Electronic Supplementary Information

Unlocking the PIP-box: A peptide library reveals interactions that drive high affinity binding to human PCNA

Aimee J. Horsfall, Beth A. Vandborg, Wioleta Kowalczyk, Theresa Chav, Denis B. Scanlon, Andrew D. Abell* and John B.

Bruning*

ABBREVIATIONS

TABLE OF CONTENTS

ACN, acetonitrile; Ala (A), alanine; Arg (R), arginine; Asn (N), asparagine; Asp (D), aspartic acid; Boc, tert-butoxycarbonyl; DIPEA, N,N'-Cys (C), cysteine; DCM, dichloromethane; DEAE, diethylethanolamine; DIC, N,N'-diisopropylcarbodiimide; DMF: N,N'-dimethylformamide; DODT: 2,2'-(ethylenedioxy)diethanethiol; **DTT**, dithiothreitol; diisopropylethylamine; E. Coli, Escherichia Coli; EDC, 1-ethyl-3-(3-diethylaminopropyl)carbodiimide; EDTA, ethylenediaminetetraacetic acid; ESI-TOF, Electrospray Ionisation Time of Flight; Fmoc, 9-fluorenylmethoxycarbonyl; Gln (Q), glutamine; Glu (E), glutamic acid; Gly (G), glycine; HATU, (1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate; HEPES, 4-(2-hydroyethyl)-1piperazineethanesulfonic acid; His (H), histidine; HOBt, 1-hydroxybenzotriazole; HPLC: High Performance Liquid Chromatography; HRMS: High Resolution Mass Spectrometry; IIe (I), isoleucine; IPTG, isopropyl β-D-1-thiogalactopyranoside; LB: Lennox broth; LCMS: Liquid Chromatography Mass Spectrometry; Leu (L), leucine; Lys (K), lysine; Met (M), methionine; NHS, N-hydroxysuccinimide; Pbf: 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl; PCNA, Proliferating Cell Nuclear Antigen; Phe (F), phenylalanine; Pro (P), proline; RP-HPLC: Reverse-Phase High Performance Liquid Chromatography; SDS, Sodium Dodecyl Sulfate; Ser (S), serine; SPPS: Solid-Phase TFA: trifluoroacetic acid; Thr (T), threonine; TIPS: triisopropylsilane; Peptide Synthesis: tBu: tert-butvl: TNBS. 2.4.6trinitrobenzenesulfonic acid (picrylsulfonic acid); Tris, trisaminomethane; Trp (W), tryptophan; Trt, trityl; Tyr (Y), tyrosine; Val (V), valine;

2 SYNTHESIS & CHARACTERISATION OF PEPTIDES Table S1: Peptide characterisation data 4 5 SPR Table S2: Peptide SPR data against hPCNA. 5 COCRYSTAL EXPERIMENTS 6 Table S3: Data collection and refinement statistics of hPCNA bound with p21_µ, and hPCNA bound with p21_µ-F150Y. 6 Figure S1: Co-crystal structure of p21_µ bound to PCNA monomer. 7 Table S4: Secondary Interaction Summary for co-crystal structure of p21_µ with hPCNA. 7 Figure S2: Co-crystal structure of p21_µ-F150Y bound to PCNA monomer. 8 Table S5: Secondary Interaction Summary for co-crystal structure of p21_µ-F150Y with hPCNA. 8 9 COMPUTATIONAL MODELLING OF PCNA MONOMERS BOUND TO P21µ PEPTIDES Figure S3: Computationally modelled structure of p21_µ-M147I on the PIP-box binding site of a hPCNA monomer. 9 Table S6: Secondary Interaction Summary for computationally modelled structured of p21_µ-M147I with hPCNA. 9 Figure S4: Computationally modelled structure of p21_µ- FY150/151YF on the PIP-box binding site of a hPCNA monomer. 10 Table S7: Secondary Interaction Summary for computationally modelled structured of p21µ-FY150/151YF with hPCNA. 10 Figure S5: Computationally modelled structure of p21_µ-S146R on the PIP-box binding site of a hPCNA monomer. 11 Table S8: Secondary Interaction Summary for computationally modelled structured of p21µ-S146R with hPCNA. 11 Figure S6: Computationally modelled structure of p21_µ- D149E on the PIP-box binding site of a hPCNA monomer. 12 Table S9: Secondary Interaction Summary for computationally modelled structured of p21_µ-D149E. 12 Figure S7: Computationally modelled structure of $p21_{\mu}$ - pol δ_{p66} on the PIP-box binding site of a hPCNA monomer. 13 Table S10: Secondary Interaction Summary for computationally modelled structured of $p21_{\mu}$ -pol δ_{p66} with hPCNA. 13 Figure S8: Computationally modelled structure of p21µ-Pogo on the PIP-box binding site of a hPCNA monomer. 14 Table S11: Secondary Interaction Summary for computationally modelled structured of p21_µ-Pogo with hPCNA. 14 Figure S9: Computationally modelled structure of p21_µ- PARG on the PIP-box binding site of a hPCNA monomer. 15 Table S12: Secondary Interaction Summary for computationally modelled structured of p21µ-PARG with hPCNA. 15 Figure S10: Computationally modelled structure of $p21_{\mu}$ -pol I on the PIP-box binding site of a hPCNA monomer 16 Table S13: Secondary Interaction Summary for computationally modelled structured of p21u-pol I with hPCNA. 16 Figure S11: Computationally modelled structure of p21_µ-RFC on the PIP-box binding site of a hPCNA monomer. 17 Table S14: Secondary Interaction Summary for computationally modelled structured of p21_µ-RFC with hPCNA. 17 Figure S12: Computationally modelled structure of p21_µ-RD1 on the PIP-box binding site of a hPCNA monomer. 18 Table S15: Secondary Interaction Summary for computationally modelled structured of p21µ-RD1 with hPCNA 18 Figure S13: Computationally modelled structure of p21_µ-RD2 on the PIP-box binding site of a hPCNA monomer. 19 Table S16: Secondary Interaction Summary for computationally modelled structured of p21_u-RD2 with hPCNA. 19 Figure S14: Computationally modelled structure of p21µ-RD3 on the PIP-box binding site of a hPCNA monomer 20 Table S17: Secondary Interaction Summary for computationally modelled structured of p21µ-RD3 with hPCNA. 20 21 ANALYSIS OF STRUCTURES Table S18: Root-mean-squared deviation (RMSD) values of modified p21_u. 21 Table S19: Buried Surface Area (BSA) of modified p21_µ. 21 22 COMPARISON OF STRUCTURES TO NATIVE SEQUENCES 22 Figure S15: Overlaid structures of p21µ:PIP-box hybrid (blue) and native PIP-box peptide (yellow) Table S20: Root-mean-squared deviation (RMSD) values of alternative PIP-box modified peptides 23 23 Table S21: Number of interactions for p21µ:hybrid peptides compared to native analogues REFERENCES 24

SYNTHESIS & CHARACTERISATION OF PEPTIDES

Unless otherwise indicated, all starting materials were purchased from commercial sources and used without further purification. All peptides were synthesised by the Fmoc/tBu solid-phase peptide synthesis using one of three protocols detailed below, with all L-amino acids (unless otherwise specified) purchased from Chem-Impex Int'I.: Fmoc-Ala-OH, Fmoc-Arg(Pbf)-OH, Fmoc-Asp(tBu)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Gln(Trt)-OH, Fmoc-Glu(tBu)-OH, Fmoc-Gly-OH, Fmoc-His(Trt)-OH, Fmoc-Ile-OH, Fmoc-Leu-OH, Fmoc-Lys(Boc)-OH, Fmoc-Met-OH, Fmoc-Thr(tBu)-OH, Fmoc-Try(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Ser(tBu)-OH, Fmoc-Phe-OH, Fmoc-Pro-OH, Fmoc-Val-OH. Peptides were subsequently cleaved from the resin (and simultaneously globally deprotected) and purified per '*Cleavage from solid-support, isolation & purification*'. Purity of all compounds was confirmed by analytical RP-HPLC on an Agilent 1260 HPLC equipped with a Phenomenex Luna C18(2) column (250 x 4.6 mm) over a gradient of 5-50% B (15 min) and visualised at 220 nm. High-resolution mass spectra were collected using an Agilent 6230 ESI-TOF via direct injection in ACN with 0.1% formic acid as the running buffer. Characterisation data for all peptides in recorded in Table S1.

