

Figure S1: Analysis of recombined clones

A and B. Electrophoresis analysis of PCR products (24 represented on a total of 160) after conjugation (A) and of PCR products (24 represented on a total of 152) after natural transformation (B). Reactional products and used primers for PCR (grey and green arrows) are shown. The $attC_{aadA7}$ site carried by the suicide vector is represented by a green triangle. MW: Molecular Weight Marker DNA (C) Schemes showing the successing events ($attC_{aadA7}$ cassette insertion followed by cassette 3 shuffling) leading to reactional products showed by the dashed red arrow in B. The attIA site on the *V. cholerae* SCI is represented by a red triangle and VCR sites by arrows.

RecAEc	1	MAIDENKQKALAAALGQIEKQFGKGSIMRLGEDRSMDVETISTGSLSLDIALGAGGLPMG +DENKQKALAAALGQIEKQFGKGSIMRLG++R+MDVETISTGSLSLDIALGAGGLPMG	60
RecAVch	1	MDENKQKALAAALGQIEKQFGKGSIMRLGDNRAMDVETISTGSLSLDIALGAGGLPMG	58
RecAEc	61	RIVEIYGPESSGKTTLTLQVIAAAQREGKTCAFIDAEHALDPIYARKLGVDIDNLLCSQP RIVEI+GPESSGKTTLTL++IAAAQREGKTCAFIDAEHALDP+YA+KLGV+ID LL SQP	120
RecAVch	59	RIVEIFGPESSGKTTLTLELIAAAQREGKTCAFIDAEHALDPVYAKKLGVNIDELLVSQP	118
RecAEc	121	DTGEQALEICDALARSGAVDVIVVDSVAALTPKAEIEGEIGDSHMGLAARMMSQAMRKLA DTGEQALEICDALARSGAVDVIVVDSVAALTPKAEIEGE+GDSHMGL ARM+SQAMRKL	180
RecAVch	119	DTGEQALEICDALARSGAVDVIVVDSVAALTPKAEIEGEMGDSHMGLQARMLSQAMRKLT	178
RecAEc	181	GNLKQSNTLLIFINQIRMKIGVMFGNPETTTGGNALKFYASVRLDIRRIGAVKEGENVVG GNLKQSN + IFINQIRMKIGVMFGNPETTTGGNALKFYASVRLDIRR GA+KEGE VVG	240
RecAVch	179	GNLKQSNCMCIFINQIRMKIGVMFGNPETTTGGNALKFYASVRLDIRRTGAIKEGEEVVG	238
RecAEc	241	SETRVKVVKNKIAAPFKQAEFQILYGEGINFYGELVDLGVKEKLIEKAGAWYSYKGEKIG +ETR+KVVKNKIAAPFK+A OI+YG+G N GEL+DLGVK K++EK+GAWYSY G+KIG	300
RecAVch	239	NETRIKVVKNKIAAPFKEANTQIMYGQGFNREGELIDLGVKHKMVEKSGAWYSYNGDKIG	298
RecAEc	301	QGKANATAWLKDNPETAKEIEKKVRELLLSNPNSTPDFSVDDSEGVAETNEDF 353 QGKANA +LK+NPE AK ++KK+RE+LL+ N s D E+F	
RecAVch	299	QGKANACKYLKENPEIAKTLDKKLREMLLNPENMQLIAETSSAADDVEFGAVPEEF 354	

Figure S2: Alignment of the RecAEc and RecAVch protein sequences The alignment was made on Geneious. Identical amino acids are listed between the two sequences as well as functionally conservative substitution (shown by +).

Figure S3: Effect of the RecA protein on *attIA* × *attC* recombination in the *V. cholerae lexA(ind-) strain* Experimental setup and frequency of insertion of the pSW23T::*attCaadA7* suicide vector into the *attIA* site of the SCI. N16961 *lexA(ind-)* recipient strains transformed with the pBAD43 IntIA expressing vector were used (left panel). The recombination rates were calculated in N16961 *V. cholerae lexA(ind-)* and in the corresponding *recA* mutant strains (*lexA(ind-)*\Delta*recA*, right panel).

