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Fig. S1 Occupation by HCO3™ and CI™ ions of the cavity (grey bars) and central areas (blue bars)
of hAEL (defined in Fig. S2) during the 1.2 us MD simulations in apo-hAE1 in A) equimolar
solution of 75 mM NaCl + 75 mM NaHCO3z and B) apo-hAE1 in 150 mM NaCl solution. The
span of the colored areas reflects the amount of time during which HCOs™ or CI™ ions are present
in the permeation cavity or protein center. The overlap of bars (areas in deeper grey and blue
color) indicates the simultaneous presence of more than one anion in the cavity and/or protein
center (in such cases, often one anion is coordinated in the protein center area, while the other is
in the upper portion of the cavity, see Fig. S2). The number of unique anion entry events (N) and
the average residence times (tave) in the permeation cavity and protein center are included in the

figure.
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Fig. S2 Definition of cavity and central areas of hAE1 and hNBCel used in the manuscript. The
protein structures with ion densities outlining the location of the putative ion binding sites are
taken from Fig. S6. The permeation cavity is defined as the area of the protein below the C, atom
of residue K542 in hAE1 or residue K562 in hNBCel. The central region is a smaller part of the
overall permeation cavity found below the C, atom of residue E535 in hAEL or residue D555 in
hNBCel. The central binding site S1 is at the bottom of the central region, while the entry
binding site S2 falls in the general area of the cavity (in hNBCel) or at the border of the central
region (in hAE1). The flanking charged residues (red color for acidic and blue color for basic)
which are part of sites S1 and S2 are shown as well.
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Fig. S3 Number of Na*, CI-, and HCO3™ ions, which can be found in the cavity and center areas
of hAEL evaluated from 1.2 pus MD simulations of hAEL in equimolar 75 mM NaHCO3 + 75
mM NaCl solution and hAE1 in 150 mM NaCl solution. The results are presented as % of MD
trajectory steps, in which one can find N ions (N varies from 0 to 3) of a single type in the
permeation cavity of hAEL. The cavity and center definitions are outlined in Fig. S2.
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Fig. S4 Dynamics of the CI~ ions within the cavity (grey bars) and central areas (blue bars) of
hAE1 and hNBCel (defined in Fig. S2) in the systems of Table 1, marked with the * symbol,
where the initially bound CI- dissociated from site S1 and was replaced by another CI~ from the
surrounding solution. The span of the colored areas reflects the amount of time during which CI~
ions are present in the permeation cavity or protein center. The overlap of bars (areas in deeper
grey and blue color) indicates the simultaneous presence of more than one CI~ in the cavity
and/or protein center. This overlap is especially pronounced in the hAE1 system protonated at
E681. The ion permeation of the hNBCel + CI” system was obstructed after 75 ns due to
repositioning of a large extracellular loop above the cavity.
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Fig. S5 Poisson-Boltzmann maps (kcal/mol) of A) hNBCel and B) hAE1 viewed from above,
perpendicular to the membrane. The ion binding area in the full protein frame is marked with a
white box. Colors: red - negatively charged regions attractive to positively charged ions; blue —
positively charged areas attractive to negatively charged ions. The initial positions of the bound
Na*+COs? (in hNBCel) and HCO3~ (in hAE1) in sphere representation are shown (below) in
site S1, oriented according to the protein charges, arising from nearby arginine, aspartate, and
glutamate residues (shown as sticks).
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Fig. S6 Location of two putative anion binding sites S1 (central binding site) and S2 (entry
binding site) identified from 250 ns MD simulations of hAE1 loaded with HCO3z~, hAE1 loaded
with CI-, and hNBCel, loaded with Na* and COs*" in site S1. The anion density maps in hAE1
and hNBCel are colored in cyan while the Na* density map in hNBCel is colored in yellow. The
COs? density in site S2 of hNBCel is plotted from the MD simulation of hNBCel+ CO3? where
the COs% ion migrated toward site S2 due to the absence of a stabilizing Na* at the beginning of
the MD simulation.
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Fig. S7 Contact frequencies of the HCOs™, CI-, COs*, and Na* calculated from two independent
250 ns MD simulations of the unprotonated wild type hAE1 bound to HCO3™ or CI~ and a single
250 ns MD simulation of the unprotonated wild type hNBCe1 bound to one Na* and one CO3*