Peptide Synthesis:

All peptides were synthesised using one of the following methods, excepting ten peptides that were purchased from Shanghai Royobiotech at >95% purity, with purity & identity confirmed on receipt by HPLC and HRMS. *Purchased peptides:* p21_µ-M147L, p21_µ-M147A, p21_µ-M147W, p21_µ-M147V, p21_µ-Q144D, p21_µ-Q144M, p21_µ-Q144S, p21_µ-FY150/151YF, p21_µ-p15, and p21_µ-Cdt1.

Liberty Blue Synthesis:

All peptides were synthesised by the Fmoc/tBu solid-phase peptide synthesis protocol on a CEM Liberty Blue Automated Microwave Peptide Synthesiser (CEM Corp., Matthews, NC, USA) using the standard manufacturer's conditions. The peptides were assembled on 0.1 mmol scale on Chem Impex Rink Amide AM resin (0.47 mmol/g) or Mimotopes Rink Amide resin (0.456 mmol/g). The resin was initially swollen in DCM (10 mL, 15 min) and then the resin washed with DMF (2 × 5 mL) and transferred to the microwave reaction vessel. The resin-bound Fmoc-groups were deprotected with a mixture of 20% piperidine and 0.1 M OxymaPure in DMF using the standard microwave deprotection method with a maximum temperature of 90°C. Couplings were performed with Fmoc-protected amino-acids (0.2 M in DMF, 5 equiv), OxymaPure (1 M in DMF, 5 equiv) and DIC (0.5 M in DMF, 5 equiv) under the 'Standard Coupling' microwave method with a maximum temperature of 90°C, except for coupling of Fmoc-His(Trt)-OH which was coupled using a maximum 50°C 10 min coupling procedure; and Fmoc-Arg(Pbf)-OH which used the default 'Arginine Double Coupling' microwave method which included two couplings steps – the first at room temperature and the second at a maximum of 75°C. Following assembly of the desired sequence the N-terminal protecting group was removed. The resin was then removed from the synthesiser, washed with DCM (3 × 5 mL) and then diethyl ether (3 × 5 mL) and air dried with suction. The peptides were then cleaved from the resin according to the protocol '*Cleavage from solid-support, isolation & purification*' detailed below.

Peptides synthesised by this method: p21₁₃₉₋₁₆₀[‡], p21_µ, p21_µ-F150Y, p21_µ-Y151F, p21_µ-F150H, p21_µ-M147I

[‡] The N-terminal glycine was subjected to a standard double coupling cycle as initial syntheses indicated incomplete incorporation at this position. Please note, this sequence is particularly prone to aspartimide formation.

Prelude Synthesis:

Peptides were assembled using a Protein Technologies Prelude® Peptide synthesiser. Chem Impex Rink Amide resin (0.1 mmol, 0.47 mmol/g) was preswollen in DCM for 15 min, and washed with DMF (3 × 10 mL, 1.5 min). The Fmoc-protecting group was removed by treatment with 20% piperidine (3 × 8 mL, 7 min) and the resin washed with DMF (5 × 10 mL, 1.5 min). An amino-acid was then coupled by addition of the required Fmoc-amino-acid (7.5 equiv, 150 mM in DMF), HCTU (5 equiv, 0.5 M in DMF) and DIPEA (10 equiv, 1 M in DMF) and bubbled with nitrogen for 15 min before the solution was drained, and a fresh coupling solution added to the resin and bubbled with nitrogen for 10 min. The solution was drained and the resin washed with DMF (4 × 8 mL, 1.5 min). Fmoc deprotection and coupling steps were repeated until the desired sequence was achieved, and the final *N*-terminal Fmoc group deprotected. The resin was then removed from the synthesiser and washed

with DCM ($3 \times 5 \text{ mL}$) and then diethyl ether ($3 \times 5 \text{ mL}$) and air dried with suction. The peptides were then cleaved from the resin according to the protocol '*Cleavage from solid-support, isolation & purification*' detailed below.

Peptides synthesised by this method: p21_μ-Q144K, p21_μ-Q144N, p21_μ-T145K, p21_μ-T145R, p21_μ-S146K, p21_μ-S146K, p21_μ-S146R, p21_μ-T148D, p21_μ-T148E, p21_μ-D149E, p21_μ-TS145/146KK, p21_μ-TS145/146RK, p21_μ-TS145/145KR, p21_μ-TS145/146RR, p21_μ-TD148/149EE, p21_μ-TS148/149DE, p21_μ-RNaseH2B, p21_μ-MCMT, p21_μ-pol λ, p21_μ-pol β, p21_μ-pol δ_{p66} , p21_μ-FEN1, p21_μ-RFC, p21_μ-RecQ5, p21_μ-DNALig1, p21_μ-WRN, p21_μ-XPG, p21_μ-Cdt2 p21_μ-Pogo, p21_μ-pol η, p21_μ-pol κ.

Manual Synthesis

Rink Amide PL resin (0.1 mmol, 322 mg, 0.31 mmol/g, Agilent) was swollen in 1:1 DMF/DCM (15 mL) for 15 min. The Fmocprotecting group was removed by treatment of the resin with a solution of 20% piperidine and 0.1 M HOBt in DMF (5 mL) for 15 min. The solution was drained and the resin washed with DMF (3 × 5 mL). Amino-acid couplings were achieved by addition of a solution of Fmoc-protected amino-acid (5 equiv), HATU (5 equiv) and DIPEA (10 equiv) in DMF (5 mL), to the resin and stirred intermittently for 1 h. The solution was drained and the resin washed with DMF (5 × 5 mL). The *N*-terminal Fmocprotecting group was removed by treatment of the resin with a solution of 20% piperidine and 0.1 M HOBt in DMF (5 mL) for 10 min, the solution was drained and the resin washed with DMF (5 × 5 mL). The *N*-terminal Fmocprotecting group was removed by treatment of the resin with a solution of 20% piperidine and 0.1 M HOBt in DMF (5 mL) for 10 min, the solution was drained and the resin washed with DMF (5 × 5 mL). A TNBS test* was used to verify each coupling (negative/colourless) and deprotection (positive/red) step, with steps repeated as necessary. Successive couplings and Fmoc-deprotections were repeated to achieve the desired sequence. The resin was washed with DCM (3 × 5 mL) and then diethyl ether (3 × 5 mL) and air dried with suction. The peptides were then cleaved from the resin according to the protocol '*Cleavage from solid-support, isolation & purification*' detailed below.

* *TNBS Test:* A small spatula of swollen resin taken out and 1 drop each of TNBS (100 μ L 5% w/v in H₂O added to 900 μ L of DMF) and DIPEA solutions (100 μ L in 900 μ L of DMF) added and allowed to develop for 1 min. Clear/yellow beads indicated no free amine (negative), while red/orange beads showed free amine was present (positive).

Peptides synthesised by this method: p21_µ-pol ı, p21_µ-PARG, p21_µ-RD1, p21_µ-RD2, p21_µ-RD3.

Cleavage from solid-support, isolation & purification

Following complete assembly of the peptide and deprotection of the final Fmoc group, the peptides were subsequently cleaved from the resin and the side-chain protecting groups simultaneously globally deprotected by treatment of the resin with 92.5/2.5/2.5/2.5 TFA:TIPS:DODT:H₂O (5 mL) for 2 hours. The cleavage mixture was pipetted from the resin and concentrated under a stream of nitrogen to 0.5-1 mL. The peptide was then precipitated by addition of diethyl ether (10 mL) and the mixture cooled to -20°C. The precipitate was pelleted by centrifugation (7600 rpm, 10 min), and the supernatant decanted. The pellet was dried under a nitrogen stream, and then dissolved in 1:1 ACN/H₂O, before being syringe filtered (0.2 µm) and lyophilised to yield the crude peptide as a fluffy white powder. The peptides were purified by semi-preparative RP-HPLC on a Gilson GX-Prep system using a Phenomenex Luna C18(2) column (10 × 250 mm), over a linear ACN/H₂O gradient optimised for each peptide sample. RP-HPLC solvents were (A) H₂O with 0.1% TFA and (B) ACN with 0.1% TFA. The product containing fractions were pooled and lyophilised. The identity of the final compounds was confirmed by High Resolution Mass Spectrometry on an Agilent 6230 ESI-TOF LCMS. Purity of the peptides was confirmed by analytical RP-HPLC on a Agilent 1260 HPLC equipped with a Phenomenex Luna C18(2) column (250 × 4.6 mm) over a gradient of 5-50% B (15 min) and visualised at 220 nm. Characterisation data for all peptides in recorded in Table S1.

