
Response to Reviewer: 1 

 

The paper presents TSCCA, a novel algorithm for identification of miRNA-gene 

modules across multiple cancer types from TCGA. TSCCA is based on CCA 

and extends it to tensors to support several cancer types. The authors apply 

the method to 33 cancers from TCGA, and show the biological relevance of the 

detected modules using several databases of biological knowledge, and by 

considering the survival implications of the selected genes and miRNA. The 

authors also compare TSCCA to Modularity SA and to SCCA on cancer and 

synthetic data. The task of detecting miRNA-gene modules in cancer is of high 

importance, given the known involvement of miRNA in cancer and the complex 

regulatory processes that are perturbed in cancer. We are not familiar with 

previous methods designed to find miRNA-gene modules across several 

datasets, so this method has potentially high value. The paper is well organized 

and well written. However, as previous methods detected miRNA-gene 

modules, and the main innovation of this method is in working on multiple 

datasets, the benefit of using multiple cancers should be shown in a more 

convincing manner. Additionally, while no algorithm was previously developed 

for the specific data used in the study, the problem of tri-clustering (detecting 

modules in tensors) was previously investigated, and the suggested method 

should be compared to other tri-clustering methods, in addition to modularity 

SA. Furthermore, the authors should provide an implementation of TSCCA. If 

these points are satisfactorily addressed, we think that this work would merit 

publication in PLOS Computational Biology. 

 

Response: We deeply thank the reviewer for the very positive, constructive 

comments and suggestions. In the revised manuscript and the following 

response, we address the above points in detail. 

 

Major comments 

1. Previous methods were developed to detect miRNA-gene modules, and the 

main novelty of TSCCA is that it uses multiple datasets. The advantage of using 

multiple datasets is not clearly demonstrated. The criteria used to show the 

biological and clinical relevance of the detected modules (enrichment of cancer 

genes and miRNAs in the modules, enrichment of miRNA families, miRNA-

gene regulatory networks, and survival analysis using the modules) are never 

compared to solutions obtained on a single cancer dataset. It is very likely that 

all of these criteria would also show biological relevance if SCCA would be 

applied to each cancer separately. 

 

Response: Yes, we agree that SCCA could also identify functionally enriched 
modules. However, it cannot well capture multiple cancer shared or several 
cancer-specific modules in an effective one-time manner. In light of your 
comment, we have used SCCA to identify 50 modules on each cancer data set 
(Table S24). For a single cancer data, SCCA did ensure that the expression of 



miRNAs and genes within each identified module are correlated in the specific 
cancer data (see 8th column in Table S24), but it failed to ensure that the 
miRNAs and genes with the identified module are correlated in most cancer 
types (see 7th column in Table S24). To clarify this, we have added this result 
into Supplementary Section S22: “More details about comparison of TSCCA 
with other methods”, and added the discussions into main text (lines 455-465). 
 

“In this section, we compared TSCCA with SCCA and multiple tri-clustering 
methods on the TCGA data. Firstly, we used SCCA to identify 50 modules on 
each cancer data set and compared TSCCA with SCCA in terms of modularity 
scores and multiple biological indicators (S3 Appendix Table S24). The 
parameters of SCCA is consistent with the parameters of TSCCA with 𝑘𝑢 = 200, 

𝑘𝑣 = 10 and 𝑘𝑤 = 20 when applying to the TCGA data. For a single cancer 
data, SCCA also ensures that the expression of miRNAs and genes within the 
identified modules are correlated in the specific cancer data (see the eighth 
column in S3 Appendix Table S24), but it failed to ensure that the miRNAs and 
genes with the identified modules are correlated in most cancer types (see the 
seventh column in S3 Appendix Table S24). Thus, TSCCA is more suitable to 
multi-cancer data compared to SCCA.” 

Table S24. Performance comparison of TSCCA and SCCA, where we used SCCA to 

identify 50 modules on each cancer data set. “#cancer miR”, “#cancer gene”, “#gene 

edge” and “#miR-gene edge” denote the average of the number of cancer miRNAs, 
cancer genes, gene edges and miRNA-gene edges on all the identified modules. Since 
SCCA cannot select cancer types when applying to single cancer data, we assumed 
“Modularity” of SCCA is computed on all 33 cancer types, while “Single cancer 
modularity” of SCCA is computed on a cancer type. 