Figure S4: Schematic representation of the double-stranded *attl* recombination sites

The sequences of the double-stranded (ds) *att1* sites of the class 1 MI (A) and of the SCI of *Vibrio cholerae* platforms (B) are represented, respectively *att11* and *att1A*. Grey boxes indicate the R (right) and L (left) integrase binding sites (core site). The 5'-AAC-3' triplet, where the cleavage takes place is highlighted in red and the precise cleavage point is indicated by a black arrowhead. The Direct Repeats (DR1 and DR2) of the *att11* site are shown by black arrows.

Strain number	Relevant genotypes or	References
	description	
	Basic V. cholerae strains	
7805	N16961 biovar El Tor	Laboratory collection
8637	N16961 $hapR$ + [Str ^R Gm ^R]	Laboratory collection
9156	N16961 hapR+ ∆intIA [Str ^R	(Leroux et al., 2007)
	Gm ^R]	
B306	7805 <i>ДrecA</i>	This study, deletion of the <i>recA</i> gene (VC0543)
		was performed by allelic exchange by delivering
		the suicide conjugative plasmid pB203 in the
		7805 strain.
H858	8637 <i>lexAind-</i> (A91D) [Str ^R	This study, point mutation in lexA gene was
	Gm ^R]	introduced by allelic exchange by delivering the
		suicide conjugative plasmid p6780 (Guerin et al.,
		2009) in the 8637 strain.
P754	Н858 <i>ДrecA</i>	This study, deletion of the recA gene (VC0543)
		was performed by allelic exchange by delivering
		the suicide conjugative plasmid pB203 in the
		H858 strain.
L438	B306 attTn7::PLAC-recA _{Ec}	This study, P_{LAC} -rec A_{Ec} was inserted into the
		attTn7 locus following the previously described
		protocol (de Lemos Martins et al., 2018) and by
		delivering by conjugation the pL310 shuttle
		vector into the B306 strain
L435-37	B306 attTn7::PLAC-recAvch	This study, PLAC-recAvch was inserted into the
		attTn7 locus following the previously described
		protocol (de Lemos Martins et al., 2018) and by
		delivering by conjugation the pL312 shuttle
		vector into the B306 strain.

y allelic
njugative
y allelic
njugative
that was
¶∷recA _{Ec}
y allelic
njugative
y allelic
njugative
that was
$1::recA_{Ec}$

L805-L806	4826 attTn7::PLAC-recAvch	This study, PLAC-recA _{Vch} fragment was inserted
	[Tc ^R]	into the attTn7 locus following the previously
		described protocol (de Lemos Martins et al.,
		2018) by delivering the pL312 shuttle vector into
		the 4826 strain

	Transformed strains of V. cholerae used in suici	de
	conjugation assay	
J554-J556	N16961 pJ502	This Study
J529-J531	N16961 pJ504	This Study
J566-J568	N16961 <i>hapR</i> + pJ502	This Study
J541-J543	N16961 <i>hapR</i> + pJ504	This Study
0150-0152	N16961 <i>hapR+ ∆intIA</i> pJ502	This Study
0153-0155	N16961 hapR+ ∆intIA pJ504	This Study
J557-J559	N16961⊿recA pJ502	This Study
J532-J534	N16961⊿recA pJ504	This Study
J569-J571	N16961 hapR+ lexAind- pJ502	This Study
J544-J546	N16961 hapR+ lexAind- pJ504	This Study
P771-P773	N16961 <i>hapR+ lexAind- ΔrecA</i> pJ502	This Study
P772-P774	N16961 <i>hapR+ lexAind- ∆recA</i> pJ504	This Study
L453	N16961 <i>ArecA att</i> Tn7::PLAC-recA _{Ec} pJ502	This Study
L447	N16961 <i>ArecA att</i> Tn7::PLAC-recA _{Ec} pJ504	This Study
L449-L451	N16961 <i>ArecA att</i> Tn7::PLAC-recA _{Vch} pJ502	This Study
L443-L445	N16961 <i>ArecA att</i> Tn7::PLAC-recA _{Vch} pJ504	This Study
M933	N16961 <i>∆attIA</i> pJ502 pM923	This Study
M927	N16961 <i>∆attIA</i> pJ504 pM923	This Study
N457-N459	N16961 ArecA AattIA pJ502 pM923	This Study
N454-N456	N16961 ArecA AattIA pJ504 pM923	This Study
K870-K872	N16961 <i>dattIA</i> pJ502	This Study
K864-K866	N16961 <i>dattIA</i> pJ504	This Study
K873-K875	N16961 <i>ArecA AattIA</i> pJ502	This Study

