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Supplementary Materials 1 

 2 

I. Supplementary Methods 3 

Participants 4 

ADI-R Factor Analysis. One hundred and twenty-six children with ASD (112 males, 14 females; 5 

age: 10.0 ± 1.6 years; IQ: 110 ± 16) participated in this study after written informed consent was 6 

obtained from their legal guardian. The study protocol was approved by the Stanford University 7 

Institutional Review Board. Participants were recruited locally, from schools and clinics near 8 

Stanford University. All children were required to have a Full Scale IQ > 70, as measured by the 9 

Wechsler Abbreviated Scale of Intelligence (WASI1).  10 

 11 

fMRI. Forty-eight children with ASD (41 males, 7 females; age: 10.9 ± 1.9 years; IQ: 115 ± 16) 12 

and 48 age- and gender-matched TD children (41 males, 7 females; age: 10.9 ± 1.7 years; IQ: 13 

118 ± 11) participated in this study after written informed consent was obtained from their legal 14 

guardian (Supplementary Table 1, Supplementary Figure 1). The study protocol was approved by 15 

the Stanford University Institutional Review Board. Participants were recruited locally, from 16 

schools and clinics near Stanford University. All children were required to have a Full Scale IQ 17 

> 70, as measured by WASI.  18 

 19 

Children with ASD received a diagnosis based on scores from the ADI-R 2,3 and/or the Autism 20 

Diagnostic Observation Schedule (ADOS) 4 following criteria established by the National 21 

Institute of Child Health & Human Development/National Institute of Deafness and Other 22 

Communication Disorders Collaborative Programs for Excellence in Autism 5. Children with 23 
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ASD were screened through a parent phone interview and excluded if they had any history of 24 

known genetic, psychiatric, or neurological disorders (e.g., Fragile X syndrome or Tourette’s 25 

syndrome), or were currently prescribed anti-psychotic medications. TD children were screened 26 

and excluded if they or a first-degree relative had developmental, language, learning, 27 

neurological, psychiatric disorders, or psychiatric medication usage, or if the child met the 28 

clinical criteria for a childhood disorder on the Child Symptom Inventory – Fourth Edition or 29 

Child and Adolescent Symptom Inventory.  All participants underwent a battery of standardized 30 

neuropsychological assessments including WASI 1, and the Wechsler Individual Achievement 31 

Test (WIAT, 2nd edition).  32 

 33 

ADI-R factor analysis 34 

To determine RRB subtypes, we applied principal component analysis (PCA) with varimax 35 

rotation on 9 ADI-R items that assess RRBs6 (Supplementary Table 2). The number of factors 36 

was determined by a combination of scree plot and eigenvalue greater than 16.  37 

 38 

fMRI data acquisition  39 

 40 

For each subject a resting-state fMRI scan was acquired using the following protocol. Functional 41 

images were acquired on a 3T General Electric (GE) Signa scanner using a custom-built head 42 

coil. Head movement was minimized during scanning by small foam cushions placed on the 43 

sides of the subject’s head. A total of 29 axial slices (4.0 mm thickness, 0.5 mm skip) parallel to 44 

the AC-PC line and covering the whole brain were imaged with a temporal resolution of 2 s 45 

using a T2* weighted gradient echo spiral in-out pulse sequence 7 with the following parameters: 46 
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TR = 2,000 msec, TE = 30 msec, flip angle = 80 degrees, 1 interleave. The field of view was 20 47 

cm, and the matrix size was 64×64, providing an in-plane spatial resolution of 3.125 mm. To 48 

reduce blurring and signal loss arising from field in homogeneities, an automated high-order 49 

shimming method based on spiral acquisitions was used before acquiring functional MRI scans. 50 