Data Method 
#cancer 

miR 

#cancer 

gene 

#gene 

edge 

#miR-gene 

edge 
modularity 

single cancer 

modularity  

33 cancers TSCCA 5.98  19.56  106.10  22.70  0.30 
 

ACC SCCA 5.10  17.96  74.30  14.72  0.15 0.43  

BLCA SCCA 5.92  20.54  62.84  13.22  0.21 0.43  

BRCA SCCA 4.44  18.36  87.86  21.22  0.19 0.40  

CESC SCCA 5.00  18.42  48.90  14.20  0.18 0.33  

CHOL SCCA 5.26  19.04  53.14  14.38  0.16 0.44  

COAD SCCA 5.66  17.70  43.12  15.30  0.20 0.49  

COADREAD SCCA 5.54  17.60  44.32  14.92  0.20 0.47  

DLBC SCCA 5.04  16.52  55.70  16.96  0.14 0.47  

ESCA SCCA 5.46  16.52  48.36  15.14  0.18 0.47  

HNSC SCCA 5.94  18.24  80.16  20.32  0.19 0.36  

KICH SCCA 5.80  17.72  46.24  11.22  0.16 0.52  

KIPAN SCCA 6.26  17.96  40.62  15.32  0.17 0.53  

KIRC SCCA 6.42  19.42  56.20  17.68  0.18 0.35  

KIRP SCCA 5.86  17.98  51.22  13.48  0.18 0.39  

LGG SCCA 5.54  13.40  54.74  10.42  0.14 0.53  

LIHC SCCA 5.54  20.60  78.40  15.42  0.18 0.43  

LUAD SCCA 5.58  18.24  100.68  21.16  0.19 0.35  

LUSC SCCA 6.44  21.64  72.36  20.62  0.20 0.34  

MESO SCCA 6.02  19.60  61.96  12.40  0.16 0.39  

OV SCCA 5.66  19.16  63.58  19.12  0.18 0.29  

PAAD SCCA 6.22  20.12  55.64  13.54  0.16 0.46  

PCPG SCCA 6.10  18.72  54.20  15.18  0.17 0.44  



PRAD SCCA 6.96  17.04  49.34  21.14  0.19 0.40  

READ SCCA 5.52  17.52  43.70  16.32  0.19 0.46  

SARC SCCA 5.48  15.76  54.42  12.36  0.16 0.47  

SKCM SCCA 5.58  19.92  61.96  13.86  0.18 0.34  

STAD SCCA 5.68  17.26  58.28  19.38  0.22 0.53  

STES SCCA 5.66  17.28  65.94  18.28  0.22 0.47  

TGCT SCCA 5.36  18.30  37.84  12.86  0.16 0.66  

THCA SCCA 6.28  19.40  46.04  14.52  0.17 0.46  

UCEC SCCA 5.16  19.36  88.20  19.50  0.19 0.32  

UCS SCCA 6.20  15.92  42.22  10.32  0.15 0.46  

UVM SCCA 6.06  16.76  41.72  11.34  0.15 0.48  

 

The multi-dataset nature of the algorithm is currently considered in two places. 

The first is Figure 4, where the W matrix is visualized. This matrix shows that 

the modules actually capture only a subset of the cancer types, while other 

cancer types have many zero or near-zero loadings in W. To these reviewers, 

it seems surprising that all these cancer types have such a small number of 

miRNA-gene modules. Is this a biological reality or a bias introduced by the 

algorithm? The authors should rerun TSCCA after excluding the few cancer 

types that are responsible for most of the modules, and examine the output of 

the algorithm. If new biologically significant modules emerge, this would 

suggest that dominant caner types overshadow the others. In this case this 

limitation of the algorithm should be clearly stated. 

 

Response: This is a very interesting point. We think it could be possible to 

identify more modules. We note that TSCCA is an explorative tool, which 

identity the “strongest” modular patterns in the current data. In light of your 

suggestion, we first extracted a subset of cancers (from the cluster 3 of Figure 

S16A). We then re-used TSCCA to extract 50 modules on the subset of the 

previous data (across 18 cancers), and we found some new modules with 

significant modularity scores (Figure S16B). Further, we show the heatmap of 

the corresponding W matrix (Figure S16C), suggesting that TSCCA could still 

find new significant modules.  

 

Finally, we have discussed this point into the main text (lines 527-534) as 

follows:  

 

“We note that TSCCA is an explorative tool, which identity the “strongest” 

modular patterns in the current multiple cancer data. This means that in a 

subset of it, it could identify more significant modules. For example, most of the 

50 modules identified by TSCCA on the TCGA dataset are enriched in 60% of 

cancers, while other cancers are rare. To this end, we may extract a subset of 

cancers from the cluster 3 in Fig 4 and then re-use TSCCA to extract some 

modules on a subset of the previous data (across 18 cancers). More details of 

and results are given in Figure S16.” 



 

Figure S16. Application of the TSCCA onto the subset of TCGA cancer data from the 

cluster 3 in Fig. 4 and extract 50 modules. 

 

The second place where the multi-dataset aspect is considered is the direct 

comparison to SCCA. This analysis is more convincing, but it should be 

expanded in two ways. First, biological criteria should be used for the 

comparison (enrichment of cancer genes etc.), and not only the modularity. 

Second, it is interesting to show the modularity when calculated only on one 

cancer type (e.g. ACC) when TSCCA is applied to all the data, and SCCA is 

applied only on ACC. This can show when using one dataset to detect miRNA-

gene modules is preferable to using multiple datasets, highlighting the 

limitations of the algorithm. 

 

Response: In light of your suggestion, we also have used SCCA to identify 50 
modules on each cancer data. And we compared TSCCA with SCCA from 
multiple biological indicators (see above Table S24). 
 
Firstly, compared with TSCCA, although SCCA can ensure that the average 
modularity score of identified modules on a single cancer is larger in that cancer, 
SCCA cannot ensure these discovered miRNA-gene modules are co-
expressed in multiple cancers, i.e., the miRNAs and genes within the module 
are co-expressed in a single cancer, and it cannot ensure that they are co-



expressed on other cancers. This is the shortcoming of SCCA. Secondly, 
compared to SCCA, TSCCA has some advantages in multiple biological 
indicators, such as the average number of cancer miRNAs, cancer genes, gene 
edges and miRNA-gene edges (Table S24). For a single cancer data, SCCA 
did ensure that the expression of miRNAs and genes within each identified 
module are correlated in the specific cancer data (see 8th column in Table 
S24), but it failed to ensure that the miRNAs and genes with the identified 
modules are correlated in most cancer types (see 7th column in Table S24). 
 