	Transformed strains of <i>V. cholerae</i> used in su	icide
L716-L718	N16961 <i>ArecA AattIA</i> p929 pL294	This Study
L713-L715	N16961 <i>ДrecA ДattIA</i> p929 pL290	This Study
L584-L586	N16961 AattIA:: attI1 p929 pL294	This Study
L581-L583	N16961 AattIA::attI1 p929 pL290	This Study
K973-K975	N16961 ArecA AattIA::attI1 pL294	This Study
K979-K981	N16961 ArecA AattIA::attI1 pL290	This Study
К970-К972	N16961 AattIA::attI1 pL294	This Study
K976-K978	N16961 AattIA::attI1 pL290	This Study
L341-L343	N16961 ArecA AattIA p8532	This Study
L338-L340	N16961 ArecA AattIA p2597	This Study
L329-L331	N16961 <i>\DeltattIA</i> p8532 This Stud	
L326-L328	N16961 <i>AattIA</i> p2597 This Study	
K867-K869	N16961 <i>ArecA AattIA</i> pJ504 This Study	

N389-N390	N16961 <i>hapR</i> + pM889	This Study
N387-N388	N16961 <i>hapR</i> + pN346	This Study
N535-N537	N16961 <i>hapR+ ∆intIA</i> pM889	This Study
N532-N534	N16961 <i>hapR+ ∆intIA</i> pN346	This Study

	Transformed strains of E. coli in suicide conjugation	
	assay	
L120	β2163 pD060	This study
L385-L387	MG1655 p929 pL290	This study
J733-J735	MG1655 p929 pL294	This study
L388-L390	MG1655 p1105 pL290	This study
K689-K690	MG1655 p1105 pL294	This study
N369-N371	MG1655 pM923 pJ502	This study
N372-N374	MG1655 pM923 pJ504	This study
K686-K688	MG1655 p1105 pJ502	This study
K683-K685	MG1655 p1105 pJ504	This study

L391-L393	MG1655 recA269::Tn10 p929 pL290	This study
J990-J991	MG1655 recA269::Tn10 p929 pL294	This study
L394-L396	MG1655 recA269::Tn10 p1105 pL290	This study
K698-K699-	MG1655 recA269::Tn10 p1105 pL294	This study
J992		
N375-N377	MG1655 recA269::Tn10 pM923 pJ502	This study
N378-N380	MG1655 recA269::Tn10 pM923 pJ504	This study
K695-K697	MG1655 recA269::Tn10 p1105 pJ502	This study
K692-K694	MG1655 recA269::Tn10 p1105 pJ504	This study
N381-N383	MG1655 recA269::Tn10- attTn7::PLAC-recAvch pM923	This study
	pJ502	
N384-N386	MG1655 recA269::Tn10- attTn7::PLAC-recAvch pM923	This study
	pJ504	

	Transformed strains of <i>V. cholerae</i> used in recombination assay with unidirectional-replicative	
	substrate	
K160-K162	N16961 p979 p7523	This study
K169-K171	N16961 p979 p7546	This study
K172-K174	N16961 p995 p7523	This study
K181-K183	N16961 p995 p7546	This study
K184-K186	N16961 <i>ΔrecA</i> p979 p7523	This study
K193-K195	N16961⊿recA p979 p7546	This study
K196-K198	N16961 <i>∆recA</i> p995 p7523	This study
K205-K207	N16961⊿recA p995 p7546	This study