Participants were repeatedly instructed to stay awake, keep their eyes closed and try not to move 51 

for the duration of the 6-min scan. To avoid the influence of task and prevent drowsiness, the 52 

resting-state scans were placed at the beginning of the scanning session. A T1-weighted 53 

structural imaging scan was also acquired in the same session. 54 

 55 

 56 

 57 

fMRI data preprocessing and analysis 58 

Preprocessing 59 

A standard preprocessing procedure was implemented using SPM8, including slice-timing 60 

correction, realignment, normalization, spatial smoothing (6-mm smoothing kernel), regression 61 

of nuisance variables (24 motion parameters, signals from the white matter and CSF), and 62 

bandpass filtering (0.008 Hz < f < 0.1 Hz). The 24 motion parameters include [R R2 Rt-1 Rt-12], 63 

where t and t-1 refer to the current and immediately preceding timepoint and R = [X Y Z pitch 64 

yaw roll]. The motion parameters did not differ between the ASD and TD groups 65 

(Supplementary Table 1). 66 

 67 

Network identification 68 

Preprocessed fMRI data were entered into a group independent component analysis (ICA) to 69 
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identify large-scale networks in the combined population (MELODIC, 70 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC). The number of components was set to 30. 71 

Determining the number of components using an unsupervised learning algorithm like ICA 72 

remains an unresolved challenge. Our choice of  30 components was based on findings from a 73 

seminal study 8 that comprehensively evaluated the influence of the number of components on 74 

the accuracy of ICA results. The study found that the quality of ICA estimation does not improve 75 

once the ICA components are being estimated in a subspace with more than 30 dimensions and 76 

that reducing the number of components below 30 results in poor estimation. Four components 77 

(SN, left and right CEN, and DMN) corresponding to the previously described triple-network 78 

model of cognitive control 9 and two components (cMN, sMN) corresponding to the motor 79 

circuit were determined based on a widely-used visual inspection procedure 10,11. Briefly, an 80 

expert (K.S.) examined the spatial and temporal profile of each of the 30 ICA components and 81 

labelled it as SN, DMN, Left CEN, Right CEN, cMN, sMN or other. These labels were further 82 

confirmed by a quantitative template-matching procedure 12. The template matching procedure 83 

involved taking the average z score of voxels falling within the template minus the average z 84 

score of voxels outside the template and selecting the component in which this difference (the 85 

goodness of fit) was the greatest. The templates for SN, DMN, Left CEN, Right CEN, cMN and 86 

sMN were identified from previously published adult studies 13,14. The template matching 87 

procedure is identical to those used in previous published studies 11. 88 

 89 

Dynamic functional brain circuit analysis 90 

Cognitive Control Circuit. Time-varying cross-network interaction was measured using a 91 

dynamic functional connectivity approach 15-17. Our overall analysis pipeline is illustrated in 92 
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Figure 1B. We estimated dynamic functional interactions between SN, CEN, and DMN using an 93 

exponentially decaying sliding window and a window length of 50 seconds (25 TRs) and a 94 

sliding step of 2 seconds (1 TR) 15,18,19. Exponentially decaying weights were applied to each 95 

time point within a window as described in previous studies 15,16. Within each time window, we 96 

computed the z-transformed Pearson correlation between the ICA time-series taken pairwise. 97 

This resulted in a time-series of correlation matrices (T x C); here T is the number of time 98 

windows and C is number of pairwise interactions among SN, CEN, DMN at each time point. To 99 

identify distinct group-specific states associated with dynamic functional connectivity, we 100 

applied a group-wise k-means clustering on the time-series of correlation matrices in each group 101 

separately with the number of clusters (k) ranging from 2 to 20, using Matlab kmeans function. 102 

Twenty-five different initializations were used to reduce the chance of local minima. The number 103 

of initializations we used is considerably higher than the Matlab as well as Python sklearn 104 

recommended/default number of replicates (=10), while at the same time within reasonable 105 

computational capacity. Clustering performance was estimated using the silhouette method and 106 

the optimal number of clusters was determined based on maximal silhouette across all the 107 

iterations 20. Because our goal was to investigate whether dynamic temporal properties differed 108 

between the two groups we allowed the number of clusters to differ between the children with 109 

