Supplementary Information

Designing zero-dimensional dimer-type allinorganic perovskites for ultra-fast switching memory

Youngjun Park¹, Seong Hun Kim¹, Donghwa Lee^{1,2*}, and Jang-Sik Lee^{1*}

¹Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea

²Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea

These authors contributed equally: Youngjun Park and Seong Hun Kim

Corresponding authors' E-mail: jangsik@postech.ac.kr, donghwa96@postech.ac.kr

Supplementary Figure 1. Vacancy migration paths of HPs. Red circles and arrows represent inter-octahedron migration path. Blue circles and arrows represent intra-migration path. The rectangular boxes in schematic structures are the unit cell of crystal structure.

Supplementary Figure 2. (a) Plan-view SEM image of the dimer-Cs₃Sb₂I₉ thin film (inset: magnified image). (b) AFM image of the surface of the dimer-Cs₃Sb₂I₉. (c) Magnified AFM image of dimer-Cs₃Sb₂I₉.

Supplementary Figure 3. XRD pattern of the dimer-Cs₃Sb₂I₉ thin film on ITO.

Supplementary Figure 4. XPS spectra of dimer-Cs₃Sb₂I₉ thin film.

Supplementary Figure 5. Cumulative probability distributions of the resistance states during 50 consecutive voltage sweeps (0 V \rightarrow 1 V \rightarrow 0 V \rightarrow -1 V \rightarrow 0 V). The resistances of LRS and HRS are obtained at a read voltage of 0.1 V.

Supplementary Figure 6. Application of voltage pulses for (a) set and (b) reset processes. Positive triangular pulses that had a peak voltage of 2 V for the set process, and negative triangular pulses that had a peak of -1.6 V for the reset process, and the change of current level is measured under a read voltage of 0.1 V. (c) Endurance of dimer-Cs₃Sb₂I₉ RSM device.

Supplementary Figure 7. Device-to-device variation of the dimer-Cs₃Sb₂I₉ RSM device. The resistance states of 20 devices are measured at a read voltage of 0.1 V.

Supplementary Figure 8. a. Measurement scheme for pulse application. The waveforms of applied **b.** 20 ns and **c.** 200 ns pulses.

Supplementary Figure 9. *I-V* characteristics of the dimer-Cs₃Sb₂I₉ RSM by applying set pulses (6 V) with different pulse widths (15 ns, 20 ns, and 40 ns).

Supplementary Figure 10. *I-V* characteristics of the dimer-Cs₃Sb₂I₉ RSM by application of set pulses (20 ns) with different voltage amplitudes (2 V, 4 V, 6 V, and 8 V).

Supplementary Figure 11. Data retention characteristics of the dimer-Cs₃Sb₂I₉ RSM at LRS and HRS.

Supplementary Figure 12. (a) Applied pulse scheme. (b) Endurance of the dimer-Cs₃Sb₂I₉ RSM using 20 ns pulse application.

Supplementary Figure 13. (a) Cross-sectional SEM image of the layer-Cs₃Sb₂I₉ film. (b) Plan-view SEM image of the layer-Cs₃Sb₂I₉ film. (c) AFM image of the surface of the layer-Cs₃Sb₂I₉ film. (d) Magnified AFM image of layer-Cs₃Sb₂I₉.

Supplementary Figure 14. XRD pattern of layer-Cs₃Sb₂I₉ thin film on ITO.

Supplementary Figure 15. *I-V* characteristics of layer-Cs₃Sb₂I₉ RSM device.

Supplementary Figure 16. *I-V* characteristics of the layer-Cs₃Sb₂I₉ RSM by application of set pulse (20 ns) with different voltage amplitudes (6 V, 8 V, and 10 V).

Supplementary Table 1. Vacancy migration barriers of seven compounds according to two migration paths at final steps.

Compound name	Inter-octahedron barrier (eV)	Intra-octahedron barrier (eV)
Cs ₃ Sb ₂ I ₉ (layer)	0.54	0.24
Cs ₃ Sb ₂ I ₉ (dimer)	0.47	0.37
Cs ₃ Bi ₂ I ₉ (layer)	0.45	0.25
FA ₃ Sb ₂ I ₉ (dimer)	1.2	0.79
CsPdBr ₃	0.44	0.14
GA ₃ Sb ₂ Br ₉ (layer)	0.96	0.34
FA ₃ Sb ₂ I ₉ (layer)	1.04	0.32

Supplementary Table 2. Switching speed of HP RSM devices.

Device structure	Switching speed	Reference
Au/Cs ₃ Sb ₂ I ₉ /ITO	20 ns	This work
Al/CH3NH3PbI3:PVAm·HI/ITO	50 ns	1
Au/CH3NH3PbI3/FTO	60 ns	2
Au/(CH3NH3)3Bi2I9/ITO	100 ns	3
Pt/Zr-doped CH3NH3PbI3/FTO	480 ns	4

- 1. Cao X., *et al.* Enhanced switching ratio and long-term stability of flexible RRAM by anchoring polyvinylammonium on perovskite grains. *ACS Appl. Mater. Interfaces* **11**, 35914-35923 (2019).
- 2. Ma H., *et al.* Interface state-induced negative differential resistance observed in hybrid perovskite resistive switching memory. *ACS Appl. Mater. Interfaces* **10**, 21755-21763 (2018).
- 3. Hwang B. & Lee J.-S. Lead-free, air-stable hybrid organic–inorganic perovskite resistive switching memory with ultrafast switching and multilevel data storage. *Nanoscale* **10**, 8578-8584 (2018).
- 4. He Y., *et al.* Impact of chemical doping on resistive switching behavior in zirconium-doped CH₃NH₃PbI₃ based RRAM. *Org. Electron.* **68**, 230-235 (2019).