Finally, in the revised manuscript, we have added these new results into 
Supplementary Section S22 “More details about comparison of TSCCA with 
other methods” and added more discussion in the main text (lines 455-465). 
 

To the best of our knowledge, no previous method was developed to detect 

miRNA-gene modules across multiple datasets, but other methods were 

developed for a similar computational task – triclustering. The only triclustering 

algorithm TSCCA is compared to is Modularity_SA, which is a method that the 

authors developed themselves for the comparison. The authors should 

compare TSCCA to other triclustering methods, even if they do not perform l0 

regularization. A survey of triclustering algorithms can be found in [1]. As stated 

in the previous point, the comparison should include biological criteria. The 

authors demonstrate convincingly that TSCCA's modules are biologically 

relevant, but biological criteria (e.g. enrichment of gene-gene interactions) 

should be compared to other methods. 

 

Response: We thank the reviewer for comment. We have compared TSCCA 

with multiple tri-clustering methods including modularity_SA and Sparse 

Canonical Polyadic decomposition (SCP) which uses l1 regularization to force 

sparsity [1], and two merit-function based methods including “Variance” (Eq. 1 

in [2]) and “Mean squared residue (MSR)” (Eq. 3 in [2]). These two merit-

functions are optimized by using annealing algorithm. Var_SA is a variance 

based simulated annealing (Var_SA) method, which uses a simulated 

annealing algorithm to minimize the variance index for extracting a cancer-

miRNA-gene module. Similarly, MSR_SA is an MSR based simulated annealing 

(MSR_SA) method, which uses a simulated annealing algorithm to minimize 

the MSR index for extracting a cancer-miRNA-gene module. 

 

[1] G. Allen, “Sparse higher-order principal components analysis,” in Artificial 

Intelligence and Statistics, 2012, pp. 27–36. 

[2] R. Henriques and S. C. Madeira, “Triclustering algorithms for three-

dimensional data analysis: a comprehensive survey,” ACM Computing Surveys 

(CSUR), vol. 51, no. 5, pp. 1–43, 2018. 

 

The comparison results are given in Table S25 and show that TSCCA is 

superior to the other tri-clustering methods on multiple biological indicators and 

modularity score. Due to the definition of MSR, the MSR_SA method is very 



consuming time. We found that MSR_SA took an hour to identify a module, 

while Var_SA only takes 5 seconds on a personal computer. Compared with the 

TSCCA and Modularity_SA, the corresponding sub-tensors of modules 

identified by Var_ SA or MSR_SA tend to be zero patterns (Figure S14). In 

short, TSCCA is superior to other tri-clustering methods in multiple indicators. 

 

Table S25. Performance comparison of TSCCA and the triclustering methods. 
“#cancer miR”, “#cancer gene”, “#gene edge” and “#miR-gene edge” denote the 

average of the number of cancer miRNAs, cancer genes, gene edges and miRNA-
gene edges on all the identified modules.  

Method #cancer_miR #cancer_gene #gene edge 
#miR-gene 

edge 
Modularity 

TSCCA 5.98  19.56  106.10  22.70  0.30  

SCP 5.80  12.54  67.98  14.92  0.29  

Modularity_SA 8.08  21.14  47.52  11.62  0.29  

Var_SA 3.40  13.58  32.04  4.94  0.04  

MSR_SA 3.48  12.30  32.22  7.14  0.06  

 

In the revised manuscript, we have added these new results into 

Supplementary Section S22 “More details about comparison of TSCCA with 

other methods” and added the discussions into main text (lines 466-483). 

 
“Secondly, we also compared TSCCA with multiple tri-clustering methods 

including Modularity_SA and Sparse Canonical Polyadic decomposition (SCP) 

which uses ℓ1-regularization to force sparse [49], and two merit-function based 

methods including “Variance” (see Eq. 1 in [50]) and “Mean squared residue 

(MSR)” (see Eq. 3 in [50]). The two merit-functions are optimized by using 

annealing algorithm. Var_SA is a variance-based simulated annealing (Var_SA) 

method, which uses a simulated annealing algorithm to minimize the variance 

merit-function for extracting a cancer-miRNA-gene module. Similarly, MSR_SA 

is an MSR-based simulated annealing (MSR_SA) method, which uses a 

simulated annealing algorithm to minimize the MSR merit-function for extracting 

a cancer-miRNA-gene module. The comparison results are given in S3 

Appendix Table S25 and show that TSCCA is superior to the other tri-clustering 

methods in terms of multiple biological indicators and modularity score. Due to 

the definition of MSR, the MSR_SA method is very consuming time. We found 

that MSR_SA took an hour to identify a module, while Var_SA only takes 5 

seconds on a personal computer. Compared with the TSCCA and 

Modularity_SA, the sub-tensors/modules identified by Var_SA or MSR_SA tend 

to be zero patterns (S2 Appendix Fig S14). In short, the TSCCA method is 

superior to other tri-clustering methods in terms of multiple indicators (S3 

Appendix Table S25).” 



