Supplementary table 1: Maximum yields on glucose feed

Comparison of maximum product yields of the wild type networks for the five pathways in *S. cerevisiae* and *E. coli*. Yields are the fraction of carbons in the substrate glucose (single carbon source) that end up in the product ccMA.

S. cerevisiae:						
Pathway branch	EFM count	Max. yield [%]	Max. yield with biomass [%]			
DHS-pathway	29,836,123	85.7	84.8			
ANTH-pathway	29,567,053	70.4	65.8			
DHBA-pathway	31,739,546	80	77.3			
SA-pathway	29,704,354	72.3	69.8			
pHBA-pathway	y 29,953,182 72		66.1			
E. coli:						
E. coli:						
<i>E. coli:</i> Pathway branch	EFM count	Max. yield [%]	Max. yield with biomass [%]			
<i>E. coli:</i> Pathway branch DHS-pathway	EFM count 468,715	Max. yield [%] 85.7	Max. yield with biomass [%] 79.45			
<i>E. coli:</i> Pathway branch DHS-pathway ANTH-pathway	EFM count 468,715 493,917	Max. yield [%] 85.7 68.8	Max. yield with biomass [%] 79.45 64.7			
<i>E. coli:</i> Pathway branch DHS-pathway ANTH-pathway DHBA-pathway	EFM count 468,715 493,917 482,135	Max. yield [%] 85.7 68.8 79.4	Max. yield with biomass [%] 79.45 64.7 75.3			
<i>E. coli:</i> Pathway branch DHS-pathway ANTH-pathway DHBA-pathway SA-pathway	EFM count 468,715 493,917 482,135 484,284	Max. yield [%] 85.7 68.8 79.4 71.05	Max. yield with biomass [%] 79.45 64.7 75.3 65.4			

Supplementary table 2: Maximum yields on glucose + glycerol co-feed

Comparison of maximum product yields of the wild type networks for the five pathways in *E. coli*. Yields are the fraction of carbons in the substrates glucose and

glycerol (mixed carbon source, variable ratio) that end up in the product ccMA.

Pathway branch	EFM count	Max. yield [%]	Max. yield with biomass [%]
DHS-pathway	876,044	89.7	84.8
ANTH-pathway	938,621	70.4	65.8
DHBA-pathway	913,663	84.5	77.7
SA-pathway	926,636	75.65	69.7
pHBA-pathway	963,577	75.2	69.96

Supplementary table 3: Maximum and minimum yields of S. cerevisiae knock-out networks

Comparison of maximum and minimum product yields of the knock-out strategies for the five pathways in S. cerevisiae. For the DHS-pathway

only a two-target knock-out strategy that minimizes the number of low-yield-modes is shown. For the other pathways, which allow the rewiring

of pyruvate metabolism, a second knock-out that can further increase the minimum yield is included. Yields are percentage carbon yields of the

product in respect to the substrate glucose.

Pathway	Knock-out	Max. yield without	Max. yield with biomass	Min. yield without	Min. yield with biomass
branch	targets	biomass [%]	[%]	biomass [%]	[%]
DHS-		85 7	010	0	0
pathway	GOLD OLDU	83.7	04.0	0	0
ANTH-	РҮК	70 4	65 9	28.4	29.5
pathway	PYK GPDH	70.4	03.8	54.5	46.9
DHBA-	РҮК	80	77.2	25.3	26.2
pathway	PYK GPDH	80	11.5	57.1	46.9
SA-	РҮК	72.2	60.8	31.6	32.9
pathway	PYK GPDH	12.3	09.8	57.1	49.6
pHBA-	РҮК	72	66 1	27.5	29
pathway	PYK GPDH	12	00.1	54.5	46.4

Supplementary table 4: Maximum and minimum yields of E. coli knock-out networks

Comparison of maximum product yields of the knock-out strategies for the five pathways in E. coli. For the ANTH-pathway two alternate

knock-out strategies are shown, while for the DHBA-, SA- and pHBA-pathways only the more rational strategy based on rewiring pyruvate

metabolism is shown. Yields are percentage carbon yields of the product in respect to the substrate glucose.

Pathway	Knock-out targets	Max. yield without	Max. yield with	Min. yield without	Min. yield with
branch		biomass [%]	biomass [%]	biomass [%]	biomass [%]
DHS-	GPI PGD PGM/PGH	75	74.9	75	71.6
pathway	GPI PGD GAP/PGK	15	74.97	13	73.3
	GPI TAL PGM/PGH	50	49.8	50	44.9
ANTH-	GPI TAL GAP/PGK	30	49.9	50	47.5
pathway	PTS PYK EDA MAE	68.3	64 7	8.8	5.2
	PTS PYK EDA MAE FRD	00.5	04.7	25	25.8
DHBA-	PTS PYK EDA MAE	79 1	75.2	9.1	6.3
pathway	PTS PYK EDA MAE FRD	/0.1	75.5	25	25.8
SA-	PTS PYK EDA MAE	70.4	61.6	9.1	5.5
pathway	PTS PYK EDA MAE FRD	/0.4	01.0	25	25.8
pHBA-	PTS PYK EDA MAE	60.0	62.2	9.1	5.5
pathway	PTS PYK EDA MAE FRD	09.9	02.2	25	25.8

Supplementary table 5: Comparison of knock-out targets

Corresponding enzymes and coding genes for each knock-out target and organism are stated in the table below. This is meant to serve a better

understanding of the manuscript as a knock-out target determined in the analysis is always a specific function / reaction, rather than a single

gene. This may also aid in determining the experimental effort when comparing the knock-out strategies.

