (red), day care (orange), work (green) and generic (pink). 
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network are constrained such that known high-resolution demographic data for each municipality is 

matched:  

1) The household layer consists of separate households with a size and age distributions that 

follow demographic data for that municipality.  

2) The number of schools, type, and their student populations are based on demographic data.  

3) The number of day care facilities is based on demographic data.  

4) The number of nursing homes and their population sizes are based on demographic data.  

5) If a household has multiple children in e.g. day-care age, these children are assigned the 

same day-care. Similar for primary and secondary schools. For high-school age, the 

assignment to school unit is random. 

6) In the work layer, the number of companies and their sizes are based on demographic data. 

Note that this layer is intended to represent spread between co-workers. For professions 

with large amounts of exposure to the general public, contacts with customers are 

represented through the generic contact network. 

7) The generic contact layer is designed to capture heterogeneity in a person’s daily contact 

patterns. While the other layers consist of fixed cliques, in the random layer, each node 

connects to a random selection of other nodes for each simulated day. For each connection 

between an infected and a susceptible node, there is a fixed probability of the susceptible 

node becoming infected. The daily number of connections for each node is redrawn each 

day, according to a uniform distribution ranging from 1 to a maximum number of daily 

contacts CD, which is a node attribute assigned at the initiation of the simulation.  

8) We include two different modes: (A) For young (< 20) and elderly (80+) we assign a 

maximum number of daily contacts CD following a normal distribution, whereas the 

remaining age groups are assigned contacts following a combination of a normal and a 

power law distribution: Contact number is drawn from (i) normal distribution, (ii) power law 

before being added together. The latter generates larger contact heterogeneity. 
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9) Using data from Statistics Norway1, adults with different work and household municipalities 

are assigned work locations in the correct municipality. Supp. Table 2 lists the data tables 

used. 

10) When a person is committed to a hospital, they are removed from their domicile (household 

or nursing home). 

11) When an infected person manifests a symptom, is confirmed COVID-19 positive, or an 

asymptomatic person is confirmed COVID-19 positive, the model assumes they will self-

quarantine from activities in all layers except their domicile. 

All individuals participate in the generic contact network, which is designed as a random time-

dependent scale-free network to capture heterogeneity in contact patterns. A new instance of this 

network (per municipality) is generated new every day. Except for the generic contact network, each 

grouping in each layer is represented as a k-clique, where every individual is connected to all others 

in the group, thus representing a well-mixed group. Supp. Figure 1 shows a schematic of the IBM 

layers inside which there are smaller groups (left panel) and a simplified example of a possible 

resulting contact network (right panel).  The probability of infection depends on which layer the 

infected contact is located. The specific values used for the parameters in each layer are detailed in 

Supp. Table 1. Note that the infection probabilities apply between all nodes in a given layer, and as 

such represent a combined probability of contact and infection. While we may assume that some 

layers would see an actual close contact between all members of a given clique for each day (for 

instance, households), other layers, such as schools and workplaces, are not likely to actually see this 

form of all-to-all contact on any given day. This is reflected in a substantially lower combined contact 

and infection probability for these layers. 

 

 
1 Statistisk Sentralbyrå (SSB). https://www.ssb.no/statbank/ 

https://www.ssb.no/statbank/
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Population size scaling 
We developed a schema for scaling up the population size of a municipality that preserves its 

demographic distributions. The scale parameter  determines the new size of a municipality:  =1 for 

the unscaled population,   = 0.5 results in a municipality with half of the population, and  =2 gives a 

municipality with twice the original population. As the statistical data, age data and household-, 

nursing home- and workplace-compositions obtained from Statistics Norway take the form of 

percentages, the distributions are independent of the size of the network and can be used as 

provided, simply by multiplying by  the number of desired individuals/households/workplaces 

(provided by Statistics Norway and passed directly as inputs to the generating code when  = ).  On 

the other hand, schools and daycares are explicitly and individually defined, and their numbers are 

too few to be mapped to fine-grained size distribution. Therefore, in order to scale these systems to 

match the scaling of the whole municipality, we instead opt for an approach where we randomly 

select and duplicate (or erase, for   ) schools and daycares in the original municipality data until 

we reach the number specified by the scale factor.  