 

Figure S14. Heatmap of cancer-miRNA-gene modules identified by different methods 
in the TCGA dataset. The top half of each heatmap corresponds to the module 1 (row 
corresponds to gene, column corresponds to miRNA) and the lower part is a random 
module for comparison. 

 

3. The authors should provide an implementation (or at least a well documented 

executable) of TSCCA, as the method, rather than the biological results, are 

the main contribution of this work. 
 

Response: In light of your suggestion, we uploaded the R package for TSCCA 
at the GitHub repository https://github.com/wenwenmin/TSCCA and provided 
the guide for potential users. 

 

https://github.com/wenwenmin/TSCCA


Other important comments 

4. In order to optimize TSCCA's objective function (equation (5)), the authors 

optimize for u, v and w separately. If w is held constant, the optimization 

problem is that of sparse diagonal CCA, which is solved by the work of Xu et al. 

that the authors cite (reference [38] in the paper). Their algorithm can be used 

for an improved optimization procedure. 

 

Response: We appreciate very much for your comment. Since the TSCCA's 
objective function of the optimization problem we solved in (5) is a linear 
problem with respect to u or v. In fact, the accelerated version of this algorithm 
based on reference [38] is the same as the algorithm we proposed. Below we 
prove this. 
 
In the Proposition 3 of Supplementary Section S3, we proved that 

𝒖𝑘+1 ≔ 𝑃𝑅𝑢
(𝒖𝑘 −

1

𝐿𝑢
∇𝑢𝑓(𝒖𝑘, 𝒗𝑘, 𝒘𝑘)) = 𝑃𝑅𝑢

(−�̅� ×2 𝒗𝑘 ×3 𝒘𝑘) =
𝛱(𝒛𝑢, 𝑘𝑢)

‖𝛱(𝒛𝑢, 𝑘𝑢)‖
 

where 𝒛𝑢 = �̅� ×𝟐 𝒗𝑘 ×𝟑 𝒘𝑘. In other words, we obtain the update formula of 𝒖: 

𝒖𝑘+1 ≔
𝛱(𝒛𝑢,𝑘𝑢)

‖𝛱(𝒛𝑢,𝑘𝑢)‖
                            (1) 

Below we consider the acceleration situation in the reference [38]. Based on 
the proposed framework in reference [38], the improved algorithm with the 
extrapolation for 𝒖 is  

𝒖𝑘+1 ≔ 𝑃𝑅𝑢
(�̂�𝑘 −

1

𝐿𝑢
∇𝑢𝑓(𝒖𝑘, 𝒗𝑘, 𝒘𝑘)) = 𝑃𝑅𝑢

(−�̅� ×2 𝒗𝑘 ×3 𝒘𝑘) =
𝛱(𝒛𝑢, 𝑘𝑢)

‖𝛱(𝒛𝑢, 𝑘𝑢)‖
 

where �̂�𝑘 = 𝒖𝑘 + 𝜔𝑘(𝒖𝑘 − 𝒖𝑘−1) .  𝐿𝑢  is the Lipschitz constant of 

∇𝑢𝑓(𝒖𝑘, 𝒗𝑘, 𝒘𝑘) = −�̅� ×2 𝒗𝑘 ×3 𝒘𝑘 . Since ∇𝑢
2 𝑓 = 0 , 𝐿𝑢  can be any constant 

greater than zero. When 𝐿𝑢 → 0, we also have  

𝒖𝑘+1 ≔ 𝑃𝑅𝑢
(�̂�𝑘 −

1

𝐿𝑢
∇𝑢𝑓(𝒖𝑘, 𝒗𝑘, 𝒘𝑘)) = 𝑃𝑅𝑢

(−�̅� ×2 𝒗𝑘 ×3 𝒘𝑘) =
𝛱(𝒛𝑢, 𝑘𝑢)

‖𝛱(𝒛𝑢, 𝑘𝑢)‖
 

where 𝒛𝑢 = �̅� ×𝟐 𝒗𝑘 ×𝟑 𝒘𝑘 . Thus, we obtain the update formula of 𝒖  in the 
improved algorithm is   

𝒖𝑘+1 ≔
𝛱(𝒛𝑢,𝑘𝑢)

‖𝛱(𝒛𝑢,𝑘𝑢)‖
                           (2) 

We can see that Eqs (1) and (2) are the same. Therefore, the algorithm of the 
accelerated version is the same as the proposed Algorithm 1 for the problem 
(5) in this paper. 

 

5. The analysis for whether the 50 modules significantly overlap is not clear. 

a. Does the number of overlapping elements include genes, miRNA and cancer 

types? If so, it places a higher emphasis on gene expression, which is the most 

common feature. Or are three tests for overlap performed separately, one for 

genes, one for miRNA and one for cancer types? If the latter, how are these 

tests integrated? 

b. The random modules are created by sampling 100 genes, 10 miRNA and 20 



cancers. While these are the parameters used to run TSCCA, the authors state 

that not all modules include this number of genes, miRNA and cancers. The 

number of features in these random modules is therefore different from the 

number of features in the original modules, and the distribution of the size of 

the overlap is also different. The tests should be performed by conditioning on 

the size of the modules. 

c. There seems to be a small error in the number of random modules. The 

appendix says 100 modules were generated, but the number of module pairs 

appears to be 1000 in the rest of the text. 