ASD and TD children groups, instead of keeping them exactly the same 18. Robustness of our 110 

findings was tested using different window lengths.  111 

 112 

Brain state-specific cognitive network interaction index (CNII) was used to characterize cross-113 

network interaction in each dynamic brain state. CNII measures cross-network interactions 114 

among the three networks based on the hypothesized role of the SN in switching interactions 115 
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with the CEN and DMN 9,21. CNII has the advantage of capturing interactions simultaneously 116 

among all three networks. Specifically, CNII was computed as the difference in correlation 117 

between SN and CEN time series and correlation between SN and DMN. The rationale here is 118 

that SN and CEN are typically co-activated during cognitively demanding tasks, while SN and 119 

DMN are typically anti-correlated 21,22. CNII thus captures the extent to which SN temporally 120 

engages with CEN and dissociate itself from DMN. 	121 

𝐶𝑁𝐼𝐼 = 𝑓'𝐶𝐶!",$%"( − 𝑓(𝐶𝐶!",&'") 122 

where 123 

𝑓(𝐶𝐶) =
1
2 ln	(

1 + 𝐶𝐶
1 − 𝐶𝐶) 124 

 125 

CC is Pearson’s correlation between the time series of two component networks, e.g., CCSN, DMN 126 

refers to correlation between the time series of SN and DMN. 𝑓(𝐶𝐶)	computes Fisher z-127 

transform of Pearson Correlation (𝐶𝐶) between ROI timeseries. Thus for instance, 𝑓'𝐶𝐶!",$%"( 128 

computes Fisher z-transform of Pearson Correlation between the time series of SN and CEN.  129 

𝑓'𝐶𝐶!",($%"( and 𝑓'𝐶𝐶!",)$%"( were computed separately and then their average was used as 130 

𝑓'𝐶𝐶!",$%"(. Larger CNII values reflect more segregated cross-network interactions between the 131 

SN-CEN and SN-DMN systems in the context of the triple-network model. We computed CNII 132 

for each sliding window, and then computed the (i) mean and (ii) variability (measured by 133 

standard deviations) of time-varying CNII across all the dynamic brain states for each participant 134 

and examined the difference between the mean and variability of time-varying CNII between the 135 

two groups using two sample t-tests. 136 

 137 
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Motor Circuit. Time-varying cross-network interaction was measured using a similar dynamic 138 

functional connectivity approach 15-17. Our overall analysis pipeline is illustrated in Figure 1D. 139 

Briefly, we first estimated dynamic functional interactions between cMN and sMN using an 140 

exponentially decaying sliding window. Second, we identified distinct group-specific states 141 

associated with dynamic functional connectivity, using the group-wise 1D k-means clustering. 142 

Third, we characterized cross-network interaction in each dynamic brain state, using brain state-143 

specific motor network interaction index (MNII). MNII measures cross-network interactions 144 

among the two networks involved in motor function and was computed as the correlation 145 

between cMN and sMN time series. MNII thus captures the extent to which cMN temporally 146 

engages with sMN. We computed MNII for each sliding window, and then computed the (i) 147 

mean and (ii) variability (measured by standard deviations) of time-varying MNII for each 148 

participant and examined the difference between the mean and variability of time-varying MNII 149 

between the two groups using two sample t-tests.  150 

 151 

Prediction analysis to determine the relation between temporal dynamics of cognitive control 152 

circuit and RRB subtypes in children with ASD 153 

We used regression analysis to examine the relation between temporal dynamics of cognitive 154 

control circuit and RRB subtypes in children with ASD. Mean and variability of CNII as 155 

independent variables and RRB subtype (CI, IS or RM) severity score as dependent variable was 156 

used as the input to a non-parametric linear regression algorithm. Both mean and variability of 157 

