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1 Hardware 

The automated platform system consists of four main elements: the input system, the reactor, the in-

line sample system and the sample storage. All elements are run by a modular python code written 

in-house. As a schematic of the whole build up is shown in the manuscript as Figure 2, so here we only 

elaborate on specific elements of the setup.  

The input system consists of three Tricontinent syringe pumps each connected to a Tricontinent rotary 

6-way distribution valve. Every valve is connected to six starting material bottles, resulting in a library 

of 18 input choices. Liquid is transported through 1/8 (3.2 mm) PTFE tubing with PEEK fittings. 

The reactor, is a 100 mL round bottom flask with a specifically tailored head allowing attachment of 

screw fittings for the tubing connections and a reflux condenser, which is kept under a positive pressure 

of nitrogen gas, controlled by a flow controller (model 0254 by Brooks Instrument), ensuring a controlled 

reaction atmosphere. The temperature is controlled via an IKA RET ‘control-visc’ hotplate with a USB 

interface.  

For the in-line analytical system, shown in Supplementary Figure 1 below, an HPLC-DAD (diode array 

detector) system is coupled to an Advion L-series benchtop mass spectrometer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1: In-line sampling and analytical system with external sample loop on the 
left, HPLC-DAD in the middle followed by a split valve, which injects into the ESI-MS on the right 
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The sample is drawn from the reactor by a peristaltic pump (Vapourtec model SF-10) and filtered 

through two 0.2 µm size nylon syringe filters fitted between a pair of Luer (Male) and Flat Bottom 

(Female) ETFE/Polypropylene adapters. It is injected into a 16 cm sample loop on an external, directly 

controlled, HPLC six-port switching valve. The sampling is triggered through the python code and 

actuated through an Arduino Mega 2560/RAMPs combination. Once the loop is loaded with fresh 

sample, the external sample valve is switched to flush the loaded sample loop with mobile phase from 

the LC-system and deliver the sample directly on the column. After the column, the sample moves 

through the diode array detector (DAD) and then into a split valve, which reduces the flow from 0.5 

mL/min to 0.2 ml/min (the excess going to waste) ready for direct injection into the electrospray 

ionisation mass spectrometer (ESI-MS). This is triggered through a contact closure from the HPLC 

system, ensuring no delay in the parallel run time of both instruments. 

The sample storage system (Supplementary Figure 2), which allows the storage of up to 20 samples of 

50mL each in plastic sampling tubes, is build around an in-house designed 3D printed wheel. This 

wheel is based in a Geneva drive mechanism motion, allowing step-by-step increment of positions with 

high accuracy. The box in which the wheel system is contained is built from custom cut V-Slot aluminium 

rails. The column to hold the driven wheel, the drive wheel that increments the driven wheel, the stepper 

motor securing element, the supporting levelling arches and the solution dispensing part are all 3D 

printed on a Connex 500 printer with the translucent material RGD720. The base plate and the vial plate 

for holding the 50 ml plastic sample tubes is laser cut from acrylic plate. The levelling arches are all 

suited with an 8 mm ball bearing, and the Nema11 stepper motor that increments the drive is controlled 

through an Arduino MEGA.  

 

Supplementary Figure 2: Custom build sample storage system providing space for up to 20 samples 
of a volume of up to 50 mL per sample, which are collected in plastic centrifuge tubes. The lids of the 
tubes (orange), sit on the acrylic plate and are holding the vials in place. The 3d printed parts are 
shown in blue. 
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2 Experimental Details 

2.1 Dilution vs. product persistence 

In this study we are interested in the persistence of products, not of input reagents. If the experimental 

concept were linear and solely be based on periodically changing input compounds, every product 

would become diluted over time. However, our experimental concept is different, and with the inclusion 

of minerals, the reaction system is not linear. Over time, many of the components of the mixture will be 

diluted to infinitesimally low concentrations, but not all. Binding to mineral particles can lead to product 

build up on their surface which may then lead to species amplification, as well as a change of the 

species concentration in the reactor over time. Products in our system can be made from multiple 

reactions / input compositions, including the breakdown components of other product species, which 

can lead to some specific product species becoming prevalent, even under different input conditions. 

The critical question is therefore not about what will happen to the reagents upon serial dilution, but 

rather what products are formed and whether those products are formed robustly from the reaction 

mixture or only marginally. Those that are formed robustly (e.g. from multiple sets of reagent 

combinations) will persist (be amplified) in the face of dilution. When specific products persist through 

many reaction cycle, we say they have been amplified by the reaction, while all species that do not 

increase will be diluted out. 

2.2 Chemical selection process 

The starting material library was mostly chosen by purposefully avoiding specific chemical groups, 

meaning no “common” autocatalytic cycle precursors, sugars or amino acids have been selected. The 

aim was to solely concentrate on small functional building block molecules with no immediate 

connection or function. The following table shows the list of selected building blocks and some potential 

properties. 

Supplementary Table 1: List of starting material reagents and their properties 

Input chemical Properties 

Resorcinol  weak organic acid 

 can polymerize in condensation reactions  

Pyruvic acid  can be used to make glucose 

 polymerizes and decomposes in touch with air 

Acrylic acid  polymerizes exposed to heat 

Glycidol (2,3-epoxy-1-
propanol) 

 intermediate in the synthesis of glycerol, glycidyl ether, amines 

 contact with earth metals may cause polymerization  

Glycerol  intermediate in carbohydrate and lipid metabolism 

Carbonyldiimidazole  enzyme cross linking agent 

 coupling agent for amino acids and peptide synthesis 

Ethyl acetate  carboxylic acid ester 

 exists in eukaryotes 

Pyridine  coordination chemistry ligand 

 strong basic compound 
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Oxalic acid  metabolite 

 moderately acidic 

Formamide  monocarboxylic acid amide 

 nucleic acid building block 

Catechol  weak organic acid 

 participant in metabolic pathways 

Ruthenium-(III)-chloride 
hydrate 

 metal salt 

 catalytic effects 

Formaldehyde  sugar precursor 

 Miller-Urey intermediate  

Copper-(II)-sulfate 
pentahydrate 

 metal salt 

Sulfuric acid  strong acid 

 corrosive 

Nitric acid  strong acid 

 corrosive 

Ammonium thiosulfate  ammonium source 

 sulphur part of earth crust 

Potassium 
pyrophosphate 

 potassium part of earth crust 

 phosphate source (food) 

 

2.3 Mineral leaching 

Details about the mineral preparation and wash procedure can be found in the manuscript. To look into 

the effect or minerals leaching out into solution, a preliminary experiment was analysed by ICP-OES, 

testing if the elements present in the mineral, can be found in solution. 

The ICP-OES (Inductively Coupled Plasma – Optical Emission Spectroscopy) analysis was performed 

on an Agilent 5100.  Multi-standard solutions have been used for calibration. The samples have been 

treated with a 2% HNO3 solution.   
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Supplementary Figure 3: ICP-OES plotted against the number of cycles. Boron, calcium, iron, sodium 

and silicon have been tested. The increase of sodium is based on input solution addition containing in 

the specific cycles. 

The graph above shows, that it is possible for elements like calcium and boron to leach out of ulexite. 

This effect appears to be only present in the first 5 cycles, after which the concentration of these 

elements in solution drops to negligent amounts.  
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2.4 List of experiments 

Supplementary Table 2: List of executed runs, their cycle number and their input solution in order of 

addition to the reactor. The run description specifically state the label used for the run in the SI, as well 

as figure 4 it and 5 of the main manuscript as labels have been changed for consistency and clarity.  