 

Variation of household-size distribution 
In order to evaluate the impact of the household size distribution on spreading potential, we needed 

to establish a systematic way to modify the distribution, preferably defined by a single scalable 

parameter α. We decided on either splitting or merging existing a fraction of households in the 

original distribution, yielding smaller or larger households respectively. In the first case, we identify 

households eligible for splitting, using the criteria that it must contain at least two adults. This is 

necessary in order to ensure that we do not create households containing only children.  We then 

define α as the fraction of eligible households to split. The split itself is conducted by assigning the 

two first adults in the selected household to their own household, with each of the remaining 

individuals assigned to either household by coin flip (Bernoulli, 0.5).   
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We represent the merging of households by using negative values of α: As merging households with 

at least one adult each will naturally lead to a new household with at least one adult, all households 

are eligible for merging. We therefore randomly assign the households into pairs, with a chance |α| 

that determines the fractions of pairs which are combined to form a single household consisting of 

the members of the two original households, reducing the total number of households in the system 

by one for each merged pair. The households in the remaining pairs stay unchanged. 

As an example, consider a fictitious small municipality containing 2000 individuals, labeled i1, i2, i3, 

… ,   distributed across 1000 households H1, H2, H3, … such that H1 contains individuals i1, i2 (using 

the notation H1 = [i1, i2], H2 = [i3] (a lone individual), H3 = [i4, i5, i6, i7] , and H4 = [i8, i9]. We then 

pair household H1 with household H2 and household H3 with household H4 and label this list X, so 

that X1 = [H1, H2] = [i1, i2, i3], X2 = [H3, H4] = [i4, i5, i6, i7, i8, i9], …. Our next step is to initiate an 

empty list of new households, which we label N.  We take X1, and with probability |α| add N1 = [i1, 

i2, i3], otherwise we add N1 = H1 = [i1, i2] and N2 = H2 = [i3]. We repeat this process for X2, adding 

H3 and H4 to N either separately (with probability 1-|α|) or as one combined household [i4, i5, i6, 

i7, i8, i9] (probability |α|), and similarly for each pair in X. If the number of households is odd, one 

household is copied directly into N without possibility of pairing. The remaining households are 

assigned to pairs as described.   

 

Note that N will have a lower total number of households than H, but the same total number of 

individuals. For instance, setting α = 0.1 in a network starting with 1000 households, the average 

result is N consisting of 950 households (900 households in 450 pairs remain unchanged, with the 

remaining 100 households merged pairwise into 50 new ones). For α = 0.5 in a network starting with 

1000 households, we would get (on average) 750 households, with 500 households unchanged and 

the other 500 being combined pairwise in order to form 250 households.  
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SEIR-type epidemiological dynamics 

Each individual in the IBM model is either healthy, in various states of infection, or recovered from 

the disease: Susceptible (S); Exposed (E); Infected, asymptomatic (Ia); Infected pre-symptomatic (Ip); 

Infected, symptomatic (Is); Hospitalized (H); Intensive care (ICU); Recovered (R); or Dead (D).  The 

different states and their possible transitions are captured by the state-transition schematic of Supp. 

Figure 2.  

 

Pre-symptomatic and asymptomatic individuals are infectious and active in all layers they are 

associated with (for most, this will be the generic contact layer, a household, and either a workplace 

or educational/daycare institution). Symptomatic individuals are assumed to be infectious in the 

household and nursing home layers only. Hospital and ICU protective measures are assumed to be 

sufficient to prevent spread from patients to staff.  

 

Supplementary Figure 2. Block diagram showing schematic of the SEIR-type epidemiological state model for each 
individual in the IBM. Solid lines show transitions currently active in the model. The dotted line indicates current 
uncertainty about long-term COVID-19 immunity. Starred parameters indicate age dependent values. 
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The direct transition from Is to D captures the disease trajectory for some people in nursing homes. 