CNII were used as independent variables as they were significantly different between the 158 

children with ASD and TD children groups. To further examine the predictive ability of 159 

cognitive control dynamics, we leveraged our sample and conducted cross-validation analyses 160 
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following procedures typically used in machine learning. Cross-validation is a powerful 161 

approach for validating research findings, and its use for demonstrating generalization and 162 

reproducibility has been advocated in psychiatry, psychology and many other disciplines23,24. 163 

Data were divided into five folds, consistent with the number of folds recommended for 164 

predictions studies25. A non-parametric linear regression model was built/trained using four 165 

folds, leaving out one fold. The samples in the left-out fold were then predicted using this trained 166 

model, and the predicted values were noted. This procedure was repeated five times, and finally 167 

an r(pred, actual) was computed based on the predicted and actual values. r(pred, actual), 168 

correlation between the predicted value of the trained linear regression model and the actual 169 

value, was used as a measure of how well the independent variable predicts dependent variable, 170 

with r(pred, actual) = 1 being the most accurate prediction model. Finally, the statistical 171 

significance of the model was assessed using nonparametric analysis. The empirical null 172 

distribution of r(pred, actual) was estimated by generating 1000 surrogate datasets under the null 173 

hypothesis that there was no association between temporal dynamics of cognitive control circuit 174 

and RRB subtype severity. Each surrogate dataset Di of size equal to the observed dataset was 175 

generated by permuting the labels (dependent variable) on the observed data points. r(pred, 176 

actual)i was computed using the actual labels of Di and predicted labels using the five-fold cross-177 

validation procedure described previously. This procedure produces a null distribution of r(pred, 178 

actual) for the regression model. The statistical significance (p value) of the model was then 179 

determined by counting the number of r(pred, actual)i greater than r(pred, actual) and then 180 

dividing that count by the number of Di datasets (1000 in our case). This analysis was conducted 181 

for three RRB subtypes, including CI, IS and RM. To assess the robustness of our approach we 182 

also repeated the aforementioned analysis with number of folds = 10. 183 
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 184 

 185 

Prediction analysis to determine the relation between temporal dynamics of motor circuit and 186 

RRB subtypes in children with ASD 187 

We used regression analysis to examine the relation between temporal dynamics of motor circuit 188 

and RRB subtypes in children with ASD. Mean of MNII as independent variables and RRB 189 

subtype (CI, IS or RM) severity score as dependent variable was used as the input to a non-190 

parametric linear regression algorithm. Mean of MNII was used as independent variable as it was 191 

significantly different between the children with ASD and TD children groups. To further 192 

examine the predictive ability of motor circuit dynamics, we used the five cross-validation 193 

approach described above. Data were divided into five folds. A non-parametric linear regression 194 

model was built/trained using four folds, leaving out one fold. The samples in the left-out fold 195 

were then predicted using this trained model, and the predicted values were noted. This 196 

procedure was repeated five times, and finally an r(pred, actual) was computed based on the 197 

predicted and actual values. r(pred, actual), correlation between the predicted value of the trained 198 

linear regression model and the actual value, was used as a measure of how well the independent 199 

variable predicts dependent variable, with r(pred, actual) = 1 being the most accurate prediction 200 

model. Finally, the statistical significance of the model was assessed using nonparametric 201 

analysis. The empirical null distribution of r(pred, actual) was estimated by generating 1000 202 

surrogate datasets under the null hypothesis that there was no association between temporal 203 

dynamics of motor circuit and RRB subtype severity. Each surrogate dataset Di of size equal to 204 

the observed dataset was generated by permuting the labels (dependent variable) on the observed 205 

data points. r(pred, actual)i was computed using the actual labels of Di and predicted labels using 206 
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the five-fold cross-validation procedure described previously. This procedure produces a null 207 

distribution of r(pred, actual) for the regression model. The statistical significance (p value) of 208 

the model was then determined by counting the number of r(pred, actual)i greater than r(pred, 209 

actual) and then dividing that count by the number of Di datasets (1000 in our case). This 210 

analysis was conducted for three RRB subtypes, including CI, IS and RM. To assess the 211 

robustness of our approach we also repeated the aforementioned analysis with number of folds = 212 