 

Response: Regarding point (a), we feel sorry that we didn’t show it clearly, and 
we clarify the definition of the overlapping elements between two modules as 
follows: Note each cancer-miRNA-gene module identified by TSCCA 
corresponds to a sub-tensor. To assess the overlap level of the two modules, 
we first define the overlapping elements between two modules/sub-tensors as 
follows: If there are two modules (𝐼1, 𝐽1, 𝐾1) = {(𝑖, 𝑗, 𝑘)| 𝑖 ∈ 𝐼1, 𝑗 ∈ 𝐽1, 𝑖 ∈ 𝑘1} and 
(𝐼2, 𝐽2, 𝐾2) = {(𝑖, 𝑗, 𝑘)| 𝑖 ∈ 𝐼2, 𝑗 ∈ 𝐽2, 𝑖 ∈ 𝑘2} , then we defined their overlapping 
elements as: 

(𝐼1, 𝐽1, 𝐾1)⋂(𝐼2, 𝐽2, 𝐾2) = {(𝑖, 𝑗, 𝑘)| (𝑖, 𝑗, 𝑘) ∈  (𝐼1, 𝐽1, 𝐾1) and (𝑖, 𝑗, 𝑘) ∈  (𝐼2, 𝐽2, 𝐾2) }  

We then define the number of overlapping elements between the two modules 

as the number of the elements of the intersection (𝐼1, 𝐽1, 𝐾1)⋂(𝐼2, 𝐽2, 𝐾2).  

 

Regarding point (b), we have revised our program to ensure that the size of the 
pairs of random modules is consistent with the given pair of identified modules. 
Specifically, for a given pair of two identified modules (𝐼1, 𝐽1, 𝐾1) and (𝐼2, 𝐽2, 𝐾2), 
We first generate 1000 pairs of random modules from the original cancer-
miRNA-gene correlation tensor with the same size of the given pair of modules 
and then compute a p-value for the give pair of modules using permutation test 
(see Supplementary Section S7). 
 
Regarding point (c), Thanks. We have corrected this typo in the revised 
manuscript.  
 
In light of your comments, we have revised this into Supplementary Section 
S7 “Overlap analysis of any two modules using permutation test”. 

 

“7 Overlap analysis of any two modules using permutation test 
Since each cancer-miRNA-gene module identified by TSCCA corresponds to a 
sub-tensor (Figure 1C). To assess the overlap level of the two modules, we first 
define the overlapping elements between two modules/sub-tensors as follows: 
If there are two modules (𝐼1, 𝐽1, 𝐾1) = {(𝑖, 𝑗, 𝑘)| 𝑖 ∈ 𝐼1, 𝑗 ∈ 𝐽1, 𝑖 ∈ 𝑘1}  and 
(𝐼2, 𝐽2, 𝐾2) = {(𝑖, 𝑗, 𝑘)| 𝑖 ∈ 𝐼2, 𝑗 ∈ 𝐽2, 𝑖 ∈ 𝑘2} , then we defined their overlapping 

elements as: 

(𝐼1, 𝐽1, 𝐾1)⋂(𝐼2, 𝐽2, 𝐾2) = {(𝑖, 𝑗, 𝑘)| (𝑖, 𝑗, 𝑘) ∈  (𝐼1, 𝐽1, 𝐾1) 𝑎𝑛𝑑 (𝑖, 𝑗, 𝑘) ∈  (𝐼2, 𝐽2, 𝐾2) }  

We then define the number of overlapping elements between the module 



(𝐼1, 𝐽1, 𝐾1)  and the module (𝐼2, 𝐽2, 𝐾2)  as the number of the elements of the 

intersection (𝐼1, 𝐽1, 𝐾1)⋂(𝐼2, 𝐽2, 𝐾2).  

 

Based on the above definition, we adopt a permutation test method to assess 

the number of overlapping elements for a given pair of two identified modules 

(𝐼1, 𝐽1, 𝐾1) and (𝐼2, 𝐽2, 𝐾2): 

 
Step 1. We first generate 1000 pairs of random modules from the original 
cancer-cancer-miRNA-gene correlation tensor with the same size of the given 
pair of modules.  
 
Step 2. We then compute the number of overlapping elements between the 
given pair of modules, denoted by 𝑏0. Moreover, we compute the number of 
overlapping elements between any pair of random modules, denoted by 
𝑏1, ⋯ , 𝑏1000. 
 
Step 3. For the pair of two identified modules (𝐼1, 𝐽1, 𝐾1) and (𝐼2, 𝐽2, 𝐾2), a p-

value is computed by using the formula: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
∑ 1(𝑏0 ≥ 𝑏𝑡)1000

𝑡=1

1000
.” 

 

6. In a couple of analyses the authors do not statistically show the merit of their 

results. 

a. The authors count the number of modules with at least two miRNAs from the 

same family. Though 46 out of 50 sounds high, a statistical test should be 

performed to derive a p-value. 

b. The authors found that 70% of the modules have at least 3 miRNAs 

participating in a three-layer network, but the significance of this observation is 

not clear without a statistical test. 

 

Response: We thank the reviewer for the very detailed suggestion. For the 

given module set {M1, M2, …, M50} identified by TSCCA, we proposed a 

permutation test method to evaluate the significance level of the number of 

modules, which have at least two miRNAs from the same family (Figure R1 A).  