Table S2: Plasmids used in this study

Plasmid	Plasmid description	Relevant properties and construction
number		

p452	pSU18∆:: <i>VCR</i> 128	orip15A; [Cm ^R] (Biskri et al., 2005)
p741	pSU38∆	orip15A; [Km ^R] (Biskri et al., 2005)
p755	pSU38∆∷attIA	orip15A; [Km ^R] (Biskri et al., 2005)
p929	pSU38∆∷attI1	orip15A; [Km ^R] (Biskri et al., 2005)
p1105	pSU38∆∷VCRvca0441	orip15A; [Km ^R] EcoRI/BamHI fragment (VCR)
		from p452 cloned in EcoRI/BamHI digested p741
		(Biskri, unpublished results)
p7523	pTSC29::attCaadA7 (ori-)	oripSC101ts; [Cm ^R] (Loot et al., 2010)
	("lead")	
p7546	pTSC29::attCaadA7 (ori+)	<i>oripSC101</i> ts; [Cm ^R] (Loot et al., 2010)
	("lag")	
p979	pBAD18	oriColE1; [Carb ^R] (Guzman et al., 1995)
p995	pBAD18::intIA _{Vch}	oriColE1; [Carb ^R] (Biskri et al., 2005)
p3938	pBAD18::intI1	<i>ori</i> ColE1; [Carb ^R] (Demarre et al., 2007)
p2597	pBAD43	oripSC101; [Sp ^R] (Guzman et al., 1995)
p8532	pBAD43::intIA _{Vch}	oripSC101; [Sp ^R] (Biskri, unpublished)
pG906	pBAD43::intI1	oripSC101; [Sp ^R] EcoRI/HindIII digested fragment
		(int11) from p3938 cloned in EcoRI/HindIII digested
		p2597
pJ502	pBAD43 <i>dattCaadA1</i>	<i>oripSC101</i> ; [Sp ^R] amplification by inverse PCR of
		p2597 with primers 5640 and 5641
pJ504	pBAD43	<i>oripSC101</i> ; [Sp ^R] amplification by inverse PCR of
	$\Delta attC_{aadA1}$::int IA_{Vch}	p8532 with primers 5640 and 5641
pL290	pBAD43::aadA7	<i>oripSC101</i> ; $[Sp^R]$ The fragment P_{cat} - <i>aadA7</i> was
		amplified from pSW25T vector (Demarre et al.,
		2005) with primers 5234 and 5235. pJ502 vector was
		amplified by inverse PCR with 5914 and 5915
		primers. Assembly of these two fragments was
		achieved by performing Gibson Assembly.
pL294	pBAD43::aadA7-intI1	<i>oripSC101</i> ; [Sp ^R] The same strategy was used as for
		the construction of pL290 but using pG906 as
		template for vector amplification with 5914 and
		5915 primers.

