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Supplementary Results

We compiled ten SARS-CoV-2 and other HCoVs host factor profiles, including six
datasets from CRISPR-Cas9 assays (CRISPR_A549-H, CRISPR_A549-L,
CRISPR_HuH7-229E, CRISPR_HuH7-0OC43, CRISPR_HuUH7-SARS2, and
CRISPR_VeroE®6), and four datasets for virus-human PPIs (SARS2-PPI, SARS1-PPI,
MERS-PPI, and HCoV-PPI) (see Methods). The six CRISPR-Cas9-based datasets
adopted genome-scale CRISPR loss-of-function screening methods in the SARS-CoV-2
infected cell lines (as indicated in the dataset name) to identify host factors required for
the infection.

As we hypothesized that the SARS-CoV-2 host factors form a subnetwork within
the comprehensive human protein interactome, we first computed the largest connected
components (LCC) of the CRISPR-Cas9-based datasets. LCC quantifies the number of
genes/proteins in the largest subnetwork formed by a dataset. We found that three of
these datasets, including CRISPR_A549-H, CRISPR_A549-L, and CRISPR_HuH7-
229E, consistently show significantly large LCC (Table S1), when we used top-50, -100,
and -150 genes. Top-100 revealed the highest number of significant LCCs for the
SARS-CoV-2 datasets (CRISPR_A549-H p = 0.007, CRISPR_A549-L p < 0.001,
CRISPR_VeroE6 p = 0.037, permutation test, Table S1, Fig. S1). Therefore, we
selected top-100 genes from these datasets for downstream analyses. These results
suggest that these datasets form disease modules in the human protein interactome
and offer opportunities for network-based discoveries.

Next, we performed functional enrichment analyses for these datasets (Fig. S1).

We identified several common pathways and GO terms that are enriched in more than



three datasets, including autophagy, lysosome, vesicle-mediated transport, endosomal
transport, intracellular pH reduction, macromolecule catabolic process, regulation of
lysosomal lumen pH, cytosolic transport, and selective autophagy. These datasets also
have different functional enrichment. For example, CRISPR_VeroE®6 is enriched in
functions related to cell cycle, cell growth, and chromatin remodeling, and
CRISPR_HuH7-SARS2 is enriched in heparan sulfate biosynthetic functions. These
results suggest that the SARS-CoV-2 host factors participate in various essential
cellular functions. In addition, these datasets contain complementary information of the

cellular states of the SARS-CoV-2 infection and host response.



Table S4. Transcriptomic datasets used in this study.

patients, 9 idiopathic
intracranial
hypertension patients,
and 5 viral
encephalitis patients

GEOID Type Organism [Sample / Brain Groups Cell types
region
GSE147528 |single-nuclei [Homo superior frontal 10 males with varying |astrocytes, excitatory
RNA-seq sapiens gyrus and stages of Alzheimer’s |neurons, inhibitory neurons,
entorhinal cortex |disease (AD) and microglia
GSE157827 |single-nuclei [Homo prefrontal cortex |12 AD patients and 9 |astrocytes, endothelial cells,
RNA-seq sapiens normal controls excitatory neurons, inhibitory
neurons, microglia, and
oligodendrocytes
GSE138852 |single-nuclei |Homo entorhinal cortex |AD (n = 6) and astrocytes, endothelial cells,
RNA-seq sapiens healthy controls (n = |neurons, microglia,

6) oligodendrocytes, and
oligodendrocyte progenitor
cells

GSE157103 |bulk RNA- Homo peripheral blood 66 intensive care unit |N/A
seq sapiens mononuclear cell  [(ICU) patients
(PBMC) (COVID-19 patients n

=50 vs. non-COVID-

19 patients n = 16), 59

non-ICU patients

(COVID-19 patients n

=49 vs. non-COVID-

19 patients n = 10),

and all 125 patients

GSE149689 |single-cell Homo PBMC 6 samples from IgG™ B cells, IgG™* B cells,
RNA-seq sapiens severe COVID-19 CD4* T cell effector memory
patients, 4 samples (EM)-like cells, CD4* T cell

from mild COVID-19 |non-EM-like cells, CD8" T

patients, and 4 cell EM-like cells, CD8* T cell

samples from healthy [non-EM-like cells, dendritic
controls cells, monocytes,
intermediate monocytes,
nonclassical monocytes,
natural killer cells, platelets,
and red blood cells
GSE163005 |single-cell Homo Cerebrospinal fluid |8 COVID-19 patients, |T cells, dendritic cells, and
RNA-seq sapiens 9 multiple sclerosis monocytes
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Fig. S1. Functional enrichment analysis and
largest connected component of the six
CRISPR-Cas9-based SARS-CoV-2 host
factor datasets. Top 100 genes from each
dataset were used for the analyses.



Fig. S1 continued
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Fig. S1 continued
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Fig. S1 continued
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Fig. S1 continued
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Fig. S1 continued
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Fig. S2
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Fig. S2. Network proximity results using different numbers of top genes from the CRISPR-
Cas9-based SARS-CoV-2 host factor datasets. Heatmap shows the proximities of the
CRISPR-Cas9-based SARS-CoV-2 host factor datasets and 10 neurological diseases using
different numbers of top genes (i.e., top-50, -100, -150, and -200) from the CRISPR-Cas9
assay.
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Fig. S3. Single-cell level expression of AD blood markers in the PBMC samples of COVID-
19 patients. Heatmap shows the expression change in mild / severe COVID-19 patients
versus healthy controls. Data source: GSE149689.
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Fig. S4. Expression spectrum of the SARS-CoV-2 entry factors in the entorhinal cortex from
Alzheimer’s disease patients and controls. AD, Alzheimer’s disease patients. CT, controls.
OPC, oligodendrocyte progenitor cell. Data source: GSE138852.



Fig. S5
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Fig. S5. Expression spectrum of the SARS-CoV-2 entry factors in individuals with different
APOE genotypes. AD, Alzheimer’s disease patients. NC, normal controls. Data source:
GSE157827.
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Fig. S6. Expression of the key SARS-CoV-2 entry factors in different tissues. Data source:

GTEx v8.



Fig. S7. Expression of the key SARS-

CoV-2 entry factors in different brain
regions. Data source: GTEXx v8.
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Fig. S8
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Fig. S8. Cumulative degree distribution of 964 innate immune genes, 14267 brain
expressed genes, and 3383 brain specific genes. Blue - degree of these gene sets; grey —
background generated using permutation test of 100 repeats with the entire interactome.
Genes that were in the interactome were used for sampling. Innate immune genes were
extracted from InnateDB. Brain expressed and brain specific genes were generated based
on the GTEx data using the method described in the manuscript (genes with count per
million =2 0.5 in over 90% samples were considered expressed; genes with positive
normalized average expression were considered specific).