Table S1: Peptide characterisation data. All peptides are C-terminally amidated.

Name	Sequence	Mw	MF	M+ Calc	[M+4] ⁴⁺ Calc	ESI+ [M+4] ⁴ Found	Purity % (220 nm)
p21 _µ (141-155)	¹⁴¹ KRRQTSMTDFYHSKR	1940.20	$C_{82}H_{134}N_{30}O_{23}S_1$	1938.9959	485.7570	485.7566	96.3
p21 (139-160)	¹³⁹ GRKRRQTSMTDFYHSKRRLIFS	2770.20	$C_{120}H_{197}N_{43}O_{31}S_1$	2769.4722	693.3760	693.3793	97.4
		1007.16		1025.0642	492 4004	492 5010	00.0
p21µ-Q144D		1927.10	C81H131N29O24S1	1925.9642	462.4991	462.5010	90.0
p21 _µ -Q144M	KRRMISMIDFYHSKR	1943.27	C82H135N29O22S2	1941.9778	486.5024	486.5020	98.9
p21 _µ -Q144S	KRRSISMIDFYHSKR	1899.15	C ₈₀ H ₁₃₁ N ₂₉ O ₂₃ S ₁	1897.9693	475.5003	475.4999	97.3
p21 _µ -Q144K	KRRKISMIDFYHSKR	1940.24	C ₈₃ H ₁₃₈ N ₃₀ O ₂₂ S ₁	1939.0323	485.7661	485.7658	93.4
p21 _µ -Q144N	KRRNTSMTDFYHSKR	1926.18	C ₈₁ H ₁₃₂ N ₃₀ O ₂₃ S ₁	1924.9802	482.2531	482.2527	90.7
p21 _µ -1145K	KRRQKSMIDFYHSKR	1967.27	C ₈₄ H ₁₃₉ N ₃₁ O ₂₂ S ₁	1966.0432	492.5188	492.5206	90.2
p21 _µ -1145R	KRRQRSMIDFYHSKR	1995.28	C ₈₄ H ₁₃₉ N ₃₃ O ₂₂ S ₁	1994.0493	499.5203	499.5215	91.0
p21 _µ -S146K	KRRQT K MTDFYHSKR	1981.30	C ₈₅ H ₁₄₁ N ₃₁ O ₂₂ S ₁	1980.0588	496.0227	496.0235	87.0
p21 _µ -S146R	KRRQIRMIDFYHSKR	2009.31	C ₈₅ H ₁₄₁ N ₃₃ O ₂₂ S ₁	2008.0650	503.0243	503.0250	94.0
p21 _µ -TS145/146KK	KRRQ KK MTDFYHSKR	2008.37	C ₈₇ H ₁₄₆ N ₃₂ O ₂₁ S ₁	2007.1061	3+: 670.0492	670.3799	91.3
p21 _µ -TS145/146RK	KRRQ RK MTDFYHSKR	2036.38	C ₈₇ H ₁₄₆ N ₃₄ O ₂₁ S ₁	2035.1122	509.7861	509.7864	93.0
p21 _µ -TS145/146KR	KRRQ KR MTDFYHSKR	2036.38	C ₈₇ H ₁₄₆ N ₃₄ O ₂₁ S ₁	2035.1122	509.7861	509.7859	91.9
p21 _µ -TS145/146RR	KRRQ RR MTDFYHSKR	2064.39	C87H146N36O21S1	2063.1184	516.7876	516.7877	90.9
p21 _µ -M147I	KRRQTSITDFYHSK	1765.98	C77H124N26O22	1764.9383	442.2426	442.2419	99.1
p21 _µ -M147L	KRRQTSLTDFYHSKR	1922.16	C ₈₃ H ₁₃₆ N ₃₀ O ₂₃	1921.0395	481.2679	481.2672	99.8
p21 _µ -M147A	KRRQTSATDFYHSKR	1880.08	C ₈₀ H ₁₃₀ N ₃₀ O ₂₃	1878.9925	470.7561	470.7556	99.2
p21 _µ -M147W	KRRQTS W TDFYHSKR	1995.22	C ₈₈ H ₁₃₅ N ₃₁ O ₂₃	1994.0347	499.5167	499.5161	99.5
p21 _µ -M147V	KRRQTS V TDFYHSKR	1908.14	C ₈₂ H ₁₃₄ N ₃₀ O ₂₃	1907.0238	477.7640	477.7632	98.5
p21 _µ -T148D	KRRQTSM D DFYHSKR	1954.19	$C_{82}H_{132}N_{30}O_{24}S_1$	1952.9751	489.2518	489.2514	91.5
p21 _µ -T148E	KRRQTSM E DFYHSKR	1968.21	$C_{83}H_{134}N_{30}O_{24}S_1$	1966.9908	492.7557	492.7562	90.4
p21 _µ -D149E	KRRQTSMT E FYHSKR	1954.23	$C_{83}H_{136}N_{30}O_{23}S_1$	1953.0115	489.2609	489.2620	88.5
p21 _µ -TD148/149EE	KRRQTSM EE FYHSKR	1982.24	$C_{84}H_{136}N_{30}O_{24}S_1$	1981.0065	496.2596	496.2595	89.4
p21 _µ -TS148/149DE	KRRQTSM DE FYHSKR	1968.21	$C_{83}H_{134}N_{30}O_{24}S_1$	1966.9908	492.7557	492.7555	90.1
p21 _µ -F150H	KRRQTSMTD H YHSKR	1930.16	$C_{79}H_{132}N_{32}O_{23}S_1$	1928.9864	483.2546	483.2542	94.4
p21 _µ -F150Y	KRRQTSMTD Y YHSKR	1956.20	$C_{82}H_{134}N_{30}O_{24}S_1$	1954.9908	489.7557	489.7552	93.8
p21 _µ -Y151F	KRRQTSMTDF F HSKR	1924.20	$C_{82}H_{134}N_{30}O_{22}S_1$	1923.0010	481.7582	481.7576	94.2
p21 _µ -FY150/151YF	KRRQTSMTD YF HSKR	1940.20	$C_{82}H_{134}N_{30}O_{23}S_1$	1938.9959	485.7570	485.7589	98.1
		4000.00		4000 0050	404 5000	404 5044	00.0
p21 _µ -DNALIg1		1963.32	C85H143N33O19S1	1962.0959	491.5320	491.5311	98.2
p21 _µ -FEN1	KRRQGRLDDFFHSKR	1945.20	C84H137N33O21	1944.0667	487.0247	487.0241	99.2
p21 _µ -Pogo		1990.32	C88H148N32O21	1989.1497	498.2954	498.2965	98.0
p21 _µ -XPG	KRRQLRIDSFFHSKR	1973.29	C ₈₇ H ₁₄₅ N ₃₃ O ₂₀	1972.1344	494.0416	494.0409	99.1
p21 _µ -MCM1	KRRQIIIISHFHSKR	1882.14	C ₈₀ H ₁₃₆ N ₃₂ O ₂₁	1881.0558	4/1.2/19	4/1.2/14	93.9
p21 _µ -p15	KRRQKGIGEFFHSKR	1873.18	C ₈₃ H ₁₃₇ N ₃₁ O ₁₉	1872.0707	469.0257	469.0265	96.5
p21 _µ -Cdt1	KRRQRRVIDFFHSKR	2016.33	C ₈₇ H ₁₄₆ N ₃₆ O ₂₀	2015.1514	504.7959	504.7954	94.8
p21 _μ -pol δ _{p66}	KRRQVSITGFFHSKR	1846.15	C ₈₂ H ₁₃₆ N ₃₀ O ₁₉	1845.0598	462.2729	462.2727	99.2
p21 _µ -RecQ5	KRRQNLIRHFFHSKR	2022.37	C ₉₀ H ₁₄₈ N ₃₆ O ₁₈	2021.1772	506.3024	506.3019	99.2
p21 _µ -WRN	KRRQWKLLRDFHSKR	2053.42	C ₉₂ H ₁₅₃ N ₃₅ O ₁₉	2052.2082	514.0600	514.0593	99.3
p21 _µ -PARG	KRR DSKITDHF HSKR	1910.16	C ₈₁ H ₁₃₆ N ₃₂ O ₂₂	1909.0507	478.2707	478.2705	98.4
p21 _µ -pol β	KRRQLQKVHFHSKR	1847.18	C ₈₁ H ₁₃₉ N ₃₃ O ₁₇	1846.1027	462.5337	462.5330	96.5
p21 _µ -pol λ	KRRSVPVLELFHSKR	1851.21	C ₈₃ H ₁₄₃ N ₂₉ O ₁₉	1850.1115	463.5359	463.5353	92.4
p21 _µ -pol ı	KRR KGLIDYYL HSKR	1932.29	C ₈₇ H ₁₄₆ N ₃₀ O ₂₀	1931.1330	483.7913	483.7919	87.6
p21 _μ -pol κ	KRR KHTLDIFF HSKR	1968.32	C ₈₉ H ₁₄₆ N ₃₂ O ₁₉	1967.1442	492.7941	492.7939	93.5
p21 _µ -RFC _{p14}	KRR MDIRKFF HSKR	1904.30	$C_{84}H_{142}N_{32}O_{17}S_1$	1903.0951	476.7818	476.7813	93.4
p21 _µ -RNaseH2B	KRR MKSIDTFF HSKR	1936.29	$C_{85}H_{142}N_{30}O_{20}S_1$	1935.0737	484.7764	484.7761	97.7
p21 _µ -Cdt2	KRR MRKICTYF HSKR	2009.46	C ₈₇ H ₁₄₉ N ₃₃ O ₁₈ S ₂	2008.1198	503.0380	503.0390	93.8
p21 _µ -pol n	KRR MQTLESFF HSKR	1950.28	$C_{85}H_{140}N_{30}O_{21}S_1$	1949.0530	488.2713	488.2719	96.6
p21RD1		2080.30		2070 1021	520 7835	520 7836	01.0
p2 1μ-1\D1 p21 _RD2		2000.39	CarH (1461N3402301	2013.1021	502 0380	502 0206	91.0
p21 pD3		2000.00		2004.1242	512 7004	512 2001	02.2
ארח-גרא גרא-גרא		2040.39	C89F150N34U22	2047.1004	512.7994	012.0001	¥∠.3