pM783	pSU38∆∷intIA-attIA	orip15A; [Km ^R] The intIA-attIA fragment was
		amplified from the 7805 strain using o6176 and
		o6177 primers. This fragment was digested with
		EcoRI and BamHI restriction enzymes and ligated
		into the EcoRI and BamHI digested p755 vector.
рМ923	pSU38∆∷intIAY302F-	orip15A; [Km ^R] Inverse PCR was performed using
	attIA	the pM783 plasmid and, o6184 and o6185 primers.
pE639	pLC10	oripSC101ts; oripSC101; [Sp ^R] Laboratory of David
		Bikard, Institut Pasteur
p7301	pCY579 (pAM∷recA _{Ec})	oripSC101; [Carb ^R] (Cronan, 2003)
pM889	pBAD43/attCaadA1 -Ptet	oripSC101; $[Sp^R]$ The P _{tet} promoter fragment was
		amplified from pE639 vector using 6178 and 6182
		primers. pJ502 vector was amplified by inverse PCR
		with 6181 and 6183 primers. Assembly of these two
		fragments was achieved by performing Gibson
		Assembly.
pN346	pBAD43/attCaadA1-Ptet-	oripSC101; $[Sp^R]$ The P _{tet} promoter fragment was
	intIA	amplified from pE639 vector using 6178 and 6230
		primers. pJ504 vector was amplified by inverse PCR
		with 6181 and 6229 primers. Assembly of these two
		fragments was achieved by performing Gibson
		Assembly.
pD060	pSW23T::attCaadA7 (bs)	$oriV_{R6K\gamma}$, $oriT_{RP4}$; [Cm ^R] (Nivina et al., 2016)
p7848	Suicide conjugative	$oriV_{R6K\gamma}$, $oriT_{RP4}$; [Cm ^R] (Val et al., 2012)
(pMP7)	plasmid used for allelic	
	exchange pSW23T- <i>araC</i>	
	P_{BAD} -ccdB	
p6780	Suicide conjugative	$oriV_{R6K\gamma}$, $oriT_{RP4}$; [Cm ^R] (Guerin et al., 2009)
	plasmid used for	
	replacement of <i>lexAind</i> -	
	allele	

pB203	Suicide conjugative	$oriV_{R6K\gamma}, oriT_{RP4}; [Cm^{R}]$ homology regions upstream
	plasmid used for deletion	and downstream of the VC0543 gene were amplified
	of <i>recA_{Vch}</i> gene (VC0543)	with VC0542A and RECAB and with RECAC and
		RECAD primers respectively. For both PCR the
		N16961 genomic DNA was used as a template.
		These two fragments were assembled by PCR using
		VC0542A and RECAD primers. This combined
		fragment was digested by EcoRI and cloned into
		EcoRI digested p7848 vector. (Krin, unpublished)
pK584	Suicide conjugative	$oriV_{R6K\gamma}$, $oriT_{RP4}$; [Cm ^R] amplification of fragments
	plasmid used for deletion	upstream and downstream of attIA were performed
	of attIA and replacement	using 5738 and 5988 and, 5744 and 5739
	by attI1	respectively. Both PCR were performed using
		N16961 genomic DNA as template. These two
		fragments were assembled by PCR using 5738 and
		5739 primers. The obtained fragment was then
		digested by EcoRI/PstI and cloned into EcoRI/PstI
		digested p7848 vector.
pK590	Suicide conjugative	$oriV_{R6K\gamma}$, $oriT_{RP4}$; [Cm ^R] amplification by inverse
	plasmid used for deletion	PCR of pK584 plasmid with primers 5761 and 5762.
	of attIA	
pH996	Tn7 shuttle vector:	$oriV_{R6K\gamma}$, $oriT_{RP4}$; [Cm ^R] (Val, unpublished)
(pMP234)	pSW23T:: [Tn7R-MCS-	
	Tn7L]	
pA684	pUC18::recA _{Vch}	<i>ori</i> ColE1; [Carb ^R] amplification of <i>recAvch</i> fragment
		by PCR using recAeco5 and recApst3 primers and
		N16961 genomic DNA as template. This fragment
		was then digested with EcoRI/PstI and cloned into
		EcoRI/PstI digested pUC18 (Pharmacia) vector
		(Krin, unpublished)
pK621	pUC18::recA _{Ec}	<i>ori</i> ColE1; [Carb ^R] amplification of <i>recA_{Ec}</i> fragment
		by PCR using 5779 and 5780 primers and MG1655
		genomic DNA as template. This fragment was