The transition from S to E is governed by disease transmission probabilities in the IBM contact 

network. After an individual is infected from a neighbor in the contact network, the SEIR-type 

dynamics of that individual’s disease state (onward from E) are governed by stochastic processes 

with appropriate waiting times according to empirical data for COVID-19. We continually update our 

parameter estimations given the daily update in disease state numbers for Norway by region. 

 

At each time point, an individual will store four points of information about their progression 

through the SEIR states: current state, date of last change of state, next state, and date of next 

change of state. Each day, the model updates the state as needed. Upon entering a new state, the 

model selects the following state according to the probabilities and waiting times specified in Supp. 

Figure 2 and Supp. Table 1. Once the next state is determined, we generate the duration of the state 

according to a Poisson-distributed random variable (with an appropriate λ) plus 1 (in order to avoid 

two state changes in one day) and set the date of next change of state accordingly. 

 

Note that our SEIR-model uses age-stratified transition rates, where the age of an individual decides 

which of the age groups that individual is part of Supp. Table 1 shows the rates used for the different 

SEIR transitions of Supp. Figure 2. 

 

COVID-19 testing of (sub-) population 
The testing itself is represented by drawing individuals from the symptom-free population 

(susceptible, latent, asymptomatic, pre-symptomatic, or recovered), and returning a positive test if 

they are asymptomatic or pre-symptomatic. Pooled tests are represented similarly, but with 

multiple people (forming a pool) simultaneously tested, and all tests marked as positive if any of the 

people in the test pool are in the asymptomatic or pre-symptomatic states. Our IBM implementation 
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allows for random selection of individuals for testing, or testing based on a pre-conceived schema 

for node attributes. 

 

Base-line fitting of IBM to empirical data 
The parameters in the stochastic IBM are treated as fixed, and they are either set from literature or 

estimated directly from publicly available empirical data, as indicated in Supp. Table 1. We 

determined model parameters by fitting the predicted hospitalization rate of our Oslo model to 

hospitalizations for Oslo in the period from March 1st to April 20th. We assume a sudden transition 

between two regimes, with infections following original “unrestricted” probabilities until March 13th. 

The “unrestricted” regime is initialized with 20 cases at an unspecified date and run until the system 

reaches Nlock= 400 active cases. This point is marked as March 13th and serves as a reference point 

for the remainder of the simulation. The motivation for fixing dates at this point (rather than the 

initial point of 20 cases) is two-fold: First, it is important that the model follows a progression of non-

pharmaceutical interventions (NPIs) that actually corresponds to those implemented by Norwegian 

authorities. Therefore, we decided to use the earliest NPIs introduced (March 13th) as an anchoring 

point, with the dates of subsequent NPIs defined in relation to the first. Second, due to the 

heterogeneity in the infectious potential of individuals (with a small fraction of individuals being 

substantially more infectious than others due to their particular contact network), the model 

exhibits highly stochastic behavior when the number of infections is low, as the number of high-

infectivity individuals infected is more variable. As small fluctuations in the early evolution of the 

epidemic can have dramatic effects on long-term forecasts, anchoring the network around a 

reasonably large number of cases allows the model to make more consistent predictions. This 

approach also solves the issue of highly stochastic behavior at low infection levels, as 400 active 

cases is sufficient to reduce this notably.  
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After these steps, all schools and day care facilities close, as do 50% of workplaces. Random contacts 

are reduced by 83%. Infection probabilities in nursing homes and within-households remain the 

same in both regimes.  Model simulations start in March and continue until August 30th, 2020. 

 

Model fitting to the data was then done by adjusting infection probabilities in order to satisfy the 

following criteria: (1) matching slopes (both increasing and decreasing) and (2) the location (date) 

and duration of the peak of the hospitalization data (Fig 2A, red curve), (3) actual hospitalizations 

fitting between confidence intervals for the duration of the simulation. Additionally, we checked 

that (4) the fraction of computed household infections was within the 35-45% band seen in the 

officially reported weekly values, as well as approximate accordance with the relative share of 

infections caused by each of the other layers as identified by Norwegian contract tracing efforts and 

compiled by the Norwegian Institute of Public Health (FHI): 3% in school settings (4-5% in model) 

18% in workplace/university settings (4-10% in the model), 40% others (45-50% in the model). Note 

that the model definition of workplace contact involves repeated interaction between individuals 

working in the same location, and is therefore more restrictive than the FHI definition which 

includes customer-to-worker infections (which are counted as random layer infections in the model). 