RUN 

DESCRIPTION  

CYCLE 

NUMBER 

INPUT 1 INPUT 2  INPUT 3 

A IN SI  1 to 17 resorcinol pyruvic acid ammonium thiosulfate  
 

18 to 26 copper-(II)-sulfate 

pentahydrate 

oxalic acid  nitric acid  

 
27 to 36 copper-(II)-sulfate 

pentahydrate 

oxalic acid  carbonyldiimidazole 

 
37 to 47 pyridine ruthenium-(III)-chloride 

hydrate 

ammonium thiosulfate 

 
48 to 59 pyruvic acid resorcinol catechol 

 
60 to 78 ammonium 

thiosulfate 

carbonyldiimidazole formamide 

 
79 to 88  pyruvic acid formaldehyde glycidol 

 
89 to 98 formaldehyde acrylic acid sulfuric acid  

 
99 to 110 carbonyldimidazole pyridine ruthenium-(III)-chloride 

hydrate 
 

111 to 113 ruthenium-(III)-

chloride hydrate 

sulfuric acid  ethyl acetate 

B IN SI 

A IN FIGURE 4 

10 IN FIGURE 5 

1  to 17 acrylic acid potassium 

pyrophosphate  

carbonyldiimidazole 

 
18 to 42 ethyl acetate formamide formaldehyde 

 
43 to 52 ruthenium-(III)-

chloride hydrate 

pyridine copper-(II)-sulfate 

pentahydrate 
 

53 to 62 resorcinol pyridine formamide 
 

63 to 67 potassium 

pyrophosphate  

ethyl acetate formaldehyde 

C IN SI 

11 IN FIGURE 5 

REPEAT OF 

RUN B 

1  to 17 acrylic acid potassium 

pyrophosphate  

carbonyldiimidazole 

 18 to 42 ethyl acetate formamide formaldehyde 

 43 to 52 ruthenium-(III)-

chloride hydrate 

pyridine copper-(II)-sulfate 

pentahydrate 

 53 to 62 resorcinol pyridine formamide 

 63 to 67 potassium 

pyrophosphate  

ethyl acetate formaldehyde 
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D IN SI 

B IN FIGURE 4 

12 IN FIGURE 5 

REPEAT OF 

RUN B 

1  to 17 acrylic acid potassium 

pyrophosphate  

carbonyldiimidazole 

 18 to 42 ethyl acetate formamide formaldehyde 

 43 to 52 ruthenium-(III)-

chloride hydrate 

pyridine copper-(II)-sulfate 

pentahydrate 

 53 to 62 resorcinol pyridine formamide 

 63 to 67 potassium 

pyrophosphate  

ethyl acetate formaldehyde 

E IN SI 

C IN FIGURE 4 

 

1 to 13 glycidol pyruvic acid sulfuric acid  

 
14 to 20 glycidol resorcinol catechol 

 
21 to 30 oxalic acid sulfuric acid  acrylic acid 

 
31 to 43 sulfuric acid potassium 

pyrophosphate  

acrylic acid 

 
44 to 52 oxalic acid formaldehyde sulfuric acid  

 
53 to 70 acrylic acid pyridine sulfuric acid  

 
71 to 80 ammonium 

thiosulfate 

oxalic acid  sulfuric acid  

 
81 to 92 ruthenium-(III)-

chloride hydrate 

carbonyldiimidazole formamide 

 
93 to 100 ruthenium-(III)-

chloride hydrate 

potassium 

pyrophosphate  

ethyl acetate 

 
101  to 112 nitric acid oxalic acid  sulfuric acid  

 
113 to 125 ruthenium-(III)-

chloride hydrate 

potassium 

pyrophosphate  

ruthenium-(III)-chloride 

hydrate 
 

126 to 129 ruthenium-(III)-

chloride hydrate 

potassium 

pyrophosphate  

catechol 

 
130 to 160 ruthenium-(III)-

chloride hydrate 

potassium 

pyrophosphate  

resorcinol 

F IN SI 

D IN FIGURE 4 

1 to 1 pyruvic acid ethyl acetate oxalic acid 

 
13 to 20 acrylic acid copper-(II)-sulfate 

pentahydrate 

sulfuric acid  

 
21 to 43 glycidol carbonyldiimidazole oxalic acid 

 
44 to 56 ethyl acetate pyruvic acid ethyl acetate 

 
57 to 71 copper-(II)-sulfate 

pentahydrate 

acrylic acid glycidol 

G IN SI 

E IN FIGURE 4 

1 to 10 oxalic acid pyridine catechol 

 
11 to 21 catechol nitric acid pyruvic acid 
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22 to 34 glycerol ammonium thiosulfate  formamide 

 
35 to 44 acrylic acid potassium 

pyrophosphate  

glycidol 

 
45 to 56 copper-(II)-sulfate 

pentahydrate 

sulfuric acid  ammonium thiosulfate  

 
57 to 67 glycerol ammonium thiosulfate  catechol 

 
68 to 76 glycidol pyridine pyruvic acid 

H IN SI 

F IN FIGURE 4 

1 to 12 glycidol ammonium thiosulfate  carbonyldimidazole 

 
13 to 22 glycidol formaldehyde glycidol 

     
 

23 to 36 ammonium 

thiosulfate 

copper-(II)-sulfate 

pentahydrate 

catechol 

 
37 to 65 sulfuric acid resorcinol pyruvic acid 

 
66 to 80 sulfuric acid ruthenium-(III)-chloride 

hydrate 

carbonyldiimidazole 

 
81 to 90 oxalic acid glycerol resorcinol 

 
91 to 96 potassium 

pyrophosphate  

catechol resorcinol 

 

2.5 Instrumentation 

2.5.1 Electrospray- Ionisation Mass Spectrometry (ESI-MS) 

The Bruker Maxis was used for offline analysis. Data is shown in the SI in Figure 11 to 16. The sample 

was run through a DIONEX Ultimate 3000 series HPLC-DAD set up with a RS (rapid separation) pump. 

Injected from the RS autosampler (WPS-3000 (T) RS) on an Agilent Infinity Lab Poroshell 120 Eclipse 

EC-C18 UHPLC 150 mm column, kept in a column compartment (TCC-3000SD) with a controlled 

temperature of 30 °C. The method used was a gradient method with 0.1 % formic acid added to LC-MS 

grade water and 0.1 % formic acid added to LC-MS grade acetonitrile (MeCN). The run started with 100 

% aqueous phase. Over 4 minutes, the organic (MeCN) flow was increased to 10 %, after another 12 

minutes it was at 7 0% MeCN. After 19 minutes runtime, a flow of 100 % organic mobile phase was 

reached. After that, the mobile phase was switched back to the initial 100 % water. The flow rate through 

the whole run was 0.7 mL/min and the total runtime was 26 minutes. The HPLC was connected to a 

Bruker MaXis Impact quadrupole time-of-flight mass spectrometer with an electrospray source, 

operating exclusively in positive mode. The instrument was calibrated with a sodium formate standard 

solution before each run. Samples were introduced into the MS at a dry gas temperature of 220 °C. The 

ion polarity for all MS scans recorded was positive, with the voltage of the capillary tip set at 4800 V, 

end plate offset at − 500 V, funnel 1 RF at 400 Vpp, funnel 2 RF at 400 Vpp, hexapole RF at 100 Vpp, 

ion energy 5.0 eV, collision energy at 5 eV, collision cell RF at 200 Vpp, transfer time at 100.0 μs, and 



11 
 

the pre-pulse storage time at 3.0 μs. The mass range was set to 50 – 2000 m/z. Data was analysed 

using the Bruker DataAnalysis v4.1 software suite.  

 
 

3 Mass Index calculation 

3.1 Mass Index calculation 

The Mass Index is calculated as shown in Supplementary Figure 4. Additional example cases of specific 

cycles are shown below inError! Reference source not found. to 7. 

 

Supplementary Figure 4: Figure from Doran’s paper(1), showing the Mass Index calculation. After 
thresholding( 106 intensity), the heaviest and lightest peak are subtracted from each other to determine 
the mass range and divided through the number of peaks over threshold.  

 

3.2 Mass Index trends 

This table summarizes the expected behavior of the Mass Index in various cases.  

Supplementary Table 3: Table depicting mass index trends 

 Largest Product Constant Number Product Species Constant 

Mass Index UP Fewer Product Species Largest Product Increased 

Mass Index DOWN More Product Species Largest Product decreased  
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3.3 Mass Index calculation examples 

 

Supplementary Figure 5: Mass Index calculation of cycle 1, the Mass Index is calculated from the sum 
of all spectra. A presents the TIC of that cycle while B shows the input molecules which have been 
randomly chosen by the algorithm. In C spectra correlating to peak areas in the TIC are presented. D 
are all spectra from the TIC combined and this results in E the Mass Index of cycle 1. 

 

 

Supplementary Figure 6: Mass Index calculation of cycle 22, the Mass Index is calculated from the 
sum of all spectra. A presents the TIC of that cycle while B shows the input molecules which have been 
randomly chosen by the algorithm. In C spectra correlating to peak areas in the TIC are presented. D 
are all spectra from the TIC combined and this results in E the Mass Index of cycle 22. 
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Supplementary Figure 7: Mass Index calculation of cycle 62, the Mass Index is calculated from the 
sum of all spectra. A presents the TIC of that cycle while B shows the input molecules which have been 
randomly chosen by the algorithm. In C spectra correlating to peak areas in the TIC are presented. D 
are all spectra from the TIC combined and this results in E the Mass Index of cycle 62. 

