

Figure S1. DC analysis in the spleen and peripheral tissues of *Irf4^{-/-}*, *Irf8^{-/-}*, or *Irf4^{-/-} Irf8^{-/-}* mice, related to Figure 1.

(A and B) Analysis of splenic cDCs from WT, *Irf4^{-/-}*, *Irf8^{-/-}*, and *Irf4^{-/-} Irf8^{-/-}* mice. (A) Flow cytometric analysis showing splenic pDC (top), cDC (middle), CD24⁺ CD172a⁻ cDC1, and CD172a⁺ cDC2 (bottom). (B) Scatter plots show the average percentages of pDCs (top) and cDCs (bottom, pre-gate: Bst2⁻ B220⁻ cells) in the splenocytes of the indicated genotypes (bar = average %, $n = 4 \sim 5$ mice per group). ** P < 0.01, **** P < 0.001 (Student's *t*-test). (C and D) Flow cytometric analysis showing cDC in the lung and small intestine lamina propria of the indicated genotypes. Pre-gate: CD45⁺ Ly6C⁻ Ly6C⁻ CD3⁻ B220⁻ cells. Data shown is one of more than three similar analyses. (E) Flow cytometric analysis showing BM progenitor cells from the indicated genotypes. Pre-gate: Lineage⁻ CD11c⁺ MHCII⁻ CD135⁺ CD172a⁻ cells. Data shown is one of three similar experiments. (F) Representative flow cytometric analysis showing *Zbtb46*^{GFP+} cells differentiated from *Zbtb46*^{GFP/+} or *Irf4^{-/-} Irf8^{-/-} Zbtb46*^{GFP/+} CD117^{hi} BM progenitors retrovirally expressing either *Irf4* or *Irf8*. Data shown is one of two similar analyses. Numbers in the two-color histograms indicate percentages of the gated cells.

Figure S2. Phenotypic analysis of cDCs restored by retroviral *Irf4* or *Irf8*, related to Figure 2.

(A-C) Analysis of cDCs differentiated from WT or Irf4-- Irf8-- CD117^{hi} BM progenitors retrovirally expressing either Irf4 or Irf8 without or with Batf3 co-expression. (A) A bar graph showing average percentages of MHCII⁺ CD11c⁺ cDCs ± SD (n = 8), (B) A scatter plot showing the average percentages of CD24⁺ CD172a⁻ cDC1 (bar = average %, n = 4) at the indicated conditions. *P < 0.05, ** P < 0.01, **** P < 0.0001 (Student's t-test). (C) Flow cytometric analysis showing cDCs differentiated from WT (top) or Irf4-/- Irf8-/- (bottom) BM progenitors retrovirally expressing Batf3, Irf4, or Irf8. Some of the histogram panels are redundantly shown in Figure 2B. (D) Flow cytometric analysis showing retroviral GFP expression by control RV (black)- or Batf3 RV (red)-transduced cells. (E) Flow cytometric analysis showing BATF3 expression in the splenic cDCs (left) and BM-derived cDCs (right). (F) A retroviral construct to express IRF4 or IRF8 driven by CMVpmin in combination with tetracycline responsive element (TRE) activity. rtTA denotes reverse tetracycline-controlled transactivator. (G and H) Flow cytometric analysis of cDCs differentiated from WT, Irf4+- Irf8-- or Irf4-- Irf8-- BM progenitors retrovirally expressing various amounts of either Irf4 or Irf8 by doxycycline treatment (0, 10, 100, or 1000 ng/ml). (G) Expression of IRF8 in the Irf4^{+/-} Irf8^{-/-} cDC restored at the indicated conditions. (H) Flow cytometric analysis showing cDC1 and cDC2 differentiated from Irf4-- Irf8-- BM progenitors with various amounts of retroviral Irf4 or Irf8 achieved by treatment with the indicated concentrations of doxycycline. Single-color histograms below show XCR1 expression on the gated CD24* CD172a⁻ cDC1 under the same conditions. The data shown is one of three similar experiments. Numbers in the single-color and two-color histograms indicate the geometric MFI and the percentage of the gated cells, respectively.

Figure S3. Transcriptomic analysis of cDCs restored by retroviral Irf4 or Irf8, related to Figure 3.