SPR:

Table S2: Peptide SPR data against hPCNA. Top Conc is the highest concentration of 8x 1 in 2 dilutions used to calculate the steady state affinity. K_D is the affinity constant. SE, standard fitting error; On/Off, indicate times for contact and dissociation phases of each run. All peptides are C-terminally amidated.

Name	Sequence	E 205 [*]	Top Conc (nM)	Affinity K₀ (nM)	K _D SE (nM)	X²	On/Off (s)
p21 _µ (141-155)	141KRRQTSMTDFYHSKR	67860	500	12.3	0.598	0.196	30/60
p21 (139-160)	¹³⁹ GRKRRQTSMTDFYHSKRRLIFS	98620	50	4.319	1.31	10.9	60/90
p21 _µ -Q144D	KRRDTSMTDFYHSKR	67460	2000	714	30.4	0.126	40/60
p21 _µ -Q144M	KRRMTSMTDFYHSKR	69290	5000	1544	159	1.57	40/60
p21 _µ -Q144S	KRRSISMIDFYHSKR	67460	5000	1032	116	2.07	40/60
p21 _µ -Q144K	KRRKISMIDFYHSKR	67460	5000	1123	148	4.19	40/60
p21 _µ -Q144N	KRRNISMIDFYHSKR	67860	5000	772	117	3.07	40/60
p21 _µ -1145K	KRRQKSMIDFYHSKR	67860	2000	98.05	10.8	2.58	40/60
p21µ-1145R	KRRQRSMIDFYHSKR	69210	1000	88.51	13.2	2.97	40/60
p21 _µ -S146K	KRRQI K MIDFYHSKR	67860	300	12.97	1.55	0.520	60/90
p21µ-5146R	KRRQTRMTDFYHSKR	69210	100	4.297	1.35	0.20	60/90
p21µ-15145/146KK		67860	300	20.18	4.80	0.70	60/90
p21p-15145/140RK		69210	300	27.00	4.00	7.94	60/90
p21 _µ -13145/146RR		70560	300	1 833	0.453	5.80	60/90
p21µ-13143/140KK		66020	300	11.000	0.455	0.0251	40/60
p21µ-1011471		66030	200	20.40	0.256	0.0201	40/60
p21µ-W147L		66030	200	20.49	626	0.764	40/60
p21µ=W147A		96420	20000	2566	165	0.274	40/60
p21µ=1v1147 vv		66020	5000	20.20	1 00	0.274	40/60
p21µ-101147 v		67860	2000	29.29	1.00	0.320	40/60
p21 _µ -1146D		67860	2000	90.47 77.40	2.62	0.477	60/90
p21 _µ -1140E	KRROTSMEETHISKR	67860	500	12.67	1.02	0.0000	60/90
p21 _µ -D143E	KRROTSMEEFYHSKR	67860	1000	12.07	1.4	0.0475	60/90
p21 ₀ -TD148/149DE	KRROTSMDEFYHSKR	67860	2000	345.8	2.67	0.0473	60/90
p21,-F150H	KRROTSMTDHYHSKR	64460	1000	159.0	62.8	0.273	40/60
p21 _µ -F150Y	KRROTSMTDYYHSKR	65340	300	20.2	02.0	0.0286	40/60
p21,-Y151E	KRROTSMTDE	70380	300	10.61	1.48	0.0200	60/90
p21,-EY150/151YE	KRROTSMTDYFHSKR	67860	30	2 175	0.531	3.01	60/90
μ		01000		20	0.001	0.01	00/00
p21 _µ -DNALig1	KRR QRSIMSFF HSKR	71730	250	40.74	9.20	3.42	60/90
p21 _µ -FEN1	KRR QGRLDDFF HSKR	69900	2000	165.6	2.07	1.67	40/60
p21 _µ -Pogo	KRR QKKITDYF HSKR	66030	100	8.816	3.30	6.73	60/90
p21 _µ -XPG	KRR QLRIDSFF HSKR	69900	200	16.39	4.81	11.2	60/90
p21 _µ -MCMT	KRR QTTITSHF HSKR	65150	2000	106.0	24.4	5.32	40/60
p21 _µ -p15	KRR QKGIGEFF HSKR	68550	2000	234.0	42.4	5.21	40/60
p21 _µ -Cdt1	KRR QRRVTDFF HSKR	71250	150	8.760	2.22	10.1	40/60
p21 _μ -pol δ _{p66}	KRRQVSITGFFHSKR	68550	1000	123.7	4.24	3.21	40/60
p21 _µ -RecQ5	KRRQNLIRHFFHSKR	75500	20000	>40000**			
p21 _µ -WRN	KRR QWKLLRDF HSKR	81700	2000	1155	67.3	0.952	40/60
p21 _µ -PARG	KRR DSKITDHF HSKR	64750	2000	90.03	18.4	2.38	40/60
p21 _µ -pol β	KRR QLQKVHF HSKR	62770	20000	5732	822	18.6	40/60
p21 _µ -pol λ	KRR SVPVLELF HSKR	59550	20000	8144	766	4.81	40/60
p21 _µ -pol ı	KRR KGLIDYYL HSKR	63110	1500	111.2	5.41	0.0710	60/90
р21µ-роl к	KRRKHTLDIFFHSKR	73350	10000	3296	353	6.62	40/60
p21 _µ -RFC _{p14}	KRRMDIRKFFHSKR	68550	1000	145.2	34.5	6.42	40/60
p21µ-Cdt2		69500	40007	NS***		10.5	10/07
p21 _μ -pol η	KRRMQTLESFFHSKR	70380	10000	2537	745	10.2	40/60
p21 _µ -RNAseH2B	KRR MKSIDTFF HSKR	69980	2000	640.4	51.1	0.851	40/60
p21,,-RD1	KRRORKMEDYYHSKR	66690	100	8 152	1 27	1.51	40/60
p21 _u -RD2	KRRQTRITEYFHSKR	67380	50	1,118	0.330	2.40	60/90
p21u-RD3	KRROKRITEYYHSKR	64860	200	6.70	1.58	3.96	40/60
*						2.00	

* Determined using online calculator, from Anthis 2013 (1)
 ** Peptide bound very non-specifically to protein where the RU significantly exceeded the expected maximum and a K_D could not be determine.
 *** Peptide bound significantly to the reference cell of sensor chip such that a K_D could not be determined

Figure S1: Representative sample of SPR sensorgrams. **A** p21_μ **B** p21_μ-S146R **C** p21_μ-FY150/151YF **D** p21_μ-Y151F **E** p21_μ-FEN1 **F** p21_μpol η **G** p21_μ-PARG **H** p21_μ-RNaseH2B I p21_μ-RD1

COCRYSTAL EXPERIMENTS

Table S3: Data collection and refinement statistics of hPCNA bound with p21_µ (RCSB PDB ID: 7KQ1), and hPCNA bound with p21_µ-F150Y (RCSB PDB ID: 7KQ0). Statistics for the highest-resolution shell are shown in parentheses.