 

4 Example experimental data 

4.1 General 

All data was collected as described above. As the size of the datasets (over 1000 samples have been 

collected) do not allow to present every single sample, we show one experiment in detail, as an example 

for all experiments discussed in the manuscript. This data analysis was complementary, as the main 

focus of the project was to algorithmically analyse and systematically investigate the experiment instead 

of screening for every single species which could be found in the analysis. The experiment which was 

chosen as the example here is referred as Run G in the manuscript.  

4.1.1 Input compositions used 

Supplementary Table 4: Input solutions, used in Run G. All inputs have been added in the order 1 to 

3. 

Cycle number  Input 1 Input 2 Input 3 

1-10 Oxalic acid Pyridine Catechol 

11 - 21 Catechol Nitric acid Pyruvic acid 
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22-34 Glycerol Ammonium thiosulfate Formamide 

35-44 Acrylic acid Potassium 

pyrophosphate 

Glycidol 

45 - 56 Copper sulfate Sulfuric acid Ammonium thiosulfate 

57- 67 Glycerol Ammonium thiosulfate Catechol 

68-75 Glycidol Pyridine Pyruvic acid 

 

4.1.2 pH measurements 

Supplementary Table 5: pH values of run G per cycle. Measurement was carried out after the 
experiment was finished. 

Cycle number pH Cycle number pH Cycle number pH 

1 7.90 24 6.26 47 3.55 

2 4.80 25 6.26 48 3.35 

3 3.87 26 6.19 49 3.35 

4 3.33 27 6.18 50 3.30 

5 3.05 28 6.10 51 3.52 

6 5.71 29 6.11 52 3.71 

7 4.78 30 6.02 53 3.83 

8 2.45 31 6.04 54 3.85 

9 2.67 32 6.01 55 4.05 

10 2.82 33 6.01 56 4.32 

11 2.44 34 6.01 57 4.48 

12 2.08 35 5.95 58 4.50 

13 2.89 36 5.93 59 4.79 

14 1.83 37 5.91 60 4.91 

15 1.81 38 5.91 61 5.01 

16 1.83 39 5.86 62 4.98 

17 1.84 40 5.84 63 5.00 

18 1.81 41 5.09 64 5.05 

19 3.90 42 5.11 65 5.05 

20 6.49 43 4.88 66 5.04 

21 4.52 44 4.70 67 5.07 

22 6.47 45 3.69 68 5.06 

23 6.37 46 3.64 69 5.07 
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4.1.3 Mineral controls 

To control the influence of minerals of the experiment, cycles of run G have been manually repeated 

with and without minerals added.  

The experiment has been carried out in 24-hour cycles but based on run G. The first test was the first 

input set of run G (as described in 4.1) recursed every 24 hours with and without minerals. For the 

second test, the composition of the replenishing input material was changed in every cycle, e.g.  the 

first input set which was oxalic acid, pyridine and catechol in the first cycle and the second input set 

catechol, nitric acid and pyruvic acid followed by the third again based on the next input set of run G. 

This was as well done with and without minerals. The third test have been minerals stirred in water, in 

which the water was samples and replenished every 24 hours. All experiments have been carried out 

in triplicates and been measured via ESI-MS as described in 2.5.1. The minerals have been a mix of 

1g of ulexite, pyrite and quartz each.  

 

Supplementary Figure 8: Base Peak Chromatograms (BPC’s) of Cycle 1 of the mineral control run. 
The graphs top to bottom are 1. The first input composition without minerals, 2. The same input 
composition with minerals and 3. Water with minerals. 
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Supplementary Figure 9: BPC’s of Cycle 3 of the mineral control run. The graphs top to bottom are 1. 
The first input composition replenished with the same input set without minerals, 2. The same input 
composition with minerals and 3. The first 3 input compositions added cycle per cycle, without minerals. 
4. The same chemical combination as three, with minerals. 5. Water with minerals. 

 

 

Supplementary Figure 10: BPC’s of Cycle 5 of the mineral control run. The graphs top to bottom are 
1. The first input composition replenished with the same input set without minerals, 2. The same input 
composition with minerals and 3. The first 5 input compositions added cycle per cycle, without minerals. 
4. The same chemical combination as three, with minerals. 5. Water with minerals. 
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Supplementary Figure 11: BPC’s of Cycle 7 of the mineral control run. The graphs top to bottom are 
1. The first input composition replenished with the same input set without minerals, 2. The same input 
composition with minerals and 3. All input compositions of run G added cycle per cycle, without 
minerals. 4. The same chemical combination as three, with minerals. 5. Water with minerals. 

 

4.1.4 HPLC-DAD data  

 

Supplementary Figure 12: HPLC-DAD run overview of Run G. Presented wavelength is 215 nm. The 

line colour is showing how the different cycles are in context to each other. The cycles with the same 

line colour, had the identical input sets. The different input sets were: Cycle 1 and 5 (oxalic acid, 

pyridine, catechol) (red), cycle 11 and 16 (catechol, nitric acid, pyruvic acid) (light green), cycle 22 and 
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29, (glycerol, ammonium thiosulfate, formamide) (blue), cycle 35 to 40 (glycidol, carbonyldimidazole, 

oxalic acid) (dark green), cycle 45 and 51 (ethyl acetate, pyruvic acid, ethyl acetate) (orange), cycle 57 

and 62 (copper-(II)-sulfate pentahydrate, acrylic acid, glycidol) (purple) 

 

Supplementary Figure 13: Input solutions run in isolation on the HPLC-DAD. All solutions have been 

exactly prepared as if they have been used as inputs on the platform. 

 

Supplementary Figure 14: Run G cycle 1 compared to the input solutions used in this cycle (oxalic 

acid, catechol, and pyridine). All standards have been run individual through the same HPLC-DAD. 
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4.1.5 Online HPLC-MS  

 

Supplementary Figure 15: Total ion chromatograms of run G from benchtop Advion. The plot shows 

the intensity of the total signal over the retention time in seconds. 

 

4.1.6 Offline HPLC-ESI-MS 

In the following section, we show run G measured on a more sensitive mass spectrometer, a Bruker 

MAXIS. As we emphasised before, it is not the goal of these experiments to identify every single species 

but following we show an example approach which could be used for this. However, as this would be 

too time consuming in reality, does not present a real option.  
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Supplementary Figure 16: BPC chromatograms of offline samples measured on Bruker mass spec 

compared to each other. The grey areas will be further discussed below. 

Many small peaks can be observed in the Bruker BPC. Four retention times are highlighted in grey and 

are further investigated.  

 

Supplementary Figure 17: Spectra of Bruker chromatogram, cycle 1 and cycle 35 compared in the 

range from 2.2 to 2.5 minutes, section I of Figure 11. The first peak at 90.97 m/z refers to the oxalic 

acid of that input set, the higher numbered species might be polymers or products that clustered 

together. 
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Supplementary Figure 18: Spectra of chromatogram range from 6.5 to 7.2 minutes, section II of Figure 
11. 

The observed mass of 188.0731 m/z would be consistent with a  species with the formula C11H10NO2 

and could lead to the hypothesis, that a pyridine molecule reacted with a catechol molecule in a 

condensation reaction. This reaction appears structurally and energetically very unlikely but the mass 

spectrometry data confirms the calculated formula. We observe a base peak with the mass of 188.0731 

m/z and based on the suggested formula the theoretical mass would be 188.0716 m/z. This means the 

error is 10.315 ppm. Further to this, when zoomed into the spectra, another peak of an abundance of 

12.5 % can be observed (Supplementary Figure 19: Spectra of chromatogram range from 6.5 to 7.2 

minutes of cycle 1, zoomed in the m/z area between 187 m/z to 190 m/z). This peak at 189.0759 m/z 

supports the suggested formula, matching the second theoretical most abundant value, with a 

theoretical abundance of 11.9 % and a value of 189.07452 m/z, resulting in an error of 7.299 ppm. Both 

errors are low, suggesting that the data is good for the instrument used. As in cycle 1 there is just one 

peak visible in the shown mass range, while in cycle 5 there are 2 other peaks appearing, one very 

close to the first one at 204.06 m/z and one peak at 352.34 m/z. Cycle 11 shows  more peaks but the 

188.07 m/z peak is still standing out and the small peak at 204.06 m/z from cycle 5 is present too. Two 

new peaks are shown at 263.11 m/z and 337.15 m/z. Neither of the mentioned peaks are matching the 

mass of any of the starting materials what leads to the conclusion that these peaks relate to products. 
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Supplementary Figure 19: Spectra of chromatogram range from 6.5 to 7.2 minutes of cycle 1, zoomed 

in the m/z area between 187 m/z to 190 m/z 

 

Supplementary Figure 20: Spectra of Bruker chromatogram, range from 8.5 to 8.9 minutes, section III 
of Figure 11. 