(A-D) Microarray analysis of cDCs differentiated from WT or *Irf4^{-/-} Irf8^{-/-}* CD117^{hi} BM progenitors retrovirally expressing either *Irf4* or *Irf8* without or with *Batf3* co-expression. (A) Scatter plots showing the top 3000 genes with > 2-fold expression in cDC1 compared to cDC2. Axes depict fold change ratios (FC) of cDC1 to cDC2 from WT mice (y-axis) compared against those of high IRF8 to low IRF4 conditions (x-axis, top) or of high IRF4 to low IRF4 (x-axis, bottom) of *Irf4^{-/-} Irf8^{-/-}* mice. cDC1-specific genes are highlighted in red. (B and C) Heatmap and Spearman's rank correlation coefficient showing the expression of 462 DC-specific genes (log₂ values) in WT cDCs (black) and *Irf4^{-/-} Irf8^{-/-}* cDCs (blue) differentiated at the indicated conditions. (D) Scatter plots comparing gene expressions between splenic cDC and BM-derived cDC differentiated with Flt3L (top: cDC1 and bottom: cDC2). (E) Gene pathway analysis for the genes specifically controlled by either *Irf4* or *Irf8* using Metascape platform. (F) A scatter plot showing the average percentages of XCR1⁺ CD172a⁻ cDC1 (bar = average %, *n* = 4) differentiated from WT or *Irf4^{-/-} Irf8^{-/-}* BM progenitors at the indicated conditions. *** *P* < 0.001 (Student's *t*-test).

□ WT cDC □ *lrf4*^{+/-} *lrf8*^{-/-} cDC

Figure S4. Phenotypic and functional analysis of cDCs restored by retroviral *Irf4*, *Irf8*, or *Irf4-Irf8* chimeras, related to Figure 3.

(A-E) Analysis of cDCs differentiated from WT, *Irf4^{+/-} Irf8^{-/-}*, or *Irf4^{-/-} Irf8^{-/-}* CD117^{hi} BM progenitors retrovirally expressing either *Irf4* or *Irf8* without or with *Batf3* co-expression. (A and B) Microarray analysis showing mRNA expression of *TIr12*, *TIr11*, and *TIr4* in the cDCs restored at the indicated conditions. L4 (LOW IRF4), H4 (HIGH IRF4), L8 (LOW IRF8), and H8 (HIGH IRF8). (C and D) Flow cytometric analysis showing IL-12 p40 production from the restored cDCs upon stimulation with either STAg (1 µg/ml) or *E. coli* LPS (1 µg/ml) for 6 h. Data shown is one of three similar experiments. (E) Flow cytometric analysis showing CD11c⁺ MHCII⁺ cDCs differentiated from *Irf4^{+/-} Irf8^{-/-}* BM progenitors expressed with retroviral *Irf4* (IRF444), *Irf8* (IRF888) or *Irf4-Irf8* chimeras (IRF488 or IRF844) without or with *Batf3* co-expression. Data shown is one of three similar experiments.

A Peaks shared by IRF4 and BATF3 (cDC2), # Tg seq. = 643

Motif	<i>P</i> -value	% Tg/Bg	Best match
GGAA ST	1e-260	61/7.6	PU.1 or SpiB
	1e-117	37/6.2	AP-1
e tttc a_t _@ TgA	1e-102	13/0.3	AP-1-IRF
AACCACA	1e-45	22/5.3	RUNX

B LOW IRF4 vs. HIGH IRF4 198 genes (HIGH IRF4 > LOW IRF4, > 2 fold) IRF8 ChIP-seq for cDC1: # Tg seq. = 326

Motif	<i>P</i> -value	% Tg/Bg	Best match
	1e-100	51/7.0	PU.1-IRF
SILCCETI	1e-59	37/6.1	PU.1 or SpiB
	3 1e-26	12/1.2	AP-1-IRF
±TCTG <u></u> eTC	1e-13	15/4.1	ZNF
ITTGAGGAACT(1 e-13	2.5/0	PU.1 or SpiB

* cDC differentiated from Irf4--Irf8--BM progenitors

C HIGH IRF4 vs. HIGH IRF8 190 genes (HIGH IRF8 > HIGH IRF4, > 2 fold)

IRF8 ChIP-seq for cDC1: # Tg seq. = 474

Motif	<i>P</i> -value	% Tg/Bg	Best match
T. SA TISS	1e-176	52/5.7	PU.1-IRF
cTTCCTCTTT	1e-58	18/1.8	PU.1 or SpiB
TeATA_TGAAA	e 1e-33	10/0.9	AP-1-IRF
T ₽A₌TCAT	1e-17	11/2.4	AP1
т тет СсТТх∝	1e-15	9.9/2.4	RUNX

* cDC differentiated from Irf4-/-Irf8-/- BM progenitors

Figure S5. High amounts of IRF4 bind AICE, related to Figure 5.