		cloned by Gibson Assembly into EcoRI/PstI
		digested pUC18.
pL122	pUC18⊿lacZa∷recA _{Vch}	<i>ori</i> ColE1; [Carb ^R] amplification by inverse PCR of
		the pA684 plasmid with 5799 and 5800 primers.
pL123	pUC18 <i>∆lacZa∷recA_{Ec}</i>	oriColE1; [Carb ^R] amplification by reverse PCR of
		pA684 plasmid with VN9 and 5800 primers.
p7741	pKD4	$oriV_{R6K\gamma}$; [Carb ^R , Km ^R] (Datsenko and Wanner,
-	-	2000).
pL310	pMP234::PLAC-recAFC-	$oriV_{R6Ky}$, $oriT_{RP4}$; [Cm ^R] the PLAC-recAFC fragment
r	FRT- <i>anh</i> -FRT	was amplified with 5918-5916 primers from pL123
	···· <i>wp.</i> ····	vector and the FRT- <i>anh</i> -FRT fragment was
		amplified with 5917-5919 primers from p7741
		vector These fragments were assembled by PCR
		using 5918 and 5919 primer. The obtained fragment
		was cloned by Gibson Assembly into nMP234 vector
		hackbong that was amplified by inverse PCP with
		primara 5490 and 5491
1.212		
pL312	$pMP234::P_{LAC}$ -rec A_{Vch} -	$oriV_{R6K\gamma}$, $oriT_{RP4}$; [Cm ^R] The same cloning
	FRT-aph-FRT	procedure was used as for pL310 construction.
		However, in this case, the P_{LAC} -rec A_{Vch} fragment was
		amplified from the pL122 vector.
pF324	Tn7 helper: araC PBAD-	<i>oripSC101</i> ts, <i>oriT</i> _{RP4} ; [Carb ^R] (de Lemos Martins et
(pMVM1)	tnsABCD	al., 2018)

Table S3: Primers used in this study

Primers	Sequences
	Primers used for Plasmid construction
recAeco5	GGAATTCGATGGACGAGAATAAACAGAA
recApst3	AACTGCAGTTAAAACTCTTCTGGCACCG
VN9	ATGGACGAGAATAAACAGAAGG

VC0542A	GGAATTCGCTTTGTGTTTGATTTCTTT
RECAB	CTTTGCATTCAGCCTGCCGATACTCTCTCCGGATAGTCAC
RECAC	GTGACTATCCGGAGAGAGTATCGGCAGGCTGAATGCAAAG
RECAD	GGAATTCGTGGCTGATGCCGCTTTTGA
5234	TTTCTAGGCACCAATAACTGCCTTA
5235	GTTGATACCGGGAAGCCCTGGGCCA
5480	GCACCTAGGAGGCGCGCCAC
5481	CGCTATTGACCCGGGATCTG
5640	GACATTATTTGCCGACTACCTTGGTGATCTCGC
5641	GATGCACTAAGCACATAATTGCTCACAGCC
5738	CGGGAATTCCCGTAGAGTAACTTGATGGGAAGTT
5739	CGGCTGCAGGAGGTCAAACTATAAAACACCCAAGC
5744	CCCTAAAACAAAGTTAGGCATCAGAGCTTTCTTGCTAATGTTAGATCAAT
5761	CTAATTAATAGACCACTGGGTGC
5762	GCTTTCTTGCTAATGTTAGATCA
5779	AGTGCCAAGCTTGCATGCCTGCAGTTAAAAATCTTCGTTAGTTTCTGC
5780	CAGCTATGACCATGATTACGAATTCGATGGCTATCGACGAAAAACAAAC
5799	ATGGCTATCGACGAAAACAAACAGAAAGC
5800	AGCTGTTTCCTGTGTGAAATTGTTATCC
5914	TAAGGCAGTTATTGGTGCCTAGAAAGTCGATGCACTAAGCACATAATTGC
	TCAC
5915	TGGCCCAGGGCTTCCCGGTATCAACAATTCCCACGGGTTTTGCTGCCCGC
5916	GCTCCAGCCTACACAATCGCTCAAAAACGACGGCCAGTGCCAAGCTTGC
5917	GCAAGCTTGGCACTGGCCGTCGTTTTTGAGCGATTGTGTAGGCTGGAGC
5918	CAGATCCCGGGTCAATAGCGACTGGAAAGCGGGCAGTGAGCGC
5919	GTGGCGCGCCTCCTAGGTGCATGGTCCATATGAATATCCTCC
5988	TGATGCCTAACTTTGTTTTAGGGCGACTGCCCTGCTGCGTAACATCGTTGC
	TGCTCCATAACATCAAACTAATTAATAGACCACTGGGTGC
6176	GGCCGAATTCCTGTGAAATCTCATGATTTCGC
6177	GGCCGGATCCGGATAGATGCATATAATTCGC
6184	TCTGTGTCGTTTTTACATCGGTATGTCC
6185	TTTTCACTCATGTTCTTGATAGAGGTGCAAGCG