Neither of the following spectra have peaks, which we completely identified, the peaks in Supplementary 

Figure 20 could be related to the catechol input solution or to product species of a catechol related 

reaction, as these peaks are solely observed if the compound is present in the system. In 

Supplementary Figure 21: Spectra of Bruker chromatogram range from 12.2 to 12.8 minutes, none of 

the peaks in the spectra relate to input solutions leading to the assumption that these are product 

species or contaminants. 
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Supplementary Figure 21: Spectra of Bruker chromatogram range from 12.2 to 12.8 minutes, section 

IV of Figure 11. 

4.2 Formula identification 

4.2.1 Experimentally found values 

Following is a list of found m/z values in the Bruker spectra and proposed molecular formulas based on 

this value. Differences between the measured m/z value and the monoisotopic mass can be caused by 

common adducts in positive mode MS like hydrogen, sodium or potassium.  

Supplementary Table 6: Measured m/z and proposed correlating formula and monoisotopic mass of selected 

cycles of run G 

Cycle 1 
  

Cycle 5 
  

m/z Formula Monoisotopic 
mass 

m/z Formula Monoisotopic 
mass 

107.9671 C3HO3 84.9926 107.9668 C3HO3 84.9926 

128.9516 CNO5 105.9776 128.9512 CNO5 105.9776 

145.9308 CHNO6 122.9804 145.9304 CHNO6 122.9804 

146.9624 C5O4 123.9797 146.9622 C5O4 123.9797 

158.9643 CN2O6 135.9756 158.9625 CN2O6 135.9756 

163.9417 C5HO5 163.9716 163.9414 C5HO5 163.9716 

181.9527 C11HO3 181.9998 181.9523 C11HO3 181.9998 

185.1168 C11H16N 162.1283 185.1166 C11H16N 162.1283 

186.9583 C7O5 163.9746 186.9579 C7O5 163.9746 

188.0733 C11H10NO2 188.2 188.0723 C11H10NO2 188.2 

189.0761 C9H12NO2 166.0868 189.0756 C9H12NO2 166.0868 

190.0785 C9H13NO2 167.0946 191.106 C12H14O2 190.0994 
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191.1062 C12H14O2 190.0994 195.101 C12H14N 172.1126 

195.1013 C12H14N 172.1126 202.9531 C2H2O11 201.9597 

204.0677 C11H9NO3 203.0582 204.0673 C11H9NO3 203.0582 

209.1172 C12H16O3 208.1099 204.9709 CH2NO11 203.9628 

213.9252 C8HNO5 190.9855 209.1169 C12H16O3 208.1099 

217.1072 C10H16O5 216.0998 213.9247 C8HNO5 190.9855 

226.9551 C9H2NO5 203.9933 217.1068 C10H16O5 216.0998 

256.0632 C12H11NO4 233.0688 226.9566 C9H2NO5 203.9933 

257.2506 C12H18NO5 256.1185 257.2499 C12H18NO5 256.1185 

283.2278 C13H16NO6 282.0978 283.2276 C13H16NO6 282.0978 

296.0955 C12H19NO6 273.1212 285.2816 C17H20N2O2 284.1525 

297.0987 C12H20NO6 274.1291 329.3269 C20H18N5 328.1562 

326.0703 C11H15N2O8 303.0828 352.343 C17H19N8O 351.1682 

329.3275 C20H18N5 328.1562 353.3458 C18H20N6O2 352.1648 

352.3435 C17H19N8O 351.1682 354.3451 C16H19N9O 353.1713 

353.3464 C18H20N6O2 352.1648 520.2636 C20H19NO14 497.0806 

354.3457 C16H19N9O 353.1713 
   

520.2646 C20H19NO14 497.0806 
   

Cycle 
10 

  
Cycle 
15 

  

m/z Formula Monoisotopic 
mass 

m/z Formula Monoisotopic 
mass 

80.0486 C5H5N 79.0421 97.9682 CHNO3 74.9956 

107.9665 C3HO3 84.9926 107.9664 C3HO3 84.9926 

128.9508 CNO5 105.9776 128.9507 CNO5 105.9776 

141.9588 C2HNO5 118.9855 141.9587 C2HNO5 118.9855 

145.93 CHNO6 122.9804 145.9299 CHNO6 122.9804 

146.9616 C5O4 123.9797 146.9616 C5O4 123.9797 

158.9619 CN2O6 135.9756 158.0034 C3H5NO5 135.0168 

163.9409 C5HO5 163.9716 158.9625 CN2O6 135.9756 

181.9517 C11HO3 181.9998 159.9694 C2HO7 136.9722 

185.1161 C11H16N 162.1283 163.9407 C5HO5 163.9716 

186.9574 C7O5 163.9746 181.0114 C8H4O5 180.0059 

188.0716 C11H10NO2 188.2 181.0847 C10H12O3 180.0786 

191.1056 C12H14O2 190.0994 181.9515 C11HO3 181.9998 

195.1005 C12H14N 172.1126 185.1157 C11H16N 162.1283 

202.9523 C2N2O8 179.9655 186.957 C7O5 163.9746 

204.0668 C11H9NO3 203.0582 188.0715 C11H10NO2 188.2000 

204.9704 C2H2N2O8 181.9811 189.0742 C9H12NO2 166.0868 

209.1164 C12H16O3 208.1099 191.1052 C12H14O2 190.0994 

213.9243 C8HNO5 190.9855 195.1002 C12H14N 172.1126 

217.1063 C10H16O5 216.0998 199.0221 C8H6O6 198.0164 

226.9559 C9H2NO5 203.9933 201.0381 C9H8NO3 178.0504 

236.9411 C10NO5 213.9776 204.9696 C7H2O6 181.9851 

257.2494 C12H18NO5 256.1185 209.116 C12H16O3 208.1099 

283.2269 C13H16NO6 282.0978 211.0953 C11H14O4 210.0892 
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285.2809 C18H36O2 284.2715 213.9237 C8HNO5 190.9855 

329.3261 C20H18N5 328.1562 217.1059 C10H16O5 216.0998 

352.3422 C17H19N8O 351.1682 231.9344 C8H3NO6 208.9960 

353.345 C18H20N6O2 352.1648 236.9404 C6H2N2O7 213.9862 

354.3445 C16H19N9O 353.1713 246.8639 C10NO7 245.9675 

520.2627 C20H19NO14 497.0806 254.951 C10H2NO6 231.9882 
   

257.249 C12H18NO5 256.1185 
   

263.112 C11H18O7 262.1053 
   

264.8744 C11NO6 241.9726 
   

282.8852 C10N2O7 259.9706 
   

283.226 C13H16NO6 282.0978 
   

285.2803 C18H36O2 284.2715 
   

305.9014 C13HNO7 282.9753 
   

329.3253 C20H18N5 328.1562 
   

352.3413 C17H19N8O 351.1682 
   

353.3441 C18H20N6O2 352.1648 
   

354.3433 C16H19N9O 353.1713 
   

520.2611 C20H19NO14 497.0806 
   

520.7628 C20H2N8O9 497.9945 

Cycle 
20 

  
Cycle 
25 

  

m/z Formula Monoisotopic 
mass 

m/z Formula Monoisotopic 
mass 

107.9664 C3HO3 84.9926 107.9663 CHNO3S 106.9677 

115.0364 C3H8O3 92.0473 115.0363 C3H8O3 92.0473 

128.9506 CNO5 105.9776 128.9506 CNO3S 105.9599 

141.9587 C2HNO5 118.9855 145.9299 CHNO2S2 122.9449 

145.9299 CHNO6 122.9804 146.9615 CH2NO4S 123.9705 

146.9616 C5O4 123.9797 163.9406 CHO6S 140.9494 

158.0032 C3H5NO5 135.0168 171.0633 C6H12O4 148.0736 

163.9406 C5HO5 163.9716 173.079 C8H12O4 172.0736 

171.0634 C9H10NO 148.0762 181.0846 C6H16N2S2 180.0755 

181.9515 C11HO3 181.9998 181.9515 C3HO7S 180.9443 

185.1157 C11H16N 162.1283 185.1157 C10H16O3 184.1099 

186.957 C7O5 163.9746 186.9571 C5H2N2O2S2 185.9558 

191.1052 C12H14O2 190.0994 191.105 C7H14N2O4 190.0954 

192.9802 C2H4NO8 169.9937 195.0999 C7H18N2S2 194.0911 

195.1001 C12H14N 172.1126 204.9681 C5H4N2O3S2 203.9663 

204.968 C7H2O6 181.9851 209.1159 C10H18O3 186.1256 

209.116 C12H16O3 208.1099 213.9237 C3HO7S2 212.9164 

213.9236 C8HNO5 190.9855 217.1059 C10H16O5 216.0998 

217.1059 C10H16O5 216.0998 231.9346 C4H3NO5S2 208.9453 

236.9405 C6H2N2O7 213.9862 236.9404 C6H2N2O3S2 213.9507 

238.0149 C16HN2O 237.0089 254.9509 C6H4N2O4S2 231.9612 

239.022 C13H4NO4 238.014 257.2489 C8H20N2O7 256.1271 

254.9513 C10H2NO6 231.9882 282.0032 C8H11NO6S2 281.0028 
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257.2488 C12H18NO5 256.1185 283.2259 C9H18N2O6S 282.0886 