10. 213 

 214 

Open-source publicly-available data 215 

We launched a search (Supplementary Figure 1) of publicly-available open source datasets. 216 

Specifically, we first examined in detail resting state fMRI and phenotypic data made available 217 

through the ABIDE I and ABIDE II initiatives (http://fcon_1000.projects.nitrc.org/indi/abide/). 218 

Although we were able to identify over 400 children with ASD and 400 TD children with good 219 

resting state fMRI data, none of the children with ASD had item-level ADI-R scores that are 220 

essential to determine RRB subtype severity scores. To address this, we requested item-level 221 

ADI-R scores from PIs of the ABIDE sites that included ASD children with good resting state 222 

fMRI data. Commendably, the PIs were quite prompt in their response, but unfortunately they 223 

did not have the resources to e-transcribe and share the item-level scores, which are collected in 224 

a paper form.  225 

 226 

Our next quest for data led us to the National Institute of Mental Health Data Archive 227 

(NDA;https://nda.nih.gov/) – another open source dataset that makes available phenotypic and 228 

fMRI data from individuals with ASD and neurotypical individuals. Unfortunately, a 229 
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comprehensive examination of the NDA data yielded no participants who had both resting state 230 

fMRI data and item-level ADI-R scores. This exercise further highlights the uniqueness of our 231 

data and ensuing findings. 232 

 233 

 234 

  235 
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II. Supplementary Results 236 

 237 
Ruling out potential confounds on between-group comparisons  238 

Mean of dynamic time-varying CNII values were significantly different between children with 239 

ASD and TD children groups (p < 0.05, Supplementary Table 3), even after controlling for the 240 

potential confounding effects of age, movement, sex, and IQ. 241 

 242 

Variability of dynamic time-varying CNII values were significantly different between children 243 

with ASD and TD children groups (p < 0.05, Supplementary Table 4), even after controlling for 244 

the potential confounding effects of age, movement, sex, and IQ. 245 

 246 

Mean of dynamic time-varying MNII values were significantly different between children with 247 

ASD and TD children groups (p < 0.05, Supplementary Table 5), even after controlling for the 248 

potential confounding effects of age, movement, sex, and IQ. 249 

 250 

Analysis of brain states 251 

We compared mean dwell times across states and found that none of the states had mean dwell 252 

time significantly higher than other states, and none of the states had mean dwell time 253 

significantly lower than other states. This result was observed for brain states associated with 254 

cognitive control circuit dynamics as well as motor circuit dynamics in the ASD and TD groups 255 

suggesting that these brain states are equally probable. 256 

Prediction analysis results with 10-fold cross validation. 257 

 258 
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Results of regression analysis with 10-fold cross validation were consistent with the results 259 

obtained with 5-fold cross validation, namely: (i) mean and variability of CNII was predictive of 260 

CI scores and IS scores, but not RM scores (r(pred, actual)CI=0.29, pCI=0.01; r(pred, 261 

actual)IS=0.26, pIS=0.01; r(pred, actual)RM=-0.11, pRM=0.42), (i) mean of MNII was predictive of 262 

RM scores, but not CI and IS scores (r(pred, actual)RM=0.22, pRM=0.02; r(pred, actual)CI=-0.15, 263 

pCI=0.38; r(pred, actual)IS=0.14, pIS=0.08). 264 

 265 

Relationship between time-averaged cross-network functional interactions and RRB 266 

subtypes in children with ASD 267 

 268 

We examined the relationship between time-averaged functional interactions in the cognitive 269 

control circuit and ADI-R RRB factor scores. None of the time-averaged cross-network 270 

interactions in the cognitive control circuit were associated with CI, IS and RM scores (all p’s > 271 