S. cerevisiae knock-out target G		Gene(s)	<i>E. coli</i> knock-out target		Gene(s)
GPDH	glycerol-3-phosphate dehydrogenase (two isozymes)	GPD1/GPD2	PTS	phosphotransferase system (multi- component system)	npr/ptsO/rpoR/yhbK ptsH/hpr/Hpr/ctr ptsI/ctr ptsP/vgdF/vgdO
РҮК	pyruvate kinase (two isozymes)	CDC19/PYK2	РҮК	pyruvate kinase (two isozymes)	pykA pykF
G6PD	glucose-6-phosphate 1-dehydrogenase	ZWF1	FRD	fumarate reductase (four separately expressed subunits)	frdA, frdB, frdC, frdD
			EDA	2-dehydro-3-deoxy-phosphogluconate aldolase	eda/hga/kdgA/kga
			MAE	malic enzyme (NADP & NAD dependent enzymes)	maeB/ypfF sfcA/maeA/mae
			GPI	glucose-6-phosphate isomerase	pgi
			PGD	phosphogluconate dehydrogenase	gnd
			TAL	transaldolase	talB
			PGM	phosphoglycerate mutase (two enzymes)	gpmA/gpmM
			ENO	phosphopyruvate hydratase	eno
			GAPDH	glyceraldehyde-3-phosphate	gapA
				dehydrogenase	
			PGK	phosphoglycerate kinase	pgk

Supplementary figure 5 – EM distribution *E. coli* **Glucose + Glycerol co-feed** Product vs. biomass yield plots of the EFM distribution of *E. coli* WT networks. This figure is supposed to serve a better comparability of the different yields achieved by the two groups that derived ccMA from the two different branches of shikimate pathway in *E. coli* on different carbon sources. Key data is indicated on the charts. Each point in a chart corresponds to the specific product and biomass yield of the respective elementary flux mode. Yields are carbon yields in %. A green dashed vertical line indicates currently achieved product yields in the respective approaches.

Supplementary figure 6 – Yield vs. biomass plots of knock-out strategies for *S. cerevisiae*

Product vs. biomass yield plots of the EFM distribution of isochorismate derived routes in *S. cerevisiae* networks. For each pathway four scenarios are shown, comparing the wild type with the determined knock-out metabolism. Key data as well as respective knock-outs are indicated on the charts. Each point in a chart corresponds to the specific product and biomass yield of the respective elementary flux mode. Yields are carbon yields in %.

Supplementary figure 7 – Yield vs. biomass plots of knock-out strategies for *S. cerevisiae*

Product vs. biomass yield plots of the EFM distribution of the pHBA-pathway in *S. cerevisiae* networks. For each pathway four scenarios are shown, comparing the wild type with the determined knock-out metabolism. Key data as well as respective knock-outs are indicated on the charts. Each point in a chart corresponds to the specific product and biomass yield of the respective elementary flux mode. Yields are carbon yields in %.

Supplementary figure 8 – Yield vs. biomass plots of alternative knock-out strategy for *E. coli*

Product vs. biomass yield plots of the EFM distribution of isochorismate derived routes in *E. coli* networks. Four scenarios are shown, comparing the wild type with the determined knock-out metabolism. Key data as well as respective knock-outs are indicated on the charts. Each point in a chart corresponds to the specific product and biomass yield of the respective elementary flux mode. Yields are carbon yields in %.

Supplementary figures Β. Α. 90 pHBA-pathway 90 pHBA-pathway 80 80 wт ΔΡΤS ΔΡΥΚ ΔΕDA ΔFRD efm count = 506,231 efm count = 14,253 70 max. yield = 70.6 % max. yield = 70.6 % yield 09 /ield max. yield with biomass = 67.8 % max. yield with biomass = 67.8 % 50 Biomass 40 30 20 10 0 100 100 50 Product vield Product vield 100 100 С. D. 90 90 pHBA-pathway pHBA-pathway 80 ΔΡΤS ΔΡΥΚ ΔΕDΑ ΔΜΑΕ 80 ΔΡΤS ΔΡΥΚ ΔΕDA ΔΜΑΕ ΔFRD efm count = 2,279 *efm count = 1,654* 70 70 max. yield = 69.9 % max. yield = 69.9 % Biomass yield 0 50 40 yield 09 max. yield with biomass = 62.2 %max. yield with biomass = 62.2 % 50 min. yield without biomass = 9.1 % min. yield without biomass = 25 % min. yield with biomass = 5.5 % min. yield with biomass = 25.8 % ī 40 30 30 20 20 10 10 0 0 100 10 50 uct yield 100 10 90 ict yield

Supplementary figure 9 – Yield vs. biomass plots of alternative knock-out strategy for *E. coli*

Product vs. biomass yield plots of the EFM distribution of the pHBA-pathway in *E. coli* networks. Four scenarios are shown, comparing the wild type with the determined knock-out metabolism. Key data as well as respective knock-outs are indicated on the charts. Each point in a chart corresponds to the specific product and biomass yield of the respective elementary flux mode. Yields are carbon yields in %.