Fitting was done by adjusting infection probabilities alone until a satisfactory fit (by visual judgment) 

was reached. While the epidemic curve is also affected by state durations, these were kept fixed 

based on reliable direct clinical data which was readily available (as substantial deviations from 

these would in any case be hard to justify). 

 

Since the lockdown in Norway occurred in the early stages of the epidemic, the fitting of the IBM 

results to data depends very much on the number of symptomatic infected on the day of lock down 

(March 13, 2020). Thus, for a given parameter set and municipality, we have used a large number of 

simulations to determine the optimal number of infected (Nlock) on this day for the model 

predictions to fit to time series data of number of hospitalized persons. Simulations are 



Voigt et. al. “Containing pandemics through targeted testing of households”  (2021)
  
   

   
 

12 

subsequently conducted by initiating the network with a small number of infections and running the 

code until Nlock is reached. As described above, the date is set to be March 13 at this point. We 

anticipate that several of the IBM parameters can be estimated from other data sources when they 

become available, e.g. large-scale systematic testing regimes for COVID-19.  

 

Description of the TPHT process 
 

Selection of households 
The central aspect of TPHT is the prioritizing households for testing according to size. As an example, 

consider a municipality with the following distribution of households: 

• 6 persons and over: 3,000 households 

• 5 persons: 7,000 households 

• 4 persons: 30,000 households 

• 3 persons: 20,000 households 

• 2 persons: 50,000 households 

• 1 person: 90,000 households.  

• Total: 200,000 households, population of above 420,000 (depending on the exact 

distribution of households of size 5 and more) 

In this case, a TPHT test fraction of 2.5% corresponds to 5,000 households, meaning we select all 

households 6 and over (3,000), and a random choice of 2,000 of the 5-person households. A  TPHT 

test fraction of 5% would yield 10,000 households, meaning all households 5 and above. A TPHT test 

fraction of 10% gives 20,000 households, meaning all 10,000 households five and above, as well as 

10,000 randomly chosen 4-person households. For a given fraction and test intervals, the selected 

households are distributed evenly across the interval. For instance, using a test fraction of 3.5% on 

the municipality above with a test interval of 7 days, we would have to test 7,000 households a 
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week; with 1,000 periodically tested every Monday, another 1,000 tested every Tuesday, and so on 

for the duration of the TPHT test regime.  

 

Pooled household testing and quarantine 
Pooled testing is a method by which samples from multiple individuals (a pool) are combined and 

jointly analyzed, returning a positive if any of the individuals constituting the pool are infected, 

without giving further information as to which of the individuals in the pool are infected (Sunjaya & 

Sunjaya, 2020).  

 

Due to the household constituting a high-risk environment for transmission that is not mitigated by 

many of the interventions introduced to curb epidemic spread, such as work from home, school 

shutdowns, closing of public venues and so on (weekly reports from the Norwegian Institute of 

public health show a relatively constant 40-45% of infections happening in a household setting 

throughout the pandemic), TPHT proposes treating each household as a common unit with regards 

to testing of isolation. In short, if one household member is confirmed to be sick, all household 

members should be treated as if they were, preventing the infection from being passed on through 

society at large through undiagnosed family members.  

Estimation of R for a choice of simulation parameters 
 

Due to the individual-based nature of our model, each infection can be traced to the 

individual causing it. This also makes it possible to keep count of the number of secondary 

infections caused by each infected individual, which should make computing R fairly 

straightforward. However, there are some caveats. We want to determine R for a given 

point in time, but a closer consideration of the definition of the reproduction number 

reminds us that it is the number of secondary cases generated by an original case, and as 

https://www.fhi.no/publ/2020/koronavirus-ukerapporter/
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such the strict definition of R applies to an infected population rather than a point in time. 