282.0033 C14H3NO6 280.996 329.3254 C20H18N5 328.1562 

283.0282 C6H8N3O10 282.021 352.3413 C17H19N8O 351.1682 

283.2261 C13H16NO6 282.0978 353.344 C18H20N6O2 352.1648 

329.3254 C20H18N5 328.1562 520.2613 C20H19NO14 497.0806 

352.3413 C17H19N8O 351.1682 520.7629 C20H2N8O9 497.9945 

353.3443 C18H20N6O2 352.1648 
   

354.3432 C16H19N9O 353.1713 
   

520.2613 C20H19NO14 497.0806 
   

Cycle 
30 

  
Cycle 
35 

  

m/z Formula Monoisotopic 
mass 

m/z Formula Monoisotopic 
mass 

107.9662 CHNO3S 106.9677 107.9662 CO4P 106.9534 

115.0363 C3H8O3 92.0473 115.0362 C5H6O3 114.0317 

128.9505 CNO3S 105.9599 122.9243 CO3P2 121.9323 

145.9299 CHNO2S2 122.9449 128.9505 H2O4P2 127.9428 

158.0032 C6H5O3S 156.9959 145.9299 C2H4KOP2 144.9374 

163.9407 CHO6S 140.9494 163.9407 C3HO4P2 162.9350 

171.0634 C6H12O4 148.0736 167.0319 C8H6O4 166.0266 

173.079 C8H12O4 172.0736 178.9512 C4H5KO3 139.9876 

178.9514 C4H2O4S2 177.9395 181.0847 C10H12O3 180.0786 

181.0848 C6H16N2S2 180.0755 181.9514 C3H3O5P2 180.9456 

181.9515 C3HO7S 180.9443 185.1157 C10H16O3 184.1099 

185.1157 C10H16O3 184.1099 186.957 C2H4O6P2 185.9483 

186.9572 C5H2N2O2S2 185.9558 191.1051 C12H14O2 190.0994 

190.8646 CH2O7S2 189.9242 195.1 C9H16O3 172.1099 

191.1051 C7H14N2O4 190.0954 200.9329 C2H2O7P2 199.9276 

192.9804 C5H4O6S 191.9729 201.9276 C2H3K2O6 200.9204 

195.1001 C7H18N2S2 194.0911 204.9677 C4H6KO5P 203.9590 

201.9277 C3HNO4S2 178.9347 209.1158 C12H16O3 208.1099 

204.9679 C5H4N2O3S2 203.9663 210.9333 C6H5K3O 209.9252 

209.1159 C10H18O3 186.1256 212.8519 C2HK4P 211.8364 

210.9335 C2H4O6S2 187.9449 213.9238 CH3KO8P 212.9203 

213.9239 C3HO7S2 212.9164 216.9074 C2H3K2O5P 215.8992 

216.9078 C2H2NO7S2 215.9273 217.1059 C10H16O5 216.0998 

217.1059 C10H16O5 216.0998 224.0929 C12H16O2P 223.0888 

228.821 C5H2O5S2 205.9344 228.8207 HK3O3P2 227.8312 

236.9405 C6H2N2O3S2 213.9507 236.9404 C6H7K2O3P 235.9407 

239.0537 C7H14N2O3S2 238.0446 239.0539 C11H10O6 238.0477 

254.8642 C8NO5S2 253.9218 254.8639 C2H2K3O5P 253.8551 

254.9511 C6H4N2O4S2 231.9612 257.2489 C9H20O8 256.1158 

257.249 C8H20N2O7 256.1271 266.9269 C5H11K3OP2 265.9196 

263.112 C10H18N2O4S 262.0987 277.8692 C6HK2O4P2 276.8624 

277.8694 C6HN2O7S2 276.9225 283.2262 C10H18O9 282.0951 



27 
 

283.2262 C9H18N2O6S 282.0886 292.8202 C2H2K4O3P2 291.8027 

295.88 C10HNO6S2 294.9245 294.8189 C5HK3O2P2 271.8363 

318.8965 C10H8NO7S2 317.9742 295.8797 C6H3K2O5P2 294.8730 

323.9116 C10H13NO7S2 323.0133 318.8961 C9H6K4O3 317.8865 

342.7669 C10N4O5S2 319.931 330.7765 C2H2K4O4P2 307.7977 

352.3415 C17H19N8O 351.1682 345.0635 C12H17KO9 344.0510 

353.3444 C18H20N6O2 352.1648 352.3415 C20H40KO2 351.2665 

415.9604 C9H11N4O7S4 414.9511 353.3445 C17H36O7 352.2461 

422.7932 C10H12N2O7S4 399.9527 422.7929 C13H2K2P6 421.7856 

520.2614 C20H19NO14 497.0806 432.8086 C4H11KO4P8 409.8195 

520.7633 C20H2N8O9 497.9945 470.7652 C6H6K4O7P4 469.7612 
   

508.7212 C13H2K4O2P4 469.7554 

   
520.2615 C20H39O15 519.2289 

   
546.6773 C2H2K4O15P4 545.6892 

Cycle 
40 

  
Cycle 
45 

  

m/z Formula Monoisotopic 
mass 

m/z Formula Monoisotopic 
mass 

107.9662 CO4P 106.9534 107.9661 C2H3OS2 106.9625 

115.0362 C5H6O3 114.0317 123.9404 C2H4CuS 122.933 

128.9504 H2O4P2 127.9428 128.9504 C2H3O2P 89.9871 

145.9296 C2H4KOP2 144.9374 141.9585 C3H4O2P 102.9949 

163.9405 C3HO4P2 162.9350 145.9296 CH2CuNO2 122.9382 

167.0316 C8H6O4 166.0266 159.9692 C2H5NO2P2 136.9796 

174.8872 H2K2O2P2 173.8804 163.9404 CH3NO4S 124.9783 

178.9511 C4H5KO3 139.9876 174.8868 K2O4S 173.8791 

181.0846 C10H12O3 180.0786 181.9512 CH7CuKN2O2 180.9441 

181.9514 C3H3O5P2 180.9456 186.9567 C3H8OP2S2 185.9492 

185.1155 C10H16O3 184.1099 204.9674 C5H10KPS2 203.9599 

186.9569 C2H4O6P2 185.9483 213.9234 CH7CuKN2O2S 212.9161 

191.1049 C12H14O2 190.0994 228.1966 C6H15N2O7 227.0879 

195.0998 C9H16O3 172.1099 246.8635 C2H4K4NOS 245.8562 

204.9676 C4H6KO5P 203.9590 257.2485 C12H35NO2P 256.2405 

209.1156 C12H16O3 208.1099 264.8742 C6H4KPS3 241.885 

210.933 C6H5K3O 209.9252 282.885 C5H10K2S3 243.9219 

212.8435 HK3O2P2 211.8363 283.2255 C9H34N2O5S 282.2188 

213.9236 CH3KO8P 212.9203 287.8902 C3H9NO2P2S3 248.9271 

214.8412 CHKOP4 191.8615 305.9008 C8H7KNPS3 282.9115 

216.9072 C2H3K2O5P 215.8992 310.8114 C3H3K4NOPS 287.8221 

217.1057 C10H16O5 216.0998 352.3408 C12H35N2O9 351.2343 

239.0537 C11H10O6 238.0477 353.3436 C8H36N2O12 352.2268 
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254.8636 C2H2K3O5P 253.8551 520.2601 C10H35N2O21 519.1732 