PDB ID	7KQ1	7KQ0
Wavelength	0.9537	0.9537
Resolution range	41.09 - 3.3 (3.418 - 3.3)	41.15 - 2.4 (2.486 - 2.4)
Space group	P 32 2 1	P 3
Unit cell	136.66 136.66 104.005 90 90 120	142.563 142.563 41.03 90 90 120
Unique reflections	17208 (1689)	32881 (3598)
Multiplicity	19.9 (18.2)	10.7 (11.1)
Completeness (%)	99.83 (99.64)	90.13 (99.94)
Mean I/sigma(I)	10.45 (0.91)	40.58 (13.50)
^a R-merge	0.2823 (4.453)	0.04334 (0.1841)
^b Rpim	0.065 (0.755)	0.014 (0.570)
CC1/2	0.999 (0.469)	1 (0.987)
Reflections used in refinement	17192 (1684)	32881 (3598)
Reflections used for R-free	1716 (171)	2031 (224)
° R-work	0.2419 (0.3591)	0.1537 (0.2023)
^d R-free	0.2685 (0.3618)	0.2011 (0.2813)
Number of non-hydrogen atoms	6084	6086
macromolecules	6084	5976
Protein residues	816	807
RMS(bonds)	0.003	0.004
RMS(angles)	0.69	0.68
Ramachandran favoured (%)	94.78	98.10
Ramachandran allowed (%)	4.73	1.64
Ramachandran outliers (%)	0.50	0.25
Rotamer outliers (%)	0.00	8.80
Clashscore	8.80	3.15
Average B-factor	108.50	32.34

 $^{a}R_{\text{merge}} = \Sigma |I - \langle | \rangle | / \Sigma I.$

 ${}^{b}Rpim = \Sigma h \left[1/\left(/{^{n}_{h}} - 1 \right) \right]^{1/2} \Sigma i | < I_{h} > - I_{h,i} | / \Sigma_{h} \Sigma_{i} | I_{h,i} (2)$

^c $R_{work} = \Sigma |F_o - F_c| / \Sigma |F_o|$ for all data excluding data used to calculate R_{free} .

^{*d*} $R_{\text{free}} = \Sigma |F_o - F_c| / \Sigma |F_o|$, for all data.

Table S4: Secondary Interaction Summary for co-crystal structure of $p21_{\mu}$ with hPCNA (PDB ID: 7KQ1) calculated using the RING server. Only peptide chain interactions reported (chains B, D and F). Interactions reported are an average of the number of interactions observed for the three chains. RING session ID: <u>5ef50f2b0e9f94078ea226bd</u>

		Intermolecular			Intramolecular		
	Residue	VDW	H-Bond		VDW	H-Bond	Total
	141	0	0		0	0	
Ē	142	0.67	0		0	0	
	143	0	0.67		0	0	
	* 144	1.67	0		0	0	
PIP-box	145	2.33	1.00		0.67	0.33	
	146	0.67	0.33		0.33	1.00	
	* 147	6.67	1.00		0.33	1.67	
	148	0.33	0		0	0	
	149	0	0		0	0	
	* 150	2.67	0.00		0	0	
	* 151	2.00	0.67		0	0	
	152	1.00	1.00		0	0	
-	153	1.67	0.33		0	0	
_ L	154	0.67	1.00		0	0	
	155	0	0		0	0	
	Total	20.3	6.0		1.3	3.0	30.67
	PIP-box	16	3		1	3	23.67
	Flanking (FI)	4	3		0	0	7
	Conserved (*) PIP-box residues	11.00	1		0	2	14.00
	Non-conserved PIP-box residues	3.33	1.33		1.00	1.33	7.00
	Other: Intermolecular pi-stack between	F-Tyr151 to E-Tyr1	33, and D-Tyr151 to C-	Tyr250			

Table S5: Secondary Interaction Summary for co-crystal structure of $p21_{\mu}$ -F150Y with hPCNA (PDB ID: 7KQ0) calculated using the RING server. Only peptide chain interactions reported (chains B, D and F). Interactions reported are an average of the number of interactions observed for the three chains. RING session ID: <u>5f595dab0e9f94078ea22f07</u>

		Intern	nolecular		Intram	olecular	
	Residue	VDW	H-Bond		VDW	H-Bond	Total
	141	0	0		0	0	
Ξ	142	1	0	1	0	0	
	143	0	1		0	0	
	* 144	1	0		0	0	
	145	1	1		0	1	
×	146	1	0		1	0	
q	* 147	3	1		2	1	
ġ	148	1	0		0	0	
<u>a</u>	149	0	0		0	0	
	* 150	2	0		0	0	
	* 151	2	0		0	0	
	152	0	1		0	0	
-	153	0	0		0	0	
	154	0	0		0	0	
	155	1	0		0	0	
	Total	13.0	4.0		2.67	2.67	22.33
	PIP-box	11	2		3	3	18.33
	Flanking (FI)	2	2		0	0	4
	Conserved (*) PIP-box residues	6.67	1		2	1	10.67
	Non-conserved PIP-box residues	2.00	0.67]	1.00	1.33	5.00
	Other:						

Figure S2: Co-crystal structure of $p21_{\mu}$ (purple, sticks) bound to PCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in purple. **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in purple. **D** Representative electron density of $p21_{\mu}$ (yellow, sticks) shown as a wall-eye stereo image 2Fo-Fc composite omit map, view contoured at 1.5σ . **E** Overlay of $p21_{\mu}$ (purple, sticks) bound to PCNA (not shown) co-crystal structure, with $p21_{\mu}$ (cyan, sticks) that has been energy minimised on the PCNA surface which shows a high degree of structural similarity, and validates the computational modelling approach.

Figure S3: Co-crystal structure of $p21_{\mu}$ -F150Y (blue, sticks) bound to PCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in blue. **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in blue. **D** Representative electron density of $p21_{\mu}$ -F150Y (yellow, sticks) shown as a wall-eye stereo image 2Fo-Fc composite omit map, view contoured at 1.5 σ .

Figure S4: Computationally modelled structure of $p21_{\mu}$ -M147I (orange, sticks) on the PIP-box binding site of a hPCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in orange. **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in orange.

Table S6: Secondary Interaction Summary for computationally modelled structured of p21_µ-M147I with hPCNA calculated using the RING server. Chain B interactions only. RING Session ID: <u>5f3b21280e9f94078ea22cfe</u>

		Intern	nolecular		Intram	olecular	
	Residue	VDW	H-Bond		VDW	H-Bond	Total
	141	0	0		0	0	
Ē	142	3	1		0	0	
	143	1	2		0	0	
	* 144	1	0		0	0	
	145	1	1		2	0	
×	146	1	0		0	0	
q	* 147	2	1		0	1	
<u> </u>	148	2	0		0	0	
•	149	0	0		0	0	
	* 150	3	0		0	0	
	* 151	3	2		0	0	
	152	0	1		0	0	
-	153	1	0		0	0	
ш.	154	1	1		0	0	
	155	0	0		0	0	
	Total	19	9		2	1	31
	PIP-box	13	4		2	1	20
	Flanking (FI)	6	5		0	0	11
	Conserved (*) PIP-box residues	6	1	1	0	1	8
	Non-conserved PIP-box residues	4	1	1	2	0	7
	Other: Intermolecular pi-stack between	B-Tyr151 and A-Ty	r133				

Figure S5: Computationally modelled structure of $p21_{\mu}$ - FY150/151YF (dark green, sticks) on the PIP-box binding site of a hPCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in dark green **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in dark green.