(A) *De novo* motif analysis for ChIP-seq peaks shared by IRF4 and BATF3 in cDC2. (B and C) *De novo* DNA motifs for IRF8 ChIP-seq peaks merged with (B) 198 increased genes (> 2 fold) at high IRF4 condition compared to low IRF4 condition, or (C) 190 increased genes (> 2 fold) at high IRF8 condition compared to high IRF4 condition. Differentially expressed gene sets between the compared conditions were selected based on microarray analysis of *Irf4-^{-/-} Irf8-^{-/-}* cDCs restored by retroviral *Irf4* or *Irf8* without or with *Batf3* co-expression (Table S1). Genomic regions selected for motif analysis: gene body ± 50 kb. # Tg seq. and % Tg/Bg denote the number of total target sequences and percentage of target/percentage of background sequence, respectively. (D) EMSA showing bindings of either IRF4 or IRF8 to DNA containing AICE (top) or EICE (bottom). Probe sequences containing AICE (*Snx22*–12 kb, AICE: red) or EICE (*Snx22*–3 kb, EICE: blue) are indicated below each of the gels. (E) Flow cytometric analysis showing IRF8 expression in splenic cDC of the indicated genotypes (top and second from the top). Pre-gate: CD64⁻ B220⁻ cells. Two-color histograms at the bottom show the proportions of cDC1 and cDC2 in the IRF8^{to} (second from the bottom) and IRF8^{to} (bottom) cDC populations. Numbers in the histograms are the percentages of the gated cells.

Figure S6. Transcriptional activity of *Zbtb46* enhancer elements and expression of *Zbtb46*^{GFP} or *Snx22*^{GFP} in various immune cells, related to Figures 6 and 7.

(A) A retroviral construct to assess integrated GFP-reporter activity driven by CMVp_{min} in combination with various enhancer elements. (B) Flow cytometric analysis for GFP-reporter activities in MoDC, neutrophils (Neut), macrophages (MAC), or splenic B cells transduced with empty retrovirus (black) or retroviruses expressing Zbtb46 +23 kb, +32 kb, or +48 kb elements (red). Culture methods for each cell type are described in the 'experimental model and subject details' section of the STAR METHODS. A bar graph below shows average MFI fold changes (MFI of enhancer element / MFI of empty) ± SD for each cell type (n = 4). **** P < 0.0001 (Student's t-test). (C-F) Flow cytometric analysis showing GFP expression of various immune cells in the (C and D) spleen or (E and F) skin-draining lymph nodes from mice of the indicated genotypes. Gating strategies to identify the indicated cell types are as followings: (i) in the spleen, cDC pre-gate: F4/80⁻ Bst2⁻B220⁻ CD11c⁺ MHCII⁺ cells, cDC1: CD24⁺ CD172a⁻ cells, cDC2: CD172a⁺ cells, pDC: F4/80⁻ Bst2⁺ B220⁺ cells, red pulp macrophages (RP-MAC): F4/80⁺ CD64⁺ MHCII^{int} CD11c^{int} cells, monocytes: B220⁻ CD11b⁺ Ly6C^{hi} Ly6G⁻ cells, neutrophils: B220⁻ CD11b⁺ Ly6C^{hi} Ly6G⁺ cells, B cells: B220⁺ MHCII⁺ cells, CD4⁺ T cells: B220⁻CD3⁺CD4⁺ cells, CD8⁺ T cells: B220⁻CD3⁺CD8⁺ cells, and NK cells: B220⁻ NK1.1⁺ cells, (ii) in the skin lymph nodes, cDC pre-gate: F4/80⁻ Bst2⁻ B220⁻ EpCAM⁻ cells, migratory cDC1: MHCII^{hi} CD11c⁺ CD24⁺ CD172a⁻ cells, migratory cDC2: MHCII^{hi} CD11c⁺ CD172a⁺ cells, resident cDC1: MHCII^{int} CD11c⁺ CD24⁺ CD172a⁻ cells, resident cDC2: MHCII^{int} CD11c⁺ CD172a⁺ cells, and pDC: F4/80⁻ Bst2⁺ B220⁺ cells.

В

Figure S7. *Batf^{-/-}* Batf^{3-/-} cDC2 normally express *Zbtb*46^{GFP}, related to Figure 6.

(A) Flow cytometric analysis showing *Zbtb46*^{GFP}expression in the splenic cDC2 from mice of the indicated genotypes. Numbers in the two-color histograms indicate the percentage of the gated cells (top and middle). Numbers in the single-color histograms (bottom) indicate *Zbtb46*^{GFP+} cell percentage (upper, black) and geometric MFI of the cells (lower, green). (B) A bar graph shows the average geometric MFI ± SD (n = 3).