We can, however, define a daily reproduction number by taking the average number of 

secondary cases caused by each individual infected on a given day. This number cannot be 

computed in real time, as any individual that does not recover on the specified day may very 

well cause additional infections before it recovers. Therefore, we opt to determine R 

through a “two-pass” process. We begin by simulating the epidemic over a given time 

interval in a first pass, assigning to each infected individual (except those which have not 

completed the course of the disease by the end of the simulation interval) an individual 

reproductive number as well as noting their infection and recovery dates. In the second 

pass, then re-iterate through every day, determining an average daily reproductive number 

by taking the arithmetic mean of the individual reproductive numbers for everyone not in 

the S or R states on that day.  

 

 

 

Supplementary Figure 3: Daily estimated R for a test regime consisting of 10 
days with early March parameters, with an abrupt transition to late May 
parameters at t=10 days and on. 
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We make three key observations: first, there is some stochasticity in the determined value of R 

between consecutive days; second, the transition from one regime to the next exhibits an 

intermediary phase of a few days until R begins to stabilize around a new average. We propose two 

primary explanations for this. Firstly, as we compute R by taking the average number of infections 

caused by all individuals at a chosen time, individuals that were already infected before measures 

were introduced will have been more infectious during that period, driving up the average. Second, 

different layers are unevenly affected by measures. Consider a transition from free spread to a 

regime where only workplace spread is possible, but school, random, nursing home and even 

household spread is entirely prevented. As restrictions enter into force, a few workplaces will have 

active cases. These will cause further infections for some time, either gradually petering off or 

saturating each environment, in which case R would abruptly drop to zero. 

Lastly, we see a more abrupt drop-off in the estimated reproductive number as we reach the last 

few days of the simulation period. This is because many of the last nodes to be infected do not have 

time to recover, and with the requirement that a node must recover in order to have its 

reproductive numbe included in the average, there is a bias towards individuals with shorter 

illnesses, which pulls down the average R. 

 

Meanwhile, estimating R over longer periods of time leads to substantial discrepancies: if R > 1, 

there is a build-up of immunity, leading to a gradual reduction in R; if R < 1, infection levels will 

gradually drop off, leading to situations with very few infected and correspondingly high noise in the 

relative number of new daily infections. Because of this, for purposes of determining R, our process 

is as follows: 

• First, initialize the model with 20 infected individuals 

• Unfettered growth until 100 symptomatic cases are reached (this is enough to remove most 

of the noise, while not enough to build up substantial immunity in the population). The 
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purpose of this approach (rather than just beginning with a 100 infected individuals on the 

first day) is described in the next section.  

• Once 100 (simultaneous) symptomatic cases are reached, transition into the regime for 

which we wish to determine R, and run this for 40 days. Due to the high infectivity up to this 

point, there is also a substantial number of pre-symptomatic cases already infected at this 

point.  

• Take the daily average R from 17 to 22 days after the transition mentioned above 

(equivalent to the 27- day interval in Supp. Figure 3 above). All figures are based on 40 

replicate runs for each configuration.  

 

Simulation of outbreaks 

When conducting the simulation of an outbreak consisting of Nout=1,000 symptomatic infected, the 

simple approach is to randomly select Nout nodes in the network and abruptly change their state 

from susceptible to exposed. However, this will cause artificial oscillations in the data since all of the 

exposed individuals start out in synchrony because they were infected at the same time. It takes 

several infection generations for these oscillations to subside.  Instead, we dynamically generate Nout 

by starting from a small seed of 20 randomly (simultaneously) selected and exposed individuals. 