 

Similarly, we also evaluated the significance level of 70% of the modules within 

{M1, M2, …, M50} identified by TSCCA, where each module has at least 3 

miRNAs participating in a three-layer network (Figure R1B).  

 

In the revised manuscript, we have rephrased the following sentence: “We 

found that 92% (46 out of 50) modules have at least two miRNAs in the same 

family (P < 2.2.0e-16, S3 Appendix Table S15 and S1 Appendix Section 

S17).” and “We found that 70% modules have at least three miRNAs 

participating in a three-layer network (P < 2.2.0e-16, S3 Appendix Table S16 

and S1 Appendix Section S17).” 



 

Figure R1. (A) Permutation test is used to evaluate a significance level of the number 
of modules, which have at least two miRNAs from the same family. (B) Permutation 
test is used to evaluate a significance level of 70% of the modules within {M1, M2, …, 
M50}, where each module has at least 3 miRNAs participating in a three-layer network 

 

Finally, we have added this into Supplementary Section S17 “Statistical 

significance analysis”. 
 

“17 Statistical significance analysis 
For a given module set {M1, M2, …, M50}, we adopt a permutation test method 
to evaluate the significance of the number of modules from the module set with 
at least two miRNAs from the same family.  
 
Step 1. Compute the number of modules, 𝑛0, from the given module set with 

at least two miRNAs from the same family. 
 
Step 2. We generate 1000 random module sets with the same size of the given 
set {M1, M2, …, M50} from the original cancer-miRNA-gene correlation tensor. 
  
Step 3. For a random module set 𝑖 (𝑖 = 1,2, … ,1000), compute the number of 

modules, 𝑛𝑖 , from the given module set with at least two miRNAs from the 
same family. 
 
Step 4. Combine 𝑛0  and 𝑛1, … , 𝑛1000 , and use the one-sample Wilcoxon 
signed-rank test to compute the p-value of the given module set. 
 
Similarly, we also apply the above procedure to evaluate the significance of 70% 
of the modules, where each module has at least 3 miRNAs participating in a 
three-layer network.” 

 

7. The geometric tests used to calculate gene-gene and miRNA-gene 

interaction set enrichment (as described in sections 15 and 16 of the appendix) 

do not condition on the degree of the genes and miRNAs in the networks. In 

the way these tests are currently performed, it is possible to obtain significant 

p-values just because a chosen gene has high degree in the gene-gene 



network (or similarly, a gene/miRNA has high degree in the gene-miRNA 

network), even if there's no enrichment of interaction in the module. Indeed, 

cancer genes are generally known to have high degrees in gene-gene networks. 

The tests should be performed by permuting genes/miRNAs conditioned on 

their degree in the networks. 

 
Response: This is an interesting point. In light of your comment, we developed 
a statistical permutation test method, which was used to calculate gene-gene 
and miRNA-gene interaction set enrichment by permuting genes/miRNAs 
conditioned on their degree in the networks (see supplementary sections S15 
and S16). We show the results of gene-gene interaction set enrichment 
analysis results for each identified module by TSCCA in Table S27. Similarly, 
we also show the results of miRNA-gene interaction set enrichment analysis 
results for each identified module by TSCCA in Table S28. 
 

We have revised Sections S15 and S16 into the Supplementary Materials and 

added the results into Supplementary Section S23 “Results of gene-gene and 

miRNA-gene interaction set enrichment”. In addition, we have added the 

discussions into main text on lines 280-285 and 320-324. 

 

“In addition, to avoid the influence of degree in the gene interaction network, 

we developed a statistical permutation test method to perform the gene-gene 

interaction set enrichment, and we found that 70% (35 out of 50) modules 

contain significantly more gene interactions than expected by chance 

(permutation test P < 0.05, S1 Appendix Section S23).” 

 

“In addition, to avoid the influence of degree for miRNAs in the miRNA-gene 

network, we developed a statistical permutation test method to perform the 

miRNA-gene interaction set enrichment (S1 Appendix Section S23). There are 

20% (10 out of 50) modules, which contain significantly more miRNA-gene 

interactions than expected by chance (permutation test P < 0.05, S1 Appendix 

Section S23).” 

 

Table S27. Gene-gene interaction set enrichment for the identified modules by 
TSCCA on the TCGA dataset. 