257.2486 C9H20O8 256.1158 520.7616 CH21CuK4N2OS7 497.7724 

277.8691 C6HK2O4P2 276.8624 
   

283.2258 C10H18O9 282.0951 
   

292.8198 C2H2K4O3P2 291.8027 
   

295.8796 C6H3K2O5P2 294.8730 
   

310.8118 C2H5K4O2P3 309.8051 
   

345.0632 C12H17KO9 344.0510 
   

352.3413 C20H40KO2 351.2665 
   

353.3441 C17H36O7 352.2461 
   

390.7886 C5HKO8P4 351.8259 
   

428.7445 C6H6K4O2P4 389.7867 
   

520.2611 C20H39O15 519.2289 
   

Cycle 
50 

  
Cycle 
55 

  

m/z Formula Monoisotopic 
mass 

m/z Formula Monoisotopic 
mass 

97.9683 HO4S 96.9596 107.9668 HN3S2 106.9612 

107.9664 HN3S2 106.9612 115.0368 H4NO4S 113.9861 

113.9634 H4CuNO2 112.9538 123.9412 H6CuO2 100.9664 

123.9407 H6CuO2 100.9664 128.9511 H3CuNO3 127.9409 

128.9507 H3CuNO3 127.9409 141.9592 H3N3S3 140.9489 

141.9588 H3N3S3 140.9489 145.9303 HO5S2 144.9265 

145.9298 HO5S2 144.9265 163.9411 H9Cu2N2 162.9358 

146.9615 N2O6 123.9756 181.9519 H11Cu2N2O 180.9463 

159.9695 H5N3OS3 158.9595 186.9573 H9CuN2O2S 163.9681 

163.9406 H9Cu2N2 162.9358 192.9458 H6N3OS4 191.9394 

181.9513 H11Cu2N2O 180.9463 204.9693 H4N4O5S2 203.9623 

186.9568 H9CuN2O2S 163.9681 228.1974 H19N3O7S 205.0944 

192.9452 H6N3OS4 191.9394 257.2491 H28N6O9 256.1918 

204.9676 H4N4O5S2 203.9623 277.9238 H11Cu2N2O7 276.9158 

213.9237 H4CuN2O6 190.9365 282.8857 H5CuO8S2 259.8722 

228.1967 H19N3O7S 205.0944 352.3413 H39N4O16 351.2361 

246.8636 H6Cu2N2O2S 223.8742 353.3441 H40N4O16 352.2439 

257.2486 H28N6O9 256.1918 
   

264.8743 H9CuO4S4 263.868 
   

276.898 H7CuNO8S2 275.8909 
   

277.9229 H11Cu2N2O7 276.9158 
   

282.8851 H5CuO8S2 259.8722 
   

287.8904 H2CuNO7S3 286.8289 
   

305.901 H4CuNO8S3 304.8395 
   

352.3408 H39N4O16 351.2361 
   

353.3438 H40N4O16 352.2439 
   

Cycle 
60 

  
Cycle 
65 
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m/z Formula Monoisotopic 
mass 

m/z Formula Monoisotopic 
mass 

107.9673 C2H3OS2 106.9625 107.9674 C2H3OS2 106.9625 

115.0373 C5H6O3 114.0317 115.0374 C5H6O3 114.0317 

123.9416 CHNO2S2 122.9449 123.9416 CHNO2S2 122.9449 

128.9516 CH2N2OS 89.9888 128.9517 CH2N2OS 89.9888 

145.9308 CHNO3S 106.9677 145.9310 CHNO3S 106.9677 

146.9626 CH4N2O2S 107.9993 163.9418 CH3NO4S 124.9783 

163.9416 CH3NO4S 124.9783 181.9527 C4HNO4S 158.9626 

181.9525 C4HNO4S 158.9626 186.9582 C2H4NO5S2 185.9531 

186.9579 C2H4NO5S2 185.9531 192.9464 C5H2N2O2S 153.9837 

192.9463 C5H2N2O2S 153.9837 199.0235 C8H6O6 198.0164 

204.9703 C3H6N2O3S2 181.982 228.1983 C7H17NO7 227.1005 

228.1982 C7H17NO7 227.1005 257.2504 C8H20N2O7 256.1271 

238.0158 C8H9NO4S 215.0252 277.9248 C8H3N2O2S3 254.9357 

250.0318 C9H9NO6 227.043 282.0046 C7H11N3O3S3 280.9963 

257.2502 C8H20N2O7 256.1271 352.3430 C15H29N4OS 313.2062 

277.9249 C8H3N2O2S3 254.9357 353.3459 C16H36N2O6 352.2573 

282.0042 C7H11N3O3S3 280.9963 
   

352.3427 C15H29N4OS 313.2062 
   

353.3456 C16H36N2O6 352.2573 
   

 

4.2.2 Matching experimental and theoretical formulas 

The network model described in the main manuscript, predicted 2206 possible reactions with the used 

input library. The theoretical number of the resulting products of these reactions is 429 (multiple 

reactions can lead to the same product). These products have been checked with the proposed 

experimentally assigned formula above in Supplementary Table 6 and 22 matching structures have 

been identified as listed below in Supplementary Table 7. 

Supplementary Table 7: Matching formulas of experimentally and theoretical found structures 

FORMULA MOLECULAR WEIGHT COMPOUND NAME 

C3H9NO2 91.11 3-aminopropane-1,2-diol 

C6H8N+ 94.13 1-Methylpyridinium 

C3HNO4 115.04  Iminomalonate 

C2H5NO 59.07 Acetamide 

H2O7P2-2 175.96 dihydrogen diphosphate 

C3H4O2 72.06  3-Oxetanone 

C2H5NO2 75.07 Methyl carbamate 

C5H4O6 160.08 2,4-Dioxopentanedioic acid 

N2O5 108.01 Dinitrogen pentoxide 

O4P-3 94.971  orthophosphate 
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C8H6O4 166.13 6,7-Dihydroxycoumaranone 

C5H4N2O3 140.1 5-Formyluracil 

CH2N2 42.04  Cyanamide 

C6H4N2 104.11  3-Cyanopyridine 

C3H5NO 71.08 Acrylamide 

C3H5NO5 163.13 3-(Nitrooxy)propanoic acid 

C5H4N2 92.1 Pyrrole-2-carbonitrile 

C6H12O4 148.16  1-O-Methyl-2-deoxy-D-ribose 

C9H12NO2+ 166.2  1-carboxy-2-phenylethanaminium 

C3H8O3 92.09 1,1,2-Propanetriol 

C11H10NO2+ 188.2  indole-3-propanoate 

C5H6O3 114.1 4,5-Dimethyl-1,3-dioxol-2-one 

 

4.2.3 Product persistence over dilution 

The product peaks shown above in 4.2.2 have been tracked by their intensity over the duration of the 

run time. Supplementary Figure 22 shows that some product species do persist throughout the run 

while others are being diluted out after a change in the input composition.  

 

Supplementary Figure 22: Comparison of product peaks of run G. The purple line shows a peak not 
present in cycle 1 but rising through the whole run up from cycle 2. The green line shows a peak which 
is high in the initial cycle but is not persisting throughout the run. The dark blue line shows a product 
peak, present through the full run and the pale blue line shows a peak which is high with the initial input 
composition but decreasing throughout the run.  
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5 Decision Making Algorithm  

5.1 Architecture 

 

Supplementary Figure 23: The general architecture of the software controls of the recursive reactor 
responsible for the background work. The platform code (dark blue) controls the overall experiment, 
initialises the analysis and manages the hardware control. The data source (green) takes the data 
from the Advion MS and calculates it into a value which the decision maker (pale blue) can interpret 
and pass back to the platform code for experiment adjustments.  

The control software, written in Python 3, is designed to be modular as well as extensible and 

incorporates data analysis functionality spread over several Python classes (Supplementary Figure 23). 

The data source in the form of the DataSource class is responsible for monitoring the directory in which 

the analytical data is saved for changes, calculating the appropriate measure of complexity and 

exposing it to the decision-making algorithm. The DataSource class was designed to utilize various 

data types and formats; in addition to the LC-MS data used in the present work, other inputs such as 

chromatography and nuclear magnetic resonance spectroscopy could also be employed. 

The decision-making itself is the responsibility of the DecisionMaker class, which implements the 

algorithm described below; based on the outcome, it sends the appropriate command to the main 

hardware control loop, as well as saving the results of the calculations to a file for any required offline 

analysis and plotting. 