Table S7: Secondary Interaction Summary for computationally modelled structured of p21_µ-FY150/151YF with hPCNA calculated using the RING server. Chain B interactions only. RING session ID: <u>5f3b22bc0e9f94078ea22d03</u>

		Interr	nolecular		Intram	olecular	
	Residue	VDW	H-Bond		VDW	H-Bond	Total
	141	0	0		0	0	
Ē	142	4	2		0	0	
	143	1	1		0	0	
	* 144	2	0		0	0	
	145	1	1		0	0	
×	146	1	0		0	1	
ę	* 147	6	1		1	2	
ė	148	1	0		0	0	
۵.	149	0	0		0	0	
	* 150	3	1		0	0	
	* 151	2	0		0	0	
	152	0	0		0	0	
-	153	1	0		0	0	
	154	2	1		0	0	
	155	0	1		0	0	
	Total	24	8		1	3	36
	PIP-box	16	3		1	3	23
	Flanking (FI)	8	5		0	0	13
	Conserved (*) PIP-box residues	11	2]	1	2	16
	Non-conserved PIP-box residues	3	1		0	1	5
	Other: Intermolecular ionic interaction	between B-Arg143 a	and A-Asp257; Intermole	ecular pi	-stack between B-Ty	vr151 and A-Tyr250	

Figure S6: Computationally modelled structure of $p21_{\mu}$ -S146R (yellow, sticks) on the PIP-box binding site of a hPCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in yellow. **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in yellow.

Table S8: Secondary Interaction Summary for computationally modelled structured of $p21_{\mu}$ -S146R with hPCNA calculated using the RINGserver. Chain B interactions only. RING Session ID: <u>5f3b1f6b0e9f94078ea22cf9</u>

		Intern	nolecular	Intram	olecular	
	Residue	VDW	H-Bond	VDW	H-Bond	Total
	141	0	0	0	0	
Ē	142	3	1	0	0	
	143	2	2	0	0	
	* 144	1	0	0	0	
	145	1	1	1	0	
×	146	2	1	0	1	
pip-bo	* 147	4	1	1	2	
	148	0	0	0	0	
	149	0	0	0	0	
	* 150	3	0	0	0	
	* 151	2	1	0	0	
	152	0	1	0	0	
-	153	2	0	0	0	
	154	0	1	0	0	
	155	0	1	0	0	
	Total	20	10	2	3	35
	PIP-box	13	4	2	3	22
	Flanking (FI)	7	6	0	0	13
	Conserved (*) PIP-box residues	8	1	1	2	12
	Non-conserved PIP-box residues	3	2	1	1	7
	Other: Intermolecular ionic interaction	between B-Arg143 a	and A-Asp257			

Figure S7: Computationally modelled structure of $p21_{\mu}$ - D149E (light blue, sticks) on the PIP-box binding site of a hPCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in light blue. **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in light blue.

Table S9: Secondary Interaction Summary for computationally modelled structured of p21_µ-D149E with hPCNA calculated using the RING server. Chain B interactions only. RING Session ID: <u>5f3b21fe0e9f94078ea22d00</u>

		Intermolecular			Intramolecular		
	Residue	VDW	H-Bond		VDW	H-Bond	Total
	141	0	0		0	0	
ш	142	2	2		0	0	
	143	0	2		0	0	
	* 144	2	0		0	0	
	145	1	1		1	0	
×	146	1	0		0	1	
q	* 147	4	1		1	2	
ġ	148	1	0		0	0	
₽.	149	0	0		1	0	
	* 150	3	0		0	0	
	* 151	4	2		0	0	
	152	1	0		0	0	
	153	1	0		0	0	
	154	0	1		0	0	
	155	0	0		0	0	
	Total	20	9		3	3	35
	PIP-box	16	4		3	3	26
	Flanking (FI)	4	5		0	0	9
	Conserved (*) PIP-box residues	9	1		2	2	14
	Non-conserved PIP-box residues	3	1		2	1	7
	Other: Intermolecular ionic interaction I	between B-Arg143 a	and A-Asp257; Intermole	ecular pi	-stack between B-Ty	r151 and A-Tyr250	

Figure S8: Computationally modelled structure of $p21_{\mu}$ - pol δ_{p66} (light purple, sticks) on the PIP-box binding site of a hPCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in light purple. **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in light purple.

Table S10: Secondary Interaction Summary for com	putationally modelled structured of $p21_{\mu}$ -pol δ_{p66} with hPCNA calculated using the RING
server. Chain B interactions only. RING Session ID:	5f3b202a0e9f94078ea22cfb

		Intern	nolecular		Intram	olecular			
	Residue	VDW	H-Bond	1	VDW	H-Bond	Total		
	141	0	0		0	0			
ш.	142	3	2		0	0			
	143	1	2		0	0			
	* 144	2	0		0	0			
P-box	145	1	1		1	0			
	146	0	0		0	0			
	* 147	5	0		1	2			
	148	0	0		0	0			
	149	0	0		0	0			
	* 150	1	0		0	0			
	* 151	2	0		0	0			
	152	0	1		0	0			
	153	2	0		0	0			
	154	0	1		0	0			
	155	1	0		0	0			
	Total	18	7		2	2	29		
	PIP-box	11	1		2	2	16		
	Flanking (FI)	7	6		0	0	13		
	Conserved (*) PIP-box residues	8	0		1	2	11		
	Non-conserved PIP-box residues	1	1		1	0	3		
	Other: Intermologular pi stack between P. Pho151 and A. Tyr 250								

Other: Intermolecular pi-stack between B-Phe151 and A-Tyr250

Figure S9: Computationally modelled structure of $p21_{\mu}$ -Pogo (dark blue, sticks) on the PIP-box binding site of a hPCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in blue. **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in blue.

Table S11: Secondary Interaction Summary for computationally modelled structured of p21_µ-Pogo with hPCNA calculated using the RING server. Chain B interactions only. RING Session ID: <u>5f3b224d0e9f94078ea22d01</u>

		Intern	nolecular		Intram	olecular	
	Residue	VDW	H-Bond		VDW	H-Bond	Total
	141	0	0		0	0	
Ē	142	3	2		0	0	
	143	1	2		0	0	
	* 144	2	0		0	0	
	145	2	0		0	0	
×	146	1	0		0	1	
q	* 147	7	0		1	2	
ġ	148	1	0		0	0	
<u> </u>	149	0	0		0	0	
	* 150	3	1		0	0	
	* 151	3	0		0	0	
	152	0	1		0	0	
	153	0	0		0	0	
	154	0	1		0	0	
	155	0	0		0	0	
	Total	23	7		1	3	34
	PIP-box	19	1		1	3	24
	Flanking (FI)	4	6		0	0	10
	Conserved (*) PIP-box residues	12	1		1	2	16
	Non-conserved PIP-box residues	4	0		0	1	5
	Other: Intermolecular ionic interaction	between B-Ara143 a	and A-Asp257: Intermole	ecular pi	-stack between B-PI	ne151 and A-Tvr250	

Figure S10: Computationally modelled structure of $p21_{\mu}$ - PARG (red, sticks) on the PIP-box binding site of a hPCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in red. **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in red.

Table S12: Secondary Interaction Summary for computationally modelled structured of $p21_{\mu}$ -PARG with hPCNA calculated using the RINGserver. Chain B interactions only. RING Session ID: 5f3b1de50e9f94078ea22cf7

		Intern	nolecular		Intram	olecular	
	Residue	VDW	H-Bond		VDW	H-Bond	Total
	141	0	0		0	0	
Ξ	142	2	2	1	0	0	
	143	0	2		0	0	
	* 144	1	0		0	0	
	145	1	0		0	0	
×	146	1	0		0	1	
ę	* 147	2	1		0	2	
ġ	148	0	0		0	0	
<u>a</u>	149	0	0		0	0	
	* 150	3	0		0	0	
	* 151	3	0		0	0	
	152	0	1		0	0	
-	153	1	0		0	0	
	154	0	1		0	0	
	155	0	0		0	0	
	Total	14	7		0	3	24
	PIP-box	11	1		0	3	15
	Flanking (FI)	3	6		0	0	9
	Conserved (*) PIP-box residues	5	1		0	2	8
	Non-conserved PIP-box residues	3	0	1	0	1	4
	Other: Intermolecular pi-stack between	B-Tvr151 and A-Tv	vr250				

Figure S11: Computationally modelled structure of $p21_{\mu}$ -pol I (green, sticks) on the PIP-box binding site of a hPCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in green **B & C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in green

Table S13: Secondary Interaction Summary for computationally modelled structured of $p21_{\mu}$ -pol I with hPCNA calculated using the RINGserver. Chain B interactions only. RING Session ID:5f3b1e580e9f94078ea22cf8