Module 
#gene 
edge 

sum of gene 
degree 

p-value by 
geometric test 

p-value by 
permutation test 

1 505 7835 0.00E+00 0.001  

2 95 5144 1.13E-17 0.001  

3 57 4605 2.47E-04 0.001  

4 253 7738 1.03E-128 0.001  

5 57 4672 2.47E-04 0.001  

6 72 6906 1.31E-08 0.012  

7 21 3721 9.94E-01 0.242  

8 55 4608 7.03E-04 0.001  

9 27 4363 9.16E-01 0.243  

10 536 8688 0.00E+00 0.003  



11 172 8282 1.88E-63 0.002  

12 88 8939 1.25E-14 0.269  

13 34 4175 5.51E-01 0.016  

14 111 6268 1.88E-25 0.001  

15 64 6008 3.80E-06 0.004  

16 28 3524 8.84E-01 0.005  

17 32 4389 6.83E-01 0.063  

18 44 4302 6.41E-02 0.002  

19 263 10223 1.12E-137 0.001  

20 60 4532 4.53E-05 0.001  

21 20 3441 9.97E-01 0.170  

22 79 7991 4.49E-11 0.129  

23 54 6407 1.16E-03 0.142  

24 517 7827 0.00E+00 0.001  

25 36 4679 4.15E-01 0.051  

26 82 4869 3.26E-12 0.001  

27 40 4868 1.90E-01 0.035  

28 470 8471 0.00E+00 0.002  

29 77 7808 2.43E-10 0.108  

30 207 7845 6.50E-90 0.001  

31 42 4373 1.15E-01 0.003  

32 33 4370 6.18E-01 0.050  

33 28 4632 8.84E-01 0.341  

34 22 4293 9.90E-01 0.543  

35 61 3748 2.49E-05 0.001  

36 38 4624 2.91E-01 0.027  

37 29 3999 8.44E-01 0.049  

38 48 3926 1.60E-02 0.001  

39 54 4586 1.16E-03 0.001  

40 156 7338 2.20E-52 0.001  

41 142 4267 2.69E-43 0.001  

42 58 4965 1.42E-04 0.001  

43 56 6146 4.20E-04 0.047  

44 34 4509 5.51E-01 0.055  

45 90 6367 1.78E-15 0.001  

46 20 3682 9.97E-01 0.276  

47 85 5536 2.12E-13 0.001  

48 48 5003 1.60E-02 0.004  

49 68 5283 2.50E-07 0.001  
50 37 4779 3.51E-01 0.057  

Table S28. miRNA-gene interaction set enrichment for the identified modules by 
TSCCA on the TCGA dataset. 

Module  
#miR-gene 

edge 

sum of miR 

degree  

p-value by 

geometric test 

p-value by 

permutation test 

1 33 2363 2.55E-06 0.160  

2 13 1084 5.56E-01 0.449  

3 12 2465 6.65E-01 0.998  

4 57 2363 1.46E-19 0.001  



5 25 1909 2.18E-03 0.284  

6 63 3711 1.13E-23 0.001  

7 10 1031 8.47E-01 0.675  

8 16 721 2.50E-01 0.147  

9 42 2964 1.33E-10 0.151  

10 44 2533 1.12E-11 0.014  

11 36 2490 1.21E-07 0.101  

12 65 3711 4.19E-25 0.001  

13 12 1407 6.65E-01 0.779  

14 33 1954 2.55E-06 0.048  

15 10 721 8.47E-01 0.586  

16 18 1295 1.17E-01 0.241  

17 30 3714 4.10E-05 0.180 

18 5 1031 9.97E-01 0.967  

19 38 3081 1.39E-08 0.410  

20 17 1750 1.75E-01 0.677  

21 7 1122 9.77E-01 0.918  

22 16 1018 2.50E-01 0.228  

23 73 3701 4.25E-31 0.001  

24 13 1192 5.56E-01 0.538  

25 14 1909 4.45E-01 0.925  

26 11 1073 7.64E-01 0.611  

27 4 1295 9.99E-01 0.998  

28 23 912 8.33E-03 0.020  

29 55 3050 2.97E-18 0.022  

30 56 2457 6.65E-19 0.001  

31 18 1051 1.17E-01 0.133  

32 25 1730 2.18E-03 0.178  

33 8 1302 9.52E-01 0.936  

34 9 918 9.09E-01 0.719  

35 8 679 9.52E-01 0.756  

36 12 678 6.65E-01 0.392  

37 15 2464 3.41E-01 0.991  

38 18 2097 1.17E-01 0.850  

39 13 1002 5.56E-01 0.408  

40 16 1228 2.50E-01 0.341  

41 5 503 9.97E-01 0.918  

42 2 957 1.00E+00 0.999  

43 31 2261 1.68E-05 0.184  

44 11 1055 7.64E-01 0.596  

45 8 900 9.52E-01 0.800  

46 43 3711 3.91E-11 0.001  

47 15 750 3.41E-01 0.211  

48 20 2128 4.62E-02 0.762  



49 5 475 9.97E-01 0.915  

50 2 669 1.00E+00 0.997  

 

“15.1 Permutation test for gene-gene interaction set enrichment analysis 
For a given module 𝑖, suppose it contains 𝑛0 genes and 𝑚0 validated gene 
interactions/edges and the sum of degrees of genes within the module in the 
original gene-gene interaction network is 𝑑0. 
 
Step 1. We first randomly generate 1000 modules to ensure that the sum of 
degree of the genes in each module is in [𝑑0 − 50, 𝑑0 + 50], which is to ensure 
that the sum of degree of the genes in each random module is similar to the 
given module, so as to eliminate the influence of the vertex degree on the result. 
 
Step 2. We then compute the number of validated gene interactions of these 
random modules, denoted as 𝑚1, 𝑚2, … , 𝑚1000. 
 
Step 3. For the given module 𝑖 and its p-value was computed by using the 
formula: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
∑ 1(𝑚𝑖 ≥ 𝑚0)+11000

𝑖=1

1000+1
. 

where adding 1 to both numerator and denominator to avoid p-values of zero. 
 
16.1 Permutation test for miRNA-gene interaction set enrichment analysis 
For a given module 𝑖 , suppose it contains 𝑛0  genes and 𝑚0  validated 
miRNA-gene interactions/edges and the sum of degrees of miRNAs within the 
module in the original miRNA-gene interaction network is 𝑑0. 
 