Subsequently, the IBM is simulated until we reach Nout symptomatic individuals. This approach for 

achieving Nout does not cause infections to be focused on larger households, instead spreading them 

randomly and asynchronously in the network due to the large fraction of infections taking place in 

the random contact layer. The state with Nout symptomatic individuals is used as the starting point 

(day 0) of the outbreak simulation, from which interventions may be implemented.  We go through 

this initiation process independently for each separate simulation, thus ensuring stochastic variation 

in the day 0 state. 
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Software availability 
The IBM software used for performing the simulations is available on two general access platforms: 

1. Active development on GitHub: https://github.com/andrevo/covid19-ntnu 

2. Code snapshot used to generate the results of this publication are available at Figshare 

following DOI: 10.6084/m9.figshare.14551020 

  

https://github.com/andrevo/covid19-ntnu
http://dx.doi.org/10.6084/m9.figshare.14551020
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Supplementary Figure 4. Effect of TPHT for alternative COVID-19 
disease parameters 
 

 

Caption: Simulation results and effectiveness of targeted pooled household testing (TPHT) on 

COVID-19 using alternative COVID-19 disease parameters (see Supp. Table 1 for values in red).  (A) 

Fitting the model to Oslo hospitalization data. We plot the mean predicted number of 

hospitalizations (black) and confidence interval (2σ, dashed). Actual Oslo hospitalizations (red) were 

used as calibration (until May 15th). Hospitalization data May 15th- August 30th (green) were not 

used to determine model parameters. (B) Effect of TPHT in response to a sudden rise in cases 

(reaching 1,000 symptomatic individuals), assuming general infectivity parameters similar to those 

of Oslo in late May 2020 but with 75% increased infectivity of random contacts giving R=1.2. (C) 

Predicted number of deaths and infections for different TPHT testing fractions corresponding to 

panel (B), relative to no testing. Panels (D)-(F) use same parameters as panel (B), except with a 113% 

increased infectivity of random contacts giving R=1.4. (D) Effect of test frequency and fraction on R, 
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for TPHT (left) and random pooled household testing (right). Dashed and solid lines indicate isoclines 

for R=1 and constant test density, respectively. Optimal point is marked with red circle. (E) Response 

of weekly TPHT to varying city size. We scale the population of the baseline Oslo model (γ=1) to 

generate larger (γ>1) or smaller networks with household, school, daycare, workplace and nursing 

home size-distributions unchanged. (F) Response of weekly TPHT to changes in distribution of 

household size, relative to the baseline Oslo model (α=0). For α>0, a portion of households are each 

split into a new pair, yielding a smaller average household size than the baseline. For α<0, a portion 

of the households are pairwise merged, yielding a larger average household size than the baseline. 

Household, school, daycare, workplace and nursing home size-distributions are kept unchanged. (G) 

COVID-19 stopping time (number of days until symptomatic cases are reduced by 75%) in response 

to changing days between tests (left) and fraction of weekly TPHT tests (right). Stopping times longer 

than 100 days are truncated.  
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Supplementary Figure 5. Household-size histograms. 
  
 
When varying the household-size composition in the model, we used the approach detailed 
above in this document. Here, we show three of the resulting household-size histograms for 

=-0.3, 0, 0.3. Note that the bars sum up to 700,000 for each of the −values. 
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Supplementary Figure 6. Effect of compliance on the efficacy of TPHT. 
 
 
 

 
 
R as a function of test fraction with 50%, 70%, 90% or 100% of households willing to 
participate in TPHT. The testing frequency is set to once every 7 days for each of the four 
curves. The x-axis corresponds to the number of households actually tested (and therefore 
actual burden on testing capacity). For instance, the number of tests actually administered 
for a test fraction of 0.1 is the same for 50% and 100%; however, 50% compliance means 
that half of the 20% of largest households are tested. In contrast, 100% compliance means 
that all of the 10% largest households are tested weekly.  
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Supplementary Table 1. Parameters used in simulations 
 

Model parameters Symbol Value Function Source 

SEIR-epidemics 
    

Probability of infection b ---- Network 
effect 

 

Days incubation time λ E 4 
(1) 

Fixed 
 

Days spent pre-symptomatic λ Ips 2 
(5) 

Poisson Norwegian Institute of Public Health 
(FHI) 

Days symptomatic before 
recovery 

λ IsR 5 Poisson Norwegian Institute of Public Health 
(FHI) 

Days symptomatic before 
hospitalization 

λ IsH 6 Poisson Data from Health Region South 
East, Norway 

Days symptomatic in nursing 
home before death 

λ ND 14 
(10) 

Poisson Data from Health Region South 
East, Norway. Presumed equal to 
days from symptom onset to death 
for hospitalized cases. 