(Table 1).
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Fig. S8 Membrane expression of the studied hAE1 mutants. A) Representative experiment
showing immunoblot analysis of cell lysate and cell surface expression of wild-type and mutant
hAEL1 proteins. The positions of molecular weight markers (kDa) are shown on the left. Blot
splicing is indicated with vertical white lines. B) Densitometry analysis of the ratio of cell-
surface to lysate hAEL protein expression. One-way ANOVA and Dunnett’s test were used to
compare multiple study group means with WT hAE1. Mutant hAE1 data was not statistically
different from WT hAEL. Results are depicted as mean £ SEM (n=3 separate experiments).
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Fig. S9 Membrane expression of the studied hNBCel mutants. A) Representative experiment
showing immunoblot analysis of cell lysate and cell surface expression of wild-type and mutant
hNBCel-A proteins. The positions of molecular weight markers (kDa) are shown on the left.
Blot splicing is indicated with a vertical white line. B) Densitometry analysis of the ratio of cell-
surface to lysate hNBCel-A protein expression. One-way ANOVA and Dunnett’s test were used
to compare multiple study group means with WT hNBCel-A. Mutant hNBCel-A data was not
statistically different from WT hNBCel-A. Results are depicted as mean + SEM (n=3 separate
experiments).
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Fig. S10 ConSurf-DB scores of hAEL. The residues of sites S1 and S2 are underlined in orange.
(https://consurfdb.tau.ac.il/main_output.php?pdb_ID=4YZF&view_chain=A&unique_chain=4Y
ZFA)
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Fig. S11 ConSurf-DB scores of hNBCel. The residues of sites S1 and S2 are underlined in
orange.
(https://consurfdb.tau.ac.il/main_output.php?pdb_ID=6CAA&view_chain=A&unique_chain=6C
AAA)
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Fig. S12 Occupation by HCOs™ and CI” ions of the cavity (grey bars) and central areas (blue
bars) of hAE1 (defined in Fig. S2) during the 1.2 ps MD simulations in apo-hAE1, protonated at
E681, in A) equimolar solution of 75 mM NaCl + 75 mM NaHCO3 and B) apo-hAE1 in 150 mM
NaCl solution. The span of the colored areas reflects the amount of time during which HCO3™ or
CI” ions are present in the permeation cavity or protein center. The overlap of bars (areas in
deeper grey and blue color) indicates the simultaneous presence of more than one anion in the
cavity and/or protein center. The number of unique anion entry events (N) and the average
residence times (tave) in the permeation cavity and protein center are included in the figure.
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Fig. S13 Number of Na*, CI-, and HCOg3™ ions, which can be found in the cavity and center areas
of hAE1 evaluated from 1.2 us MD simulations of hAE1, protonated at E681, in equimolar 75
mM NaHCOs + 75 mM NaCl solution and hAEL in 150 mM NacCl solution. The results are
presented as % of MD trajectory steps, in which one can find N ions (N varies from 0 to 3) of a
single type in the permeation cavity of hAE1. The cavity and center definitions are outlined in
Fig. S2.
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apo-hAE1 + protE681 + 150mM NaCl apo-hAE1 + protE681 + 75mM NaCl + 75mM NaHCO,

Fig. S14 Anion density maps (isovalue 0.1), computed from 1.2 us MD trajectories of apo-
hAEL, protonated at E681, in 150 mM NacCl solution (CI~ density map) or in equimolar 75 mM
NaCl + 75 mM NaHCOz mixture (HCOs™ density map). The maps demonstrate enhanced anion
presence in both putative binding sites (S1 and S2) in the OF permeation cavity of hAE1 due to
protonation of E681.
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Fig. S15 lon dynamics in hNBCel. A) Coordination of COs> by the Lys residues in site S2
which occurs in the majority of MD steps from our 250 ns MD simulation of apo-hNBCel in
150 mM NazCOs solution. In the selected snapshot, a Na* ion has been drawn by COs? from the
surrounding solution to the protein cavity. B) Number of Na* and CO3? ions which can be found
in the cavity and center areas of hNBCel evaluated from 250 ns MD simulations of apo-hAE1 in
150 mM Na2COs solution. C) Number of Na* and CI- ions which can be found in the cavity and
center areas of hNBCel evaluated from 250 ns MD simulations of hANBCel+Na*+CI~in 150 mM
NaCl solution (Table 1, the first 25 ns of the trajectory during which the initial Na* and CI~ ions
were still in the permeation cavity were discarded for the purpose of this analysis). The results
are presented as % of MD trajectory steps in which one can find N ions (N varies from 0 to 3) of
a single type in the permeation cavity of hNBCel. The cavity and center definitions are outlined
in Fig. S2.
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Table S1 Cl--driven base flux results in the studied hAE1 constructs.

AE1 + Cl driven flux

Mutation (mM-sec?) SEM p value n
Mock -0.055 0.015| p<0.001 4
WT AE1 -0.583 0.024 — 6
P419C -0.226 0.015| p<0.001 18
F423C -0.170 0.023| p<0.001 7
F464C -0.554 0.040 NS 4
S465C -0.238 0.066 | p<0.001 6
G466C -0.282 0.040 | p<0.001 8
1528C -0.358 0.031| p<0.001 4
1531C -0.339 0.033| p<0.001 4
F532C -0.429 0.019 | p<0.005 12
E535C -0.223 0.017 | p<0.001 13
K539C -0.314 0.026 | p<0.001 7
K542C -0.426 0.045| p<0.005 7
E681C -0.347 0.017| p<0.001 5
T727C -0.432 0.042 | p<0.001 13
T728C -0.281 0.021| p<0.001 14
V729C -0.264 0.018 | p<0.001 9
R730C -0.192 0.035| p<0.001 4
S731C -0.263 0.022 | p<0.001 5
K851C -0.325 0.032| p<0.001 8
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Table S2 Na*-driven base flux results in the studied hNBCel constructs.

NBCel-A +Na driven flux

Mutation (mM-sec?) SEM p value n
Mock 0.107 0.011 p <0.001 8
WT NBCel-A 0.547 0.020 — 8
S483C 0.178 0.016 p <0.001 7
T485S 0.245 0.019 p <0.001 4
G486R 0.137 0.008 p <0.001 3
P487C 0.321 0.019 p <0.001 4
F544C 0.182 0.022 p <0.001 4
1548C 0.356 0.020 p <0.001 4
D555C 0.321 0.024 p <0.001 6
K558C 0.369 0.032 p <0.001 3
K559C 0.506 0.026 NS 4
K562C 0.503 0.038 NS 6
D754C 0.305 0.022 p <0.001 4
1757C 0.283 0.013 p <0.001 3
T758C 0.265 0.031 p <0.001 4
\V798C 0.601 0.055 NS 3
AT799V 0.309 0.029 p <0.001 4
A800C 0.513 0.029 NS 7
T801C 0.509 0.020 NS 7
V802C 0.512 0.012 NS 3
K924C 0.213 0.009 p <0.001 3
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