
Table S4. Optimized cellular parameters. Parameters were allowed to vary between “Min.” and “Max.” values obtained or approximated from 

literature. “Reaction #s” are the reactions associated with each rate parameter, with numbering corresponding to that in the model [1]. “Optimal” are 

optimized parameter values, and are only shown for parameters found to significantly affect the SSR between simulated and measured [NO•] and 

[O2] curves for E. coli treated with 500 μM DPTA. “Prev. Opt.” are the optimal values for significant parameters obtained in our previous study [1]. 

Dashed lines (--) in the “Optimal” and “Prev. Opt.” columns indicate parameters found to have negligible effect on the SSR. 
# Parameter Parameter description/reaction involved Reaction #s Min. Max. Optimal Prev. Opt. Units Ref. 

1 kNO•-[Fe-S] [Fe-S] nitrosylation by NO• 85,86 1.0 × 10
4
 1.0 × 10

8
 9.51 × 10

7
 -- M

−2
s

−1
 [2] 

2 kDNIC-rem DNIC removal from protein 87,89 1 100 62.7 -- M
−1

s
−1

 [3] 

3 kDNIC-bind DNIC binding to apoprotein 88,90 1 100 -- -- M
−1

s
−1

 [3] 

4 kDNIC-deg O2-mediated DNIC degradation 91 0.1 100 -- -- M
−1

s
−1

 [4] 

5 kIscU-load-Fe IscA-mediated Fe
2+

 transfer to IscU 92,93 2.5 × 10
−3

 2.5 0.36 -- s
−1

 [5] 

6 KIscU-load-S,Cys IscS-mediated S transfer from Cys to IscU 151,152 1.0 × 10
−6

 1.0 × 10
−4

 -- -- M [6] 

7 KIscU-load-S,IscU IscS-mediated S transfer from Cys to IscU 151,152 1.0 × 10
−6

 1.0 × 10
−4

 1.55 × 10
−5

 -- M [6,7] 

8 kIscU-2Fe2S-insert,cat IscU-mediated [2Fe-2S] insertion into apoprotein 153,154 1.0 × 10
−4

 0.1 1.08 × 10
−2

  -- s
−1

 [8] 

9 KIscU-2Fe2S-insert,P2Fe2S(apo) IscU-mediated [2Fe-2S] insertion into apoprotein 153,154 1.0 × 10
−6

 1.0 × 10
−4

 -- -- M [8] 

10 kIscU-4Fe4S-insert IscU-mediated [4Fe-4S] insertion into apoprotein 94 1 500 6.12 -- M
−1

s
−1

 [9] 

11 kdN-deam N2O3-mediated DNA base deamination 95–97 1.0 × 10
3
 1.0 × 10

6
 -- -- M

−1
s

−1
 [10] 

12 KdX-excis,DNA(dX) Excision of xanthine from DNA 155 1.0 × 10
−8

 1.0 × 10
−6

 -- -- M [11] 

13 KdI-excis,DNA(dI) Excision of hypoxanthine from DNA 156 1.0 × 10
−8

 1.0 × 10
−6

 -- -- M [12] 

14 KdU-excis,DNA(dU) Excision of uracil from DNA 157 1.0 × 10
−8

 1.0 × 10
−6

 -- -- M [13] 

15 kHmp,NO•-on Hmp detoxification; NO• binding to Hmp-Fe
2+

 110,113,118 4.0 × 10
6
 2.6 × 10

7
 8.19 × 10

6
 4.13 × 10

6
 M

−1
s

−1
 [14] 

16 kHmp,NO•-ox Hmp detoxification; NO• binding to Hmp-Fe
2+

-O2 103,108,125 9.6 × 10
8
 2.4 × 10

9
 -- -- M

−1
s

−1
 [14] 