Days in hospital before 
recovery (no ICU) 

λ HR 4 
(8) 

Poisson Data from Health Region South 
East, Norway 

Days in hospital before ICU λ HI 4 Poisson Data from Health Region South 
East, Norway 

Days in ICU before recovery λ IR 8 
(12) 

Poisson Data from Health Region South 
East, Norway 

Days in ICU before death λ ID 8 
(12) 

Poisson Data from Health Region South 
East, Norway 

Days asymptomatic before 
recovery 

λ IaR 8 Poisson Norwegian Institute of Public Health 
(FHI) 

% exposed developing 
symptoms 

PI 50 Bernoulli 
 

% symptomatic dying outside of 
hospital: 

PND 
 

Bernoulli 
 

nursing home residents  
70-79 years 

 
26 

 
Adjusted to Norwegian hosp. death 
rates, Verity et al 

nursing home residents  
80-89 years 

 
42 

 
Adjusted to Norwegian hosp. death 
rates, Verity et al 

All others 
 

0 
  

% hospitalized dying: PHD 
 

Bernoulli Verity et al, Lancet, 2020 

0-9 years 
 

1.61 e-3 
  

10-19 years 
 

6.95 e-3 
  

20-29 years 
 

3.09 e-2 
  

30-39 years 
 

8.44 e-2 
  

40-49 years 
 

0.161 
  

50-59 years 
 

0.595 
  

60-69 years 
 

1.93 
  

70-79 years 
 

4.28 
  

80+ years 
 

7.8 
  

% symptomatic being 
hospitalized: 

PIsH 
 

Bernoulli Verity et al, Lancet, 2020 

0-9 years 
 

0 
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10-19 years 
 

0.048 
  

20-29 years 
 

1.04 
  

30-39 years 
 

3.43 
  

40-49 years 
 

4.25 
  

50-59 years 
 

8.16 
  

60-69 years 
 

11.8 
  

70-79 years 
 

16.6 
  

80+ years 
 

18.4 
  

% hospitalized needing ICU PHI 30 Bernoulli Fitted to Norwegian Institute of 
Public Health, ICU numbers 

% not developing immunity PRS 0 Bernoulli 
 

     

Individual-based network 
model 

    

Infectiousness in Day Care 
 

0.015% Bernoulli estimated IBM fit to Norwegian 
clinical data 

Infectiousness in Primary 
School 

 
0.010% 

(0.002%) 
Bernoulli estimated IBM fit to Norwegian 

clinical data 

Infectiousness Secondary 
School 

 
0.010% 

(0.015%) 
Bernoulli estimated IBM fit to Norwegian 

clinical data 
Infectiousness High School 

 
0.010% 
(0.015) 

Bernoulli estimated IBM fit to Norwegian 
clinical data 

Infectiousness Household 
 

5.0% 
(15.0%) 

Bernoulli estimated IBM fit to Norwegian 
clinical data 

Infectiousness Work 
 

0.015% Bernoulli estimated IBM fit to Norwegian 
clinical data 

Infectiousness Nursing Home 
 

15.0% 
(20.0%) 

Bernoulli estimated IBM fit to Norwegian 
clinical data 

Infectiousness Generic Contact 
 

2.00% 
(1.15%) 

Bernoulli estimated IBM fit to Norwegian 
clinical data 

Pre-symptomatic case 
infectiousness multiplier 

 
3 

(1) 

 
Adjusted to CDC estimate (planning 
scenario 5) for proportion of 
infections before symptom onset  

Asymptomatic case 
infectiousness multiplier 

 
0.5 
(1) 

 
Norwegian Institute of Public Health 

Relative infectivity and 
susceptibility of children under 

13 

 
0.5 
(1) 