		Intern	nolecular		Intram	olecular	
	Residue	VDW	H-Bond		VDW	H-Bond	Total
	141	0	0		0	0	
π	142	2	2	1	0	0	
	143	0	2		0	0	
	* 144	1	0		0	0	
	145	1	1		0	0	
×	146	2	0		1	0	
ç	* 147	3	1		0	1	
ġ	148	1	0		0	0	
	149	0	0		0	0	
	* 150	2	1		0	0	
	* 151	1	0	1	0	0	
	152	0	1		0	0	
	153	2	0		0	0	
	154	0	1		0	0	
	155	0	0		0	0	
	Total	15	9		1	1	26
	PIP-box	11	3		1	1	16
	Flanking (FI)	4	6		0	0	10
	Conserved (*) PIP-box residues	6	2		0	1	9
	Non-conserved PIP-box residues	5	1		1	0	7
	Other:						

Figure S12: Computationally modelled structure of $p21_{\mu}$ -RFC (light pink, sticks) on the PIP-box binding site of a hPCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in light pink **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in light pink

Table S14: Secondary Interaction Summary for con	nputationally modelled structured of p21 _µ -RFC with hPCNA calculated using the RING
server. Chain B interactions only. RING Session ID:	5f3b20890e9f94078ea22cfd

		Intern	nolecular		Intram	olecular	
	Residue	VDW	H-Bond	1	VDW	H-Bond	Total
ш	142	3	0		0	0	
	143	1	2		0	0	
	144	1	0		0	0	
	145	2	1		1	0	
×	146	1	0		0	2	
ę	* 147	2	1		0	2	
ė	148	1	0		0	0	
₽.	149	0	0		0	0	
	* 150	2	0		0	0	
	* 151	2	0		0	0	
	152	0	0		0	0	
	153	2	0		0	0	
	154	0	1		0	0	
	155	0	0		0	0	
	Total	17	5		1	4	27
	PIP-box	11	2		1	4	18
	Flanking (FI)	6	3		0	0	9
	Conserved (*) PIP-box residues	6	1	0	0	2	9
	Non-conserved PIP-box residues	5	1	0	1	2	9
	Other: Intermolecular ionic interaction	between B-Arg143 a	and A-Asp257. Intermole	ecular pi	-stack between B-Ty	/r151 and A-Tyr250	

Figure S13: Computationally modelled structure of $p21_{\mu}$ -RD1 (light orange, sticks) on the PIP-box binding site of a hPCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in light orange. **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in light orange.

Table S15: Secondary Interaction Summary for computationally modelled structured of $p21_{\mu}$ -RD1 with hPCNA calculated using the RINGserver. Chain B interactions only. RING Session ID: <u>5f3b21c10e9f94078ea22cff</u>

		Intern	nolecular		Intram	olecular	
	Residue	VDW	H-Bond		VDW	H-Bond	Total
	141	0	0		0	0	
μ	142	3	2	1	0	0	
	143	1	1		0	0	
	* 144	2	0		0	0	
	145	1	1		1	0	
×	146	0	0		0	1	
q	* 147	4	1		1	2	
d d	148	1	0		0	0	
₽.	149	0	0		0	0	
	* 150	3	1		0	0	
	* 151	3	0		0	0	
	152	0	1		0	0	
	153	1	0		0	0	
ш.	154	0	1		0	0	
	155	0	0		0	0	
	Total	19	8		2	3	32
	PIP-box	14	3		2	3	22
	Flanking (FI)	5	5		0	0	10
	Conserved (*) PIP-box residues	9	2		1	2	14
	Non-conserved PIP-box residues	2	1]	1	1	5
	Other: Intermolecular ionic interaction	between B-Arg143 a	and A-Asp257; Intermole	ecular pi	-stack between B-Ty	vr151 and A-Tyr250	

Figure S14: Computationally modelled structure of $p21_{\mu}$ -RD2 (green, sticks) on the PIP-box binding site of a hPCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in green. **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in green.

Table S16: Secondary Interaction Summary for com	nputationally modelled structured of p21 _µ -RD2 with hPCNA calculated using the RING
server. Chain B interactions only. RING Session ID:	5f3b1ff30e9f94078ea22cfa

		Intern	nolecular	Intram	olecular	
	Residue	VDW	H-Bond	VDW	H-Bond	Total
	141	0	0	0	0	
Ē	142	2	2	0	0	
	143	0	1	0	0	
	* 144	1	0	0	0	
	145	1	1	0	0	
×	146	2	1	0	1	
ę	* 147	7	1	1	2	
<u>é</u>	148	1	0	0	0	
<u> </u>	149	0	0	0	0	
	* 150	2	1	0	0	
	* 151	2	0	0	0	
	152	0	0	0	0	
	153	0	0	0	0	
	154	2	1	0	0	
	155	0	1	0	0	
	Total	20	9	1	3	33
	PIP-box	16	4	1	3	24
	Flanking (FI)	4	5	0	0	9
	Conserved (*) PIP-box residues	10	2	1	2	15
	Non-conserved PIP-box residues	4	2	0	1	7
	Other:					

Figure S15: Computationally modelled structure of $p21_{\mu}$ -RD3 (pink, sticks) on the PIP-box binding site of a hPCNA monomer (grey, cartoon). Heteroatoms indicated as blue, nitrogen; red, oxygen; yellow, sulfur. **A** Intramolecular interactions shown as yellow dashes, and PIP-box residues labelled in pink. **B** & **C** Intermolecular interactions shown as red dashes, PCNA residues labelled in grey/white and conserved PIP-box residues labelled in pink.

 Table S17: Secondary Interaction Summary for computationally modelled structured of p21µ-RD3 with hPCNA calculated using the RING server. Chain B interactions only. RING Session ID: <u>5f3b22e70e9f94078ea22d04</u>

		Intern	nolecular		Intram	olecular	
	Residue	VDW	H-Bond		VDW	H-Bond	Total
	141	0	0		0	0	
Ē	142	2	1		0	0	
	143	2	2		0	0	
	* 144	1	0		0	0	
	145	0	0		2	0	
×	146	2	1		0	1	
ę	* 147	5	0		0	2	
ė	148	1	0		0	0	
<u>п</u>	149	0	0		0	0	
	* 150	2	1		0	0	
	* 151	2	1		0	0	
	152	0	1		0	0	
π	153	2	0		0	0	
	154	0	1		0	0	
	155	0	0		0	0	
	Total	19	8		2	3	32
	PIP-box	13	3		2	3	21
	Flanking (FI)	6	5		0	0	11
	Conserved (*) PIP-box residues	8	1]	0	2	11
	Non-conserved PIP-box residues	3	1		2	1	7
	Other:						

ANALYSIS OF STRUCTURES

Table S18: Root-mean-squared deviation (RMSD) values of mutant peptides docked to the monomer of hPCNA compared to structures of p21 $_{\mu}$ bound to hPCNA and p21 bound to hPCNA.

Name	Structure Type	RMSD value against Wild Type p21 ₁₃₉₋₁₆₀ (monomer of 1AXC)	RMSD value against monomer of p21 _µ bound to hPCNA (PDB ID: 7KQ1)
p21µ	Co-crystal – 7KQ1	0.511	-
p21µ	Computational model	0.316	0.233
p21 _µ -F150Y	Co-crystal – 7KQ0	0.342	0.451
p21 _µ -S146R	Computational model	0.570	0.176
p21 _µ -M147I	Computational model	0.571	0.191
p21µ-D149E	Computational model	0.556	0.197
p21 _µ -FY150/151YF	Computational model	0.559	0.183
p21 _µ -PARG	Computational model	0.571	0.192
p21 _µ -Pogo	Computational model	0.554	0.271
p21 _μ -pol δ _{p66}	Computational model	0.559	0.186
p21µ-pol ı	Computational model	0.563	0.199
p21 _µ -RFC	Computational model	0.567	0.209
p21 _µ -RD1	Computational model	0.600	0.270
p21 _µ -RD2	Computational model	0.558	0.181
p21 _µ -RD3	Computational model	0.552	0.193

 Table S19: Buried Surface Area (BSA) for PIP-box residues from the cocrystal structures and computationally modelled peptides calculated using the PDBePISA server v1.52 (https://www.ebi.ac.uk/pdbe/pisa/). Å² / Buried area percentage