17 kHmp-exp,max Hmp expression (maximum rate) 177 2.0 × 10
−10

 2.0 × 10
−8

 1.73 × 10
−8

 1.93 × 10
−8

 M∙s
−1

 
a 

18 KHmp-exp,NO• Hmp expression (regulatory NO• interaction) 177 1.0 × 10
−8

 1.0 × 10
−5

 1.72 × 10
−6

 3.38 × 10
−7

 M 
b 

19 kNorV-exp,max NorV expression (maximum rate) 178 2.0 × 10
−10

 2.0 × 10
−8

 -- -- M∙s
−1

 
a 

20 KNorV-exp,NO• NorV expression (regulatory NO• interaction) 178 1.0 × 10
−8

 1.0 × 10
−5

 -- -- M 
b 

21 kNorV-O2 O2-mediated NorV inactivation 146,147 10 1000 849 549 M
−1

s
−1

 [15] 

22 kNrfA-exp,max NrfA expression (maximum rate) 179 2.0 × 10
−10

 2.0 × 10
−8

 -- -- M∙s
−1

 
a 

23 KNrfA-exp,NO2− NrfA expression (regulatory NO2
−
 interaction) 179 1.0 × 10

−6
 1.0 × 10

−3
 -- -- M 

c 

24 KNrfA-exp,O2 NrfA expression (regulatory O2 interaction) 179 1.0 × 10
−12

 1.0 × 10
−10

 -- -- M 
c 

25 [Cys]0 Initial concentration of cysteine -- 5.0 × 10
−5

 2.0 × 10
−4

 -- -- M [16,17] 

26 [Trxred]0 Initial concentration of reduced thioredoxin -- 5.0 × 10
−6

 5.0 × 10
−5

 -- -- M [18,19] 

27 [IscU]0 Initial concentration of IscU -- 1.0 × 10
−8

 1.0 × 10
−5

 8.30 × 10
−6

 -- M [6,20] 

28 [IscS]0 Initial concentration of IscS -- 1.0 × 10
−8

 1.0 × 10
−5

 7.60 × 10
−6

 -- M [6,20] 

29 [P2Fe2S(holo)]0 Initial concentration of holo [2Fe-2S] proteins -- 1.0 × 10
−6

 1.0 × 10
−4

 8.29 × 10
−5

 -- M [21,22] 

30 [P4Fe4S(holo)]0 Initial concentration of holo [4Fe-4S] proteins -- 5.0 × 10
−5

 5.0 × 10
−4

 4.82 × 10
−4

 -- M [21,22] 

31 [LigA]0 Initial concentration of DNA ligase -- 1.0 × 10
−8

 1.0 × 10
−5

 -- -- M [23] 

32 [PolI]0 Initial concentration of DNA polymerase -- 1.0 × 10
−8

 1.0 × 10
−5

 -- -- M [23] 

33 [DNA(dN)]0 Initial concentration of DNA bases (dA,dC,dG) -- 0.001 0.1 -- -- M [22] 

34 [Xth]0 Initial concentration of DNA exonuclease III -- 1.0 × 10
−9

 1.0 × 10
−6

 -- -- M [24] 

35 [GS-FDH]0 Initial concentration of GSH-dependent FDH -- 1.0 × 10
−8

 1.0 × 10
−5

 -- -- M [24]
 

36 [AlkA]0 Initial concentration of DNA glycosylase (dX, dI) -- 1.0 × 10
−9

 1.0 × 10
−6

 -- -- M [24] 

37 [Ung]0 Initial concentration of DNA glycosylase (dU) -- 1.0 × 10
−9

 1.0 × 10
−6

 -- -- M [24] 

a. The bounds of Hmp, NorV, and NrfA maximum expression rates were chosen based on those reported for various enzymes in [25]. Values were converted from gprotein/gDW∙s to 

M∙s
−1

 assuming a cell density of 448 gDW/L [22], and ranged from 2 × 10
−10

 (Acs) to 2 × 10
−8

 M∙s
−1

 (PfkA). 



b. The NO• binding constant describing Hmp and NorV expression was varied in the nM to µM range based on reported physiological concentrations of NO• [26,27]. 

c. The NO2
−
 binding constant describing NrfA expression was varied in the µM range, and the O2 inhibition term was assumed to be much lower, as NrfA expression is primarily 

anaerobic [28,29]. 
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