The main hardware control loop is tasked with interfacing with all the physical components of the 

system: the stirrer/heater, the pumps and the valves. Whenever a run is started, it also initializes the 

data source, specifying the directory in which to wait for new data, as well as starting the decision maker 

in a separate thread to prevent blocking. 
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5.2 Measure of complexity 

As mentioned above, the measure of complexity will be specified differently depending on the data 

format and the analytical technique used. For the bulk of the present study, we focused on the mass 

spectrometry data and on the so-called Mass Index, used by our group earlier for monitoring complexity 

changes in amino acid mixtures. 

The Mass Index is a real number carrying information on the number of peaks and the mass range in a 

given mass spectrum. Since each data point in our case was a total ion current (TIC) chromatogram 

recorded by the LC-MS equipment, a modified approach was required. Upon successful acquisition, 

the data was exported on-line to the NetCDF file format. This was read using the Python library 

netCDF4 to convert it to an in-memory array accessible to Python. The resulting array could be thought 

of as a stack of mass spectra, each entry corresponding to a certain retention time. For each mass 

spectrum, the Mass Index was calculated by discarding all peaks whose intensity was less than 106, 

subtracting the lowest m/z value in the spectrum from the highest, and dividing the result by the number 

of peaks. If there were no peaks left after applying the intensity thresholding, the value 0.0 was returned. 

The general visual idea for the process of extracting the Mass Index is presented in Supplementary 

Figure 24. 

 

Supplementary Figure 24: Conceptual scheme of the steps required to convert the total ion chromatograms (TICs) 

recorded on-line during system operation to individual numbers, i.e. mass indices. 

The obtained list of mass indices for the individual components of the TIC was then averaged, and the 

result was passed on to the decision-making algorithm as a complexity measure. 
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5.3 Decision making  algorithm example 

 

Supplementary Figure 25: Concept of assigning change, visualised with real data of a run assigned 
with the Mass Index. The top graph shows the Mass Index of each cycle with each input set in a different 
colour, while the graph in the bottom shows the slope between the Mass Index values of the cycles 

 

The role of the algorithm is to detect when the complexity of the reaction mixture has stopped increasing 

and, whenever that happens, to send a signal to the hardware control loop telling it to change the 

chemical inputs to a new random set. It receives the successive Mass Index values and stores them in 

a Python list. It takes two external parameters, the change threshold and the change interval. The 

threshold parameter specifies the critical value of the slope in the time dependency of the Mass Index 

below which the algorithm assumes that the values have plateaued. In the current work, this was set to 

a small positive value, 0.01. The change interval represents the minimum number of data points 

deemed to be sufficient for meaningful slope calculation. In our case, the slope was taken over 5 most 

recent points, as long as at least 10 data points have accumulated since either the start of the run or 

the last input switch. 

Each time a new data point is detected and the corresponding m/z index measured, the algorithm first 

checks if the condition above is met – if it is not, it waits for the next data point. As soon as the 10th 

data point arrives, the slope is taken using simple linear regression against the vector [0, 1, 2, 3, 4]. 

When the slope is above the threshold specified above, the least recent data entry is removed from the 

list, replaced with the one just recorded and the algorithm waits for the next data point. For the slopes 

below the threshold, the DecisionMaker class sets the relevant boolean flag in the configuration file to 
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True. At the start of the subsequent cycle, when the hardware loop detects that flag, it proceeds to the 

next entry in its list of randomly generated chemical input sets. 

5.4 Alternative algorithms tested 

Based on the issues that have been highlighted, with the initial used mz algorithm, alternative ways to 

evaluate the data were found. As one of the problems of the Mass Index, was the fact that there was 

no relation between the mass of the peak and its intensity, it was interesting to investigate how the data 

would change if the intensity would be multiplied by the mass of the corresponding peak.  

5.4.1 Adaptive Mass Index 

An adaptive formula was developed to check whether the original mass index was sensitive to 1) the 

hard threshold used, and 2) outliers at the higher and lower end of the spectrum resulting in spurious 

values for M_max and M_min. We have shown the results of this analysis applied to Run 10 in Figure 

27. To address (1) we have counted peaks partially by using a sigmoid function centered on the 

threshold to assign weights to the peaks. This means that peaks with intensities well below the threshold 

(<1%) have weighted closer to 0, and peaks well above the threshold (100x) are weighted effectively 

1.0. Close to the weights assigned to the peaks move slowly between 1.0 (above the threshold) to 0.5 

(at the threshold) then down to (0.0) well below the threshold. The mathematical form is: 𝑤(𝑖) =

 1.0/(1 + exp(−𝑖 + 𝑡)),, where i is the intensity of the peak and t is the threshold. In place of counting 

the peaks (n_peaks) we sum the weights for the peaks.  

For (2) instead of taking the maximum mass and the minimum mass we take the top 5% and bottom 

5% m/z values and average them to replace M_max and M_min respectively. This means that the 

maximum mass is not just an outlier but instead the end of the distribution of observed masses. Similarly 

for the minimum mass. We found that the numerical value of the mass index has changed but the 

general trends have not.  

 

Supplementary Figure 26: Change in Mass Index based on noise filtering threshold. (Left) Here we 
show the Mass Index calculated for all the samples in Run 10 evaluated using different noise thresholds. 
Each line is one sample from Run 10. If the threshold is set too low, the mass index is dominated by 
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peaks from electrical noise. Which is removed around 105-106, resulting in the increase in the mass 
index (because the number of total peaks is greatly reduced by removing noise. Setting the threshold 
too high ~107, reduced the mass index by filtering true signal peaks. The different colours represent 
different samples while the black vertical dashed line indicates the threshold used during the 
experiments. (Right) the same analysis shown with the adaptive calculation in described in 5.4.1.  

 

Supplementary Figure 27: Run 10 with adaptive and original mass index calculation 

 

 

Supplementary Figure 28: Examples of thresholding tests for data analysis of offline samples. The 
top left shows no thresholding and the top right is the thresholding used in the data analysis. The 
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baseline is cleared up, while small peaks are still included. The bottom graph shows an example of too 
high thresholding, as baseline and small peaks are substantially cut off. 

As these algorithms have been written post-data acquisition, thresholding was applied and adjusted 

directly to the experimental data. The best way for thresholding turned out to take the median of the 

intensities added to half of a standard deviation unit, see Supplementary Figure 29 and Supplementary 

Figure 28. This way of thresholding was chosen as it enables the code to capture every single peak of 

a spectrum, while filtering the lowest amount of small peaks over noise. This was important, as we 

wanted to take species into our calculation that are too low in abundance to be over a set threshold, but 

are different from starting material and noise. In the first part of the figure, all required libraries are 

imported. The function starts with reading the csv data into a data frame. In the second part of the 

function, the threshold of each intensity is calculated and added as a column to the dataframe. 

Dataframes are objects to store tabular data, specific for the data analysis toolkit Pandas, which can be 

used in Python. This thresholding strategy is used for every described code below. 

 

Supplementary Figure 29: First part of the modified Mass Index code. The first block shows the 
libraries imported, the function shown here opens a csv file and adds a column with the calculated 
threshold to the dataframe. In the last part the threshold column is multiplied with the mass  

 

The last part of Supplementary Figure 29 shows how the mass is set in relation with the intensity of the 

peak. Another column “multi” is added to the data frame in which the mass of each peak is multiplied 

with the thresholded intensity of each peak. Instead of using just the mass value in the Mass Index 

before, we are looking for the heaviest and lowest peak and are saving the corresponding multiplied 

value of this particular peak into two separate list. After that, the number of peaks is determined for the 
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whole spectrum and this number is stored for each retention time group (representing the spectra in the 

dataframe) in an additional list. With these three lists, it is possible to calculate the modified Mass Index, 

see Supplementary Figure 30.  