PIP-box Residue	144 ^{P1}	145 ^{P2}	146 ^{P3}	147 ^{P4}	148 ^{P5}	149 ^{P6}	150 ^{P7}	151 ^{P8}
Peptide								
p21 (1AXC, Gulbis 1996)	107.86 / 70	48.31/70	30.39 / 60	135.10 / 100	47.60 / 60	0/0	59.31 / 50	132.20 / 90
p21 _µ (7KQ1)	98.61 / 70	46.23 / 70	31.97 / 60	140.61 / 100	34.23 / 40	0/0	66.67 / 50	130.92 / 90
p21 _µ -F150Y (7KQ0)	105.46 / 70	45.61 / 70	32.11 / 60	134.21 / 100	42.33 / 50	0/0	73.82 / 60	128.04 / 100
p21 _µ -S146R	93.41 / 70	46.73 / 70	68.11 / 50	142.96 / 100	32.99 / 40	0/0	74.02 / 60	133.52 / 90
p21 _µ -M147I	102.47 / 60	35.07 / 60	28.13 / 50	129.11 / 100	54.96 / 60	0/0	81.05 / 60	142.77 / 100
p21 _µ -D149E	98.26 / 60	50.34 / 80	29.24 / 50	140.27 / 100	42.59 / 50	0/0	75.43 / 60	136.21 / 100
p21 _µ -FY150/151YF	105.76 / 70	56.32 / 70	25.76 / 50	139.54 / 100	43.9 / 50	0/0	88.7 / 60	115.46 / 90
p21 _µ -PARG	37.43 / 30	60.13 / 80	60.46 / 50	126.43 / 100	50.59 / 60	0/0	66.62 / 50	117.12 / 100
p21 _µ -Pogo	73.05 / 60	71.12 / 60	53.08 / 50	131.07 / 100	62.18 / 60	0/0	83.77 / 60	120.27 / 90
p21 _μ -pol δ _{p66}	98.14 / 60	50.67 / 50	26.13 / 40	123.79 / 100	57.64 / 60	0/0	65.75 / 50	123.84 / 90
p21 _µ -pol ı	88.44 / 50	33.75 / 70	46.18 / 50	142.62 / 100	59.19 / 70	0/0	97.25 / 60	74.44 / 60
p21 _µ -RFC	76.16 / 40	86.28 / 60	23.01 / 40	138.71 / 100	85.43 / 50	0/0	62.59 / 60	96.61 / 70
p21 _µ -RD1	99.56 / 60	56.85 / 40	55.85 / 50	143.05 / 100	77.77 / 60	0/0	81.89 / 60	127.73 / 90
p21 _µ -RD2	72.88 / 50	57.05 / 90	65.92 / 50	136.97 / 100	52.52 / 50	0/0	76.75 / 50	104.72 / 100
p21 _µ -RD3	88.02 / 80	22.38 / 20	63.49 / 50	137.11 / 100	60.31 / 80	0/0	75.71 / 50	123.64 / 90

COMPARISON OF STRUCTURES TO NATIVE SEQUENCES

Figure S16: Overlaid structures of p21µ:PIP-box hybrid (PCNA, white; peptide, blue) and native PIP-box peptide (PCNA, black; peptide, yellow) shown in cartoon representation and side-chains of peptide as sticks. **A** p21µ (7KQ1) and p21₁₃₉₋₁₆₀ (1AXC) **B** Overlay of Native PIP-box peptides (p21₁₃₉₋₁₆₀ 1AXC, pink; PL 1VYJ, yellow; pol δ_{p66} 452-466 1U76, blue; PARG₄₀₂₋₄₂₀ 5MAV, red; pol I 415-437 2ZVM, green **C** p21µ-Pogo and PL (IVYJ) **D** p21µ-PARG and PARG₄₀₂₋₄₂₀ (5MAV) **E** p21µ-pol δ and pol δ_{p66} 452-466 (1U76) **F** p21µ-pol I and pol I 415-437 (2ZVM).

 Table S20: Root-mean-squared deviation (RMSD) values of alternative PIP-box modified peptides docked to monomer of hPCNA compared to the structures of their respective native peptides bound to hPCNA

Alternative PIP box mutant peptide docked to hPCNA	Structure of native peptide bound to hPCNA	RMSD value
p21 _µ -PARG	5MAV	0.496
p21 _µ -Pogo	1VYJ	0.646
p21 _μ -pol δ _{p66}	1U76	0.696
p21µ-pol ı	2ZVM	1.136

Table S21: Number of interactions for p21µ:hybrid peptides compared to native analogues determined from co-crystal or computationally modelled structures with RING server. For native structures the interactions are averaged over all subunit present in the pdb coordinate file.

Г

							# Interaction			
Peptide	PDB ID:	Ref.	Affinity	# res	Total	PIP- box	Conserved	Non- conserved	Flanking	RING (3) session ID
p21 139-160	1AXC	(4)	5.96 nM	22	60.67	25	9.33	15.67	35.67	5ef515200e9f94078ea226cb
p21 _µ	7KQ1		26.1 nM	15	30.67	23.67	16.67	7	7	5ef50f2b0e9f94078ea226bd
PL 1-16 [mutant]	1VYJ	(5)	100 nM	16	22.33	17.67	13.33	4.33	4.67	5ef515730e9f94078ea226cc
p21 _{µ-} Pogo			9.12 nM	15	34	24	16	5	10	5f3b224d0e9f94078ea22d01
pol δ _{p66} 452-466	1U76	(6)	15.6 µM	15	30.33	24.33	17	7.33	6	5ef516b50e9f94078ea226cf
p21 _μ -pol δ _{p66}			268 nM	15	29	16	11	3	13	5f3b202a0e9f94078ea22cfb
PARG 402-420	5MAV	(7)	3.3 µM	19	26	19	4.83	14.17	7	5ef5164c0e9f94078ea226ce
p21 _{µ-} PARG			401 nM	15	24	15	8	4	9	5f3b1de50e9f94078ea22cf7
pol 1 415-437	2ZVM	(8)	0.39 µM	23	22.33	17.67	17.67	4.67	4.67	5ef515e00e9f94078ea226cd
p21 _µ -pol ı			1.42 µM	15	26	16	9	7	10	5f3b1e580e9f94078ea22cf8

REFERENCES

- 1. Anthis, N. J., and Clore, G. M. (2013) Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. *Protein Sci.* **22**, 851-858
- 2. Wlodawer, A., Minor, W., Dauter, Z., and Jaskolski, M. (2013) Protein crystallography for aspiring crystallographers or how to avoid pitfalls and traps in macromolecular structure determination. *FEBS J.* **280**, 5705-5736
- 3. Piovesan, D., Minervini, G., and Tosatto, S. C. (2016) The RING 2.0 web server for high quality residue interaction networks. *Nucleic Acids Res.* 44, W367-374
- 4. Gulbis, J. M., Kelman, Z., Hurwitz, J., O'Donnell, M., and Kuriyan, J. (1996) Structure of the C-Terminal Region of p21 WAF1/CIP1 Complexed with Human PCNA. *Cell* **87**, 297-306
- Kontopidis, G., Wu, S.-Y., Zheleva, D. I., Taylor, P., McInnes, C., Lane, D. P., Fischer, P. M., and Walkinshaw, M. D. (2005) Structural and biochemical studies of human proliferating cell nuclear antigen complexes provide a rationale for cyclin association and inhibitor design. *Proc. Natl. Acad. Sci. U. S. A.* 102, 1871-1876
- 6. Bruning, J. B., and Shamoo, Y. (2004) Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-delta p66 subunit and flap endonuclease-1. *Structure* **12**, 2209-2219
- Kaufmann, T., Grishkovskaya, I., Polyansky, A. A., Kostrhon, S., Kukolj, E., Olek, K. M., Herbert, S., Beltzung, E., Mechtler, K., Peterbauer, T., Gotzmann, J., Zhang, L., Hartl, M., Zagrovic, B., Elsayad, K., Djinovic-Carugo, K., and Slade, D. (2017) A novel non-canonical PIP-box mediates PARG interaction with PCNA. *Nucleic Acids Res.* 45, 9741-9759
- Hishiki, A., Hashimoto, H., Hanafusa, T., Kamei, K., Ohashi, E., Shimizu, T., Ohmori, H., and Sato, M. (2009) Structural basis for novel interactions between human translesion synthesis polymerases and proliferating cell nuclear antigen. *J. Biol. Chem.* 284, 10552-10560