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Supplemental Data

Suppl. Fig. S1: CNN architecture, dataset generation pipelines and
training quality of ViResNet for infection classification (related to Fig. 1).

A) Effect of Hoechst on AdV plaque formation.
B) Training dataset generation pipeline for infection classification.
C) ViResNet architecture schematic.

D) ROC curves for infection prediction (AdV, HSV-1) of trained ViResNet, Decision
tree, SVM and k-NN classifiers.

E) ViResNet infection prediction for AdV-C5-IX-FS2A-GFP. Note that AdV-CS5 is a
distinct serotype from AdV-C2, which was used for network training. The infection

prediction for AdV-C5 yielded 93% accuracy.
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Suppl. Fig. S2: Dataset generation pipelines and training quality of
ViResNet for infection prediction (related to Fig. 3).

A) Training dataset generation pipeline for prediction of spreading and nonspreading

infected nuclei, respectively.

B) Receiver operating characteristic (ROC) curves for infection prediction of trained
ViResNet and multilayer perceptron. S, NS and NI denote spreader, nonspreader and

not infected nuclei accordingly.

C) Average ViResNet accuracy for randomly sampled test images from different
timepoints. Each datapoint is the average accuracy of test images, previously not seen
by the network. Suppl. Fig. S3: Samples of prospective spreader, nonspreader and
not infected nuclei at pre- and post-ablation stages (related to Fig. 5). All images are

represented as Z-stacks with Nyquist sampling.
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Suppl. Fig. S3: Samples of prospective spreader, nonspreader and not
infected nuclei at pre- and post-ablation stages (related to Fig. 5). Allimages
are represented as Z-stacks with Nyquist sampling.
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