 
Estimated IBM fit to Norwegian 
clinical data 

Maximum daily contacts, mean 
of normal distribution 

 
10 

 
estimated IBM fit to Norwegian 
clinical data 

Maximum daily contacts, 
variance of normal distribution 

 
3 

 
estimated IBM fit to Norwegian 
clinical data 

Maximum daily contacts, 
exponent of power law 

 
-0.5 

 
estimated IBM fit to Norwegian 
clinical data 

 
Parameter values in black are used in computer simulations for Fig. 2 in the main article. To generate 

Supp. Figure 4, parameter values in red were used instead when present in the table. The infection 

probabilities given under the section “Individual-based network model” correspond to daily 

secondary attack rates in a clique with one symptomatic individual (except for the generic layer, 
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which is not clique-based). For example, in a household with one symptomatic infected individual, 

each other individual has a 5% chance of being infected per day. The infectivity of pre-symptomatic 

and asymptomatic individuals for a given type of interaction are adjusted by a factor 3 and 0.5, 

respectively. Children are half as likely to contract the disease from a given interaction. In cliques 

with multiple infected individuals, the probability increases multiplicatively. For example, consider a 

household with two symptomatic, one asymptomatic and one pre-symptomatic case (all adult). 

Here, the daily infection probability for remaining household members becomes: 

P = 1-(1-0.05)*(1-0.05)*(1-0.025)*(1-0.15) = 0.25 

which corresponds to 25%.  

 

The specified infectiousness of generic contacts is the base probability of transmission from a single 

random contact.   
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Supplementary Table 2. Demographic data used to generate layered 
network. 
 
In generating the layered network with high-resolution demographic data for each municipality in 
Norway, we used the data tables from Statistics Norway and from the Norwegian National School 
Registry (API: https://data-nsr.udir.no/, contains complete information for all schools). 

 
The following Statistic Norway data tables are all available by accession number from  
https://www.ssb.no/en 
 

Accession 
number 

Data table text description 

3321  Employed persons (aged 15-74) per 4th quarter, by municipality of work, 
municipality of residence, contents and year 

4469  Residents in dwellings for nursing and care purposes, by age (M) 2002 - 2019 

6070  Private households, by type of household (M) 2005 - 2019 

6079  Private households and persons in private households, by size of household (per 
cent) (M) (UD) 2005 - 2019 

6206  Children 0-17 years, by number of siblings and the child's age 2001 - 2019 

6445  Employed persons, by place of residence, sex and age (per cent). 4th quarter (M) 
2005 - 2019 

8947  Pupils, apprentices, students and participants in upper secondary education, by sex, 
age and type of school/institution 2006 - 2019 

9169  Children in kindergartens, by age, hours of attendance per week and ownership (M) 
1999 - 2019 

9220  Kindergartens, by ownership (M) 1987 - 2019 

9929  Nursing and care institutions and beds, by ownership (C) 2009 - 2018 

10308  Establishments, by the enterprises sector and number of employees (M) 2012 - 
2020 

11933  Care institutions - rooms, by region, contents and year 

12562  Selected key figures kindergartens, by region, contents and year 

 
 
 

  

https://data-nsr.udir.no/
https://www.ssb.no/en
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Supplementary Table 3. List of 15 demographic variables studied in 
epidemic data from Santé publique 
 
 

Variable name Spearman 

% households >4 people 0.54 

Population share aged 0-4 0.54 

Department longitude 0.53 

Population share aged 60+ -0.53 

Population share aged 20-39 0.51 

Department latitude 0.48 

% households >3 people 0.46 

Household mean people number 0.40 

Department population density / sq. km 0.38 

Populationshare aged 5-19 0.36 

Department area / sq. km -0.32 

Department population 0.28 

% households >2 people 0.19 

% households >1 people 0.13 

Population share aged 40-60 -0.02 
 
 
Source for data: 

1. Santé publique: Download Sept. 21, 2020 https://www.data.gouv.fr/fr/datasets/donnees-
hospitalieres-relatives-a-lepidemie-de-covid-19/ 

2. French National Institute of Statistics and Economic Studies - Households according to size in 
2017. http://www.alisse2.insee.fr/fr/statistiques/2012714 
 

https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/
http://www.alisse2.insee.fr/fr/statistiques/2012714
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