6178	CCCTATGCTACTCCGTCAAGCCGTCAATTGTCTGATTCGTTACCAACACGC
	CTGCCAGGAATTGGGGATCGGTTAAGACCC
6181	GGGTCTTAACCGATCCCCAATTCCTGGCAGGCGTGTTGGTAACGAATCAG
	ACAATTGACGGCTTGACGGAGTAGCATAGGG
6182	CGCAGGGGTAGTGAATCCGCCAGGATTGACTTGCGCTGCCTTTTGCCTCCT
	AACTAGGTCATTTGATATGCCTCCGG
6183	CCGGAGGCATATCAAATGACCTAGTTAGGAGGCAAAAGGCAGCGCAAGT
	CAATCCTGGCGGATTCACTACCCCTGCG
6229	CCGGAGGCATATCAAATGACCTAGTTAGGAGGCAAAAATGAAATCCCAG
	TTTTTGTTAAGTGTTCGCGAATTTATGCAAACTCG
6230	CGAGTTTGCATAAATTCGCGAACACTTAACAAAAACTGGGATTTCATTTTT
	GCCTCCTAACTAGGTCATTTGATATGCCTCCGG
	Primers used to identify the location of cassette insertion
SWbeg	Primers used to identify the location of cassette insertion CCGTCACAGGTATTTATTCGGCG
SWbeg SWend	Primers used to identify the location of cassette insertion CCGTCACAGGTATTTATTCGGCG CCTCACTAAAGGGAACAAAAGCTG
SWbeg SWend MFD	Primers used to identify the location of cassette insertion CCGTCACAGGTATTTATTCGGCG CCTCACTAAAGGGAACAAAAGCTG CGCCAGGGTTTTCCCCAGTCAC
SWbeg SWend MFD 573	Primers used to identify the location of cassette insertionCCGTCACAGGTATTTATTCGGCGCCTCACTAAAGGGAACAAAAGCTGCGCCAGGGTTTTCCCCAGTCACGCTGCCCGGATTACACC
SWbeg SWend MFD 573 1366	Primers used to identify the location of cassette insertionCCGTCACAGGTATTTATTCGGCGCCTCACTAAAGGGAACAAAAGCTGCGCCAGGGTTTTCCCAGTCACGCTGCCCGGATTACACCAGCGGGTGTTCCTTCTTCACTG
SWbeg SWend MFD 573 1366 1388	Primers used to identify the location of cassette insertionCCGTCACAGGTATTTATTCGGCGCCTCACTAAAGGGAACAAAAGCTGCGCCAGGGTTTTCCCAGTCACGCTGCCCGGATTACACCAGCGGGTGTTCCTTCTTCACTGCCGGGCAGGATAGGTGAAGTAG
SWbeg SWend MFD 573 1366 1388 1704	Primers used to identify the location of cassette insertionCCGTCACAGGTATTTATTCGGCGCCTCACTAAAGGGAACAAAAGCTGCGCCAGGGTTTTCCCAGTCACGCTGCCCGGATTACACCAGCGGGTGTTCCTTCTTCACTGCCGGGCAGGATAGGTGAAGTAGAGAGAACATAGCGTTGCCTTGG
SWbeg SWend MFD 573 1366 1388 1704 1863	Primers used to identify the location of cassette insertionCCGTCACAGGTATTTATTCGGCGCCTCACTAAAGGGAACAAAAGCTGCGCCAGGGTTTTCCCAGTCACGCTGCCCGGATTACACCAGCGGGTGTTCCTTCTTCACTGCCGGGCAGGATAGGTGAAGTAGAGAGAACATAGCGTTGCCTTGGGGCCACGCGTCGACTAGTACNNNNNNNNACGCC
SWbeg SWend MFD 573 1366 1388 1704 1863 1865	Primers used to identify the location of cassette insertionCCGTCACAGGTATTTATTCGGCGCCTCACTAAAGGGAACAAAAGCTGCGCCAGGGTTTTCCCAGTCACGCTGCCCGGATTACACCAGCGGGTGTTCCTTCTTCACTGCCGGGCAGGATAGGTGAAGTAGAGAAACATAGCGTTGCCTTGGGGCCACGCGTCGACTAGTACNNNNNNNACGCCGGCCACGCGTCGACTAGTAC
SWbeg SWend MFD 573 1366 1388 1704 1863 1865 2405	Primers used to identify the location of cassette insertionCCGTCACAGGTATTTATTCGGCGCCTCACTAAAGGGAACAAAAGCTGCGCCAGGGTTTTCCCAGTCACGCTGCCCGGATTACACCAGCGGGTGTTCCTTCTTCACTGCCGGGCAGGATAGGTGAAGTAGAGAGAACATAGCGTTGCCTTGGGGCCACGCGTCGACTAGTACNNNNNNNACGCCGGCCACGCGTCGACTAGTACATACGACTCACTATAGGGCG