0.05). 272 

We examined the relationship between time-averaged functional interactions in the motor circuit 273 

and ADI-R RRB factor scores. Time-averaged cross-network interactions in the motor circuit 274 

were not significantly associated with CI, IS and RM scores (all p’s > 0.05).  275 

 276 

Robustness of brain-behavior findings against ADI-R factor structure 277 

First, we repeated the PCA-based factor analysis using python as well as SPSS. The results were 278 

identical to those originally reported (which were obtained using Matlab code), confirming the 279 

accuracy of our procedures. Second, we examined the relation between our ADI-R PCA factor 280 
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weights/loadings (Supplementary Table 2) and those published previously by Lam and 281 

Colleagues6 on our findings. We computed subject-wise CI, IS and RM scores using the 282 

previously published weights. We found a high correlation between CI, IS and RM scores 283 

computed using our weights and CI, IS and RM scores using the previously published weights 284 

(Spearman rCI = 0.88, p < 0.001, rIS = 0.71, p < 0.001, rRM = 0.86, p < 0.001). Third, we 285 

examined the relationship between features of cognitive control circuit dynamics and CI, IS and 286 

RM scores that were computed using the previously published weights by Lam and colleagues. 287 

Cross-validation analysis revealed findings consistent with the results from the original analysis, 288 

namely: mean and variability of cognitive control circuit dynamics measure CNII was predictive 289 

of CI scores and IS scores, but not RM scores (r(pred, actual)CI=0.47, pCI=0.001; r(pred, 290 

actual)IS=0.22, pIS=0.03; r(pred, actual)RM=-0.37, pRM=0.86). Fourth, we examined the 291 

relationship between features of motor circuit dynamics and CI, IS and RM scores that were 292 

computed using the previously published weights. Results from this cross-validation analysis 293 

were consistent with the results from the original analysis, namely: mean of motor circuit 294 

dynamics measure MNII was predictive of RM scores, but not CI and IS scores (r(pred, 295 

actual)RM=0.34, pRM=0.005;r(pred, actual)CI=0.02, pCI=0.18; r(pred, actual)IS=0.11, pIS=0.07).  296 

Fifth, to further demonstrate the robustness of our findings, we examined CI, IS and RM scores 297 

by zeroing out the weights of the two items “resistance to trivial changes in the environment” 298 

and “difficulties in minor changes in subject’s environment” in our weights. Results from brain-299 

behavior analyses using these CI, IS and RM scores were consistent with the results from the 300 

original analysis. Taken together, these results, further demonstrate the robustness of our main 301 

findings 302 

 303 
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Supplementary Tables 304 

Supplementary Table 1. Descriptive statistics for the children with autism spectrum disorder 305 

(ASD) and typically-developing (TD) children groups. The two groups were matched on age, 306 

sex, intelligent quotient (IQ) and head motion during functional MRI. Two sided two-sample t-307 

tests were used to compare age, IQ and head motion parameters between the children with ASD 308 

and TD groups. Two sided Chi-Squared test was used to compare sex distribution between the 309 

children with ASD and TD groups. 310 

 311 

 ASD (n = 48) TD (n = 48) p 

Age 10.9 ± 1.9 years 10.9 ± 1.7 years 0.99 

Sex (male/female) 41/7 41/7 1 

IQ 115 ± 16 118 ± 11 0.27 

        

Head Motion       

Range       

X (mm) 0.57 ± 0.62 0.56 ± 0.56 0.97 

Y (mm) 0.79 ± 0.61 0.74 ± 0.64 0.66 

Z (mm) 1.53 ± 0.99 1.46 ± 1.06 0.72 

Pitch (mm) 1.12 ± 1.06 0.97 ± 0.77 0.44 

Roll (mm) 1.46 ± 1.24 1.43 ± 1.26 0.89 

Yaw (mm) 0.66 ± 0.67 0.60 ± 0.64 0.64 
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Scan to Scan motion 