 

Supplementary Figure 30: Function to calculate the modified Mass Index, using the python libraries 

numpy arrays and panda data frames 

To compare both evaluation methods, the mass spec data from the inline-measured samples was rerun 

with the modified version of the Mass Index code (Supplementary Figure 30). The comparison is to be 

made carefully, as not just the relation between peaks and intensity is changed but on top of that, the 

thresholding. The values of the plotted data changed completely, so the comparison of these two data 

sets is limited to the observation of “data trends” and can be seen in Supplementary Figure 31. 
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Supplementary Figure 31: Data evaluated with experimental Mass Index (mz index) and modified 

version, applied on same data 

The plots presented in Supplementary Figure 31, do not show an immediate trend, which would be 

possible to observe. In general, the modified Mass Index seemed to have lowered the complexity or 

variation of specific cycles. In the experimental Mass Index comparison, all runs are in a similar scale, 

as when a similar scale is applied to the modified Mass Index, one run, run G stands out the most. This 

correlates with the experimental Mass Index, as the experimental Mass Index starts very high, until it 

drops around cycle 10. The modified Mass Index does has a rise in the beginning but the pattern of 

being high and dropping around cycle 10 can be observed in this case too. Run E and F are looking 

fairly similar in both calculations and run H seemed to be turned over its vertical axis as there is a rise 

visible at the end in the experimental Mass Index and with the modified version, a rise is possible to 

observe around cycle 20, which drops again afterwards. The algorithm would have clearly made 

different input choices than the experimental algorithm, but if this algorithm would make more sense 

than the mx index that was in use is questionable.  

5.4.2 Weight by intensity index 

An evaluation method based on the weight and the intensity of each peak was developed. In this 

calculation, the aim is to get a number z, which is the sum of all intensities multiplied by their mass 

value over each spectrum.  

𝑧 =  ∑ 𝐼𝑝 ∗
𝑚

𝑧 𝑝
. 

When this value is high, the sample has a higher amount of larger products, with a stronger signal. 

As just multiplying every value would lead to very high numbers, the intensity is normalised before 

multiplied with the mass value (Supplementary Figure 32), similar to the multiplication step in the 

calculation for the modified Mass Index (Supplementary Figure 29).  
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Supplementary Figure 32: Functions for the calculation of the normalised mass over intensity value 

In the last part of Supplementary Figure 32, the sum of all normed and multiplied values of the cycle is 

taken and saved to a list. The experimental inline Advion data is rerun with the new calculation and the 

data is presented in Supplementary Figure 33. In this figure, the weight by intensity value of run E to H 

is shown. As all of these runs have different input sets, there is not much to compare in between these 

runs but when the data is compared with the previous algorithms in Supplementary Figure 31, some 

differences are visible. As these are different calculations, the values on the y-axis on every plot are 

incomparable, therefore is the comparison limited to a description of the shape based on the cycle 

number. 

Interestingly run E differs the most from the previous calculated Mass Index values. The weight by 

intensity values are compared to the other plots calculated with the same algorithm much higher, which 

leads to an elevation of the whole graph in the plot while the values are in the same data range as all 

other calculated values in data compared with the Mass Index in Supplementary Figure 31. Run F looks 

similar as in the modified Mass Index. While the experimental Mass Index has a clear rise between 

cycle 30 to 40 and again at approximately, cycle 50. The weight by intensity calculated values and the 

modified Mass Index values have several small peaks but no clear rise throughout the run. The weight 

by intensity run G is more similar to the experimental Mass Index calculation, showing a rise right in the 
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beginning, but the rise later in the experimental Mass Index calculation, visible in Supplementary Figure 

31 is not observable in the values shown in Supplementary Figure 33.  

Run H differs significant from the Mass Index calculations. There is no massive peak observable, but 

the values show a rise around cycle 30, which is not visible in the data previously calculated. An overlap 

with the experimental Mass Index is that another peak between cycle 60 and 70 is visible, which is a 

very distinct peak in the graph of the experimental Mass Index of run H shown in Supplementary Figure 

31.  

 

Supplementary Figure 33: Data evaluated with the weight by intensity calculation. 

5.4.3 Information entropy value  

In this approach, a code is developed to compare the cycles of a run based on their information entropy. 

Entropy is often defined as a value for the disorder of a system, but in this case, it is used to describe 

the information content in our system (2). The information entropy of a spectrum is defined as: 

𝑆 = − ∑  𝑖𝑝 ∗ ln (𝑖𝑝)

𝑝

. 
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Where 𝑖𝑝 =
𝐼𝑝

𝑇
,  and 𝑇 = ∑  𝐼𝑝𝑝 ,𝑖𝑝 is the intensity of peak 𝑝 normalized to the total intensity of the spectra. 

This leads to a value which will be lower when the sample has fewer, larger peaks and higher when the 

sample has many peaks of comparable size. The code starts in a similar manner to the previous ones 

by transferring the data into a pandas dataframe and setting the threshold for each intensity value. The 

intensity values are being normalised but this time not multiplied with the mass values. How the entropy 

value is calculated is shown in Supplementary Figure 34. 

 

Supplementary Figure 34: Function to calculate the entropy value of Advion data 

This function iterates through each retention time group and adds a column of the natural logarithm of 

each individual normed intensity to the data frame. This value is then multiplied with the value of the 

normed intensity. As the value desired is the entropy over a full spectrum, the code iterates through the 

data frame again, summing up all entropy values for each individual retention time group, resolving in 

the entropy value for each individual spectra. To generate a through the run comparable number, the 

average of the entropy of all spectra is taken and returned as entropy value for the individual cycle. The 

resulting data is shown in Supplementary Figure 35. 
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Supplementary Figure 35: Data evaluated with the information entropy measure 

As before, the data will be compared with the Mass Index used in the experiment, as this was the code 

of which the input decisions have been based on. The graph for the entropy in run E in Supplementary 

Figure 35 is moderate throughout the first 100 cycles and declines steep after that until it rises again 

around cycle 130 to cycle 150. The graph has no similarities to the Mass Index calculates graph in 

Supplementary Figure 31 though.  

Different to the entropy graph of run F that follows approximately a similar pattern than the graph of the 

Mass Index calculation but looks almost random. Both figures show a quite disorganised pattern but 

both plots rise between cycle 20 and 40. The run G plots differ heavily from each other. The Mass Index 

graph in Supplementary Figure 31 is high in the beginning, descends until cycle 10 and follows a curve 

after that. The information entropy graph in Supplementary Figure 35 of run G shows random 

distribution of points and the value is going rapidly up and down between cycles. Run H is different, as 

the entropy plot declines until cycle 10, rises after that until it reaches cycle 20 to cycle 55, where it 
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starts to follow another more moderate curve. The Mass Index plot of run H in Supplementary Figure 

31 shows a moderate course until the index rises rapidly after cycle 60. 

If we compare the algorithmically produced data of each run individually, we will compare the modified 

Mass Index, the weight by intensity and the information entropy as the same thresholding strategy was 

used in all 3 calculations. It turns out, the different algorithms give almost complimentary information 

about the individual runs. While run E has the highest weight by intensity value in comparison with the 

other 3 runs, which leads to the idea that this run has many product species of high mass value and 

high abundance, the information entropy of this run shows a drop around cycle 120. This means that in 

this range of cycles, rather than having a high amount of many product species we got a few very large 

peaks, which is plausible based on the weight by intensity value, as this value cannot distinguish 

between a high amount of peaks and a few intense peaks, in opposite to the information entropy value. 

On the same side, when considering the Mass Index, it suggests a number of larger peaks as if there 

would just be one dominant peak, this value would be high too. For run F, the weight by intensity index 

is relatively low throughout the run, this would lead to the idea, that there was a lower amount of species 

and the overall abundance of the signal was lower too. This explains the high information entropy, as it 

suggests many peaks of comparable size, which do not contradict the weight by intensity value. The 

Mass Index of run F is low, which shows that there is no dominant species of high mass, but rather a 

higher amount of peaks of lower abundance. The interpretation of run G appears more complex. The 

Mass Index value shows a high rise in the beginning of a run, suggesting an abundant dominant species 

in the beginning, which breaks down throughout the run. This can be further validated by the weight by 

intensity value, as this value shows a rise in the begin of the run. The information entropy, shows a drop 

in the same area, suggesting a fewer number of peaks but not such a clear trend as when calculated 

with the other two values. Run H shows a peak in the area between cycle 10 and 20, which suggests 

the build-up of a few species of higher mass, which break down into more species afterwards. This rise 

is not clear to read in the weight by intensity value as this value shows a small rise at that point but a 

more dramatic rise later in the run, in which the mz value does not show a rise. On the other hand, the 

information entropy shows a drop, suggesting that there are rather few larger species, like the Mass 

Index suggested. It is interesting to see that observations based on the different algorithms can, if 

handled carefully, build on each other. On the other it is important to state, that the algorithms alone 

are just able to give ideas of the product distribution in a sample and if a cycle contains dominant product 

species. For more information about the exact chemical composition and the reactions, which did occur 

in the system, a more extensive analysis is necessary.  
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