References

Biskri, L., Bouvier, M., Guerout, A.M., Boisnard, S., and Mazel, D. (2005). Comparative Study of Class 1 Integron and *Vibrio cholerae* Superintegron Integrase Activities. J Bacteriol *187*, 1740-1750. Cronan, J.E. (2003). Cosmid-based system for transient expression and absolute off-to-on transcriptional control of Escherichia coli genes. J Bacteriol *185*, 6522-6529. Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A *97*, 6640-6645. de Lemos Martins, F., Fournes, F., Mazzuoli, M.V., Mazel, D., and Val, M.E. (2018). Vibrio cholerae chromosome 2 copy number is controlled by the methylation-independent binding of its monomeric initiator to the chromosome 1 crtS site. Nucleic Acids Res *46*, 10145-10156. Demarre, G., Frumerie, C., Gopaul, D.N., and Mazel, D. (2007). Identification of key structural determinants of the Intl1 integron integrase that influence attC x attl1 recombination efficiency. Nucleic Acids Res *35*, 6475-6489.

Demarre, G., Guerout, A.M., Matsumoto-Mashimo, C., Rowe-Magnus, D.A., Marlière, P., and Mazel, D. (2005). A new family of mobilizable suicide plasmids based on the broad host range R388 plasmid (IncW) or RP4 plasmid (IncP α) conjugative machineries and their cognate *E.coli* host strains. Research in Microbiology *156*, 245-255.

Guerin, E., Cambray, G., Sanchez-Alberola, N., Campoy, S., Erill, I., Da Re, S., Gonzalez-Zorn, B., Barbe, J., Ploy, M.C., and Mazel, D. (2009). The SOS response controls integron recombination. Science *324*, 1034.

Guzman, L.M., Belin, D., Carson, M.J., and Beckwith, J. (1995). Tight regulation, modulation, and highlevel expression by vectors containing the arabinose PBAD promoter. J Bacteriol *177*, 4121-4130. Loot, C., Bikard, D., Rachlin, A., and Mazel, D. (2010). Cellular pathways controlling integron cassette site folding. EMBO J *29*, 2623-2634.

Nivina, A., Escudero, J.A., Vit, C., Mazel, D., and Loot, C. (2016). Efficiency of integron cassette insertion in correct orientation is ensured by the interplay of the three unpaired features of attC recombination sites. Nucleic Acids Res *44*, 7792-7803.

Val, M.E., Skovgaard, O., Ducos-Galand, M., Bland, M.J., and Mazel, D. (2012). Genome engineering in Vibrio cholerae: a feasible approach to address biological issues. PLoS Genet *8*, e1002472.