(mm) 
0.15 ± 0.11 0.13 ± 0.06 0.17 

 312 

 313 
 314 

  315 
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Supplementary Table 2. Restricted and Repetitive Behavior (RRB) subtypes based on factor 316 

analysis of items from the Autism Diagnostic Interview-Revised (ADI-R). 317 

 318 

ADI-R RRB Items CI IS RM 

68 Circumscribed Interests .63 .06 .13 

76 Unusual attachment to objects .71 -.09 .01 

75 Resistance to trivial changes in the environment .73 .15 -.04 

70 Compulsions/Rituals .27 .69 .20 

67 Unusual preoccupations -.10 .83 .01 

74 Difficulties in minor changes in subject’s environment .53 .07 .35 

69 Repetitive use of objects or interest in parts of objects .26 .34 .61 

77 Hand and finger mannerisms -.16 .22 .69 

78 Other complex mannerisms/stereotyped body movements .22 -.18 .71 

 319 

  320 
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Supplementary Table 3. Multiple linear regression revealed that, after controlling for all 321 

potential confounds, mean of dynamic time-varying cognitive network interaction index (CNII) 322 

was still significantly different between the children with autism spectrum disorder (ASD) and 323 

typically-developing (TD) children groups. 324 

 325 
  t p  
Group -4.16 .00001 
Age -.44 .66 
Scan-to-Scan Motion -1.67 .10 
Sex .05 .60 
IQ -.11 .31 
   

  326 
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Supplementary Table 4. Multiple linear regression revealed that, after controlling for all 327 

potential confounds, variability of dynamic time-varying cognitive network interaction index 328 

(CNII) was still significantly different between the children with autism spectrum disorder 329 

(ASD) and typically-developing (TD) children groups. 330 

. 331 

 332 
  t p  
Group 5.8 .00001 
Age -.40 .69 
Scan-to-Scan Motion 1.29 .20 
Sex -.85 .40 
IQ -.79 .43 
   

  333 
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Supplementary Table 5. Multiple linear regression revealed that, after controlling for all 334 

potential confounds, mean of dynamic time-varying motor network interaction index (MNII) was 335 

still significantly different between the children with autism spectrum disorder (ASD) and 336 

typically-developing (TD) children groups. 337 

  t p  
Group 2.57 .012 
Age -1.84 .07 
Scan-to-Scan Motion -.76 .45 
Sex -.71 .48 
IQ .59 .55 
   

 338 
  339 
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Supplementary Figures 340 

Supplementary Figure 1. Subject selection procedure. 341 

  342 
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Supplementary Figure 2. Search of open-source autism spectrum disorder (ASD) datasets 343 

yielded no subjects who had both resting state functional MRI (fMRI) data and item-level 344 

Autism Diagnostic Interview-Revised (ADI-R) scores. 345 

 346 

 347 

 348 
  349 
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Supplementary Figure 3. Salience, Central Executive, Default mode, Cortical Motor and 350 

Subcortical Motor networks. (A) Salience Network (SN), (B) Left Central Executive Network 351 

(LCEN), (C) Right Central Executive Network (RCEN), (D) Default Mode Network (DMN), (E) 352 

Cortical Motor Network (cMN) and (F) Subcortical Motor Network (sMN). 353 

 354 

 355 

356 
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Supplementary Figure 4. Regression analysis revealed that temporal mean of dynamic cross-357 

network interactions in the motor circuit do not predict (a) CI or (b) IS symptoms. (c) Regression 358 

analysis revealed that temporal mean and variability of dynamic cross-network interactions in the 359 

cognitive control circuit do not predict RM symptoms. Error band represent 95% confidence 360 

interval for the regression estimate. Cross-validation analyses confirmed these results. 361 

 362 

  363 
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