Step 1. We first randomly generate 1000 modules to ensure that the sum of 
degree of the genes in each module is in [𝑑0 − 50, 𝑑0 + 50], which is to ensure 
that the sum of degree of the miRNAs in each random module is similar to the 
given module, so as to eliminate the influence of the degree of miRNA on the 
result. 
 
Step 2. We then compute the number of validated miRNA-gene interactions of 
these random modules, denoted as 𝑚1, 𝑚2, … , 𝑚1000. 
 
Step 3. For the given module 𝑖  and its p-value is computed by using the 
formula: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
∑ 1(𝑚𝑖 ≥ 𝑚0)+11000

𝑖=1

1000+1
. 

where adding 1 to both numerator and denominator to avoid p-values of zero.” 
 
8. The CE and Recovery score does not consider the cancers selected for each 
module. The authors need to add an additional metric (or change the current 
one) that considers the cancers. Additionally, because the number of miRNAs 
is smaller than the number of genes, it is of interest to report the CE and 
Recovery score when considering only genes or only miRNAs. Otherwise the 
current reporting places more emphasis on genes. 

 

Response: In light of your comment, we have extended the “Recovery score” 



and “CE score” to evaluate the similarity of two tri-clusters, bi-clusters and 
clusters. And the results of CE and recovery scores are shown in Figure 8B. 
More results are given in the Tables S20 and S21. For example, the results of 
CE and Recovery score when considering only genes or only miRNAs are given 
in the 2th and 3rd column of Tables S20 and S21. In short, the TSCCA 
method is superior to the other methods in terms of Recovery and CE score. 
 

In the revised manuscript, we have added more description and results into 

Supplementary Section S21 “More details about simulation study”, revised 

the definition of evaluation metrics into Supplementary Section S20 

“Evaluation metrics” and updated Figure 8B in main text. 

Table S20. Comparison (in terms of CE ± std) on the simulated data. Since SCCA 
cannot select cancer types, we assumed each module identified by SCCA contained 
all cancer types for computing 3D-CE and 3D-recovery score. 

Method 
1D-CE ± std 

(gene) 
1D-CE ± std 

(miR) 
2D-CE ± std 

3D-CE ±  
std 

SCCA + cancer1 0.777±0.013 0.775±0.041 0.575±0.012 0.327±0.005 

SCCA + cancer2 0.777±0.012 0.781±0.052 0.576±0.014 0.328±0.006 

SCCA + cancer3 0.779±0.014 0.787±0.042 0.579±0.014 0.329±0.005 

SCCA + cancer4 0.363±0.015 0.421±0.039 0.090±0.009 0.058±0.006 

SCCA + JointData 0.370±0.015 0.429±0.039 0.090±0.009 0.058±0.006 

Modularity_SA 0.596±0.159 0.653±0.202 0.506±0.153 0.506±0.153 

TSCCA 0.928±0.106 0.929±0.106 0.864±0.200 0.848±0.225 

Table S21. Comparison (in terms of Recovery ± std) on the simulated data. 

Method 
1D-recovery 
±std (gene) 

1D-recovery 
±std (miR) 

2D-recovery 
±std 

3D-recovery 
±std 

SCCA + cancer1 0.745±0.006 0.765±0.019 0.695±0.006 0.351±0.003 

SCCA + cancer2 0.744±0.007 0.775±0.027 0.696±0.006 0.352±0.004 

SCCA + cancer3 0.744±0.005 0.770±0.026 0.696±0.007 0.352±0.004 

SCCA + cancer4 0.229±0.010 0.300±0.038 0.086±0.010 0.055±0.006 

SCCA + JointData 0.232±0.009 0.300±0.032 0.084±0.008 0.055±0.005 

Modularity_SA 0.770±0.019 1.000±0.000 0.770±0.019 0.770±0.019 

TSCCA 0.918±0.120 0.926±0.110 0.903±0.143 0.898±0.151 

 

The revised Supplementary Section S20 “Evaluation metrics” as follows: 

“20 Evaluation metrics  

In the section, we use two evaluation metrics to assess module or subspace clusters, 
including recovery score [8] and clustering error (CE) score [9]. We also extend the 
“Recovery score” to evaluate the similarity of two tri-clusters, bi-clusters, and clusters. 
Their ranges are between 0 (low quality) and 1 (perfect).  

20.1 Recovery score 

Let 𝑀𝑇𝑟𝑢𝑒 and 𝑀𝑃𝑟𝑒 be two sets of modules, where 𝑀𝑇𝑟𝑢𝑒 denotes the set of the 𝑘 

true modules and 𝑀𝑃𝑟𝑒 denotes the set of the 𝑙 predicted modules.  
 
(i) 3D Recovery score for two tri-clusters 



3𝐷 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
1

𝑘
∙ ∑ 𝑚𝑎𝑥

1≤𝑗≤𝑙
𝐽𝑎𝑐𝑐𝑎𝑟𝑑( 𝑀𝑖

𝑇𝑟𝑢𝑒 , 𝑀𝑗
𝑃𝑟𝑒)

𝑘

𝑖=1

 

where  𝑀𝑖
𝑇𝑟𝑢𝑒 and 𝑀𝑗

𝑃𝑟𝑒 are two subtensors/tri-clusters and 𝐽𝑎𝑐𝑐𝑎𝑟𝑑 is defined as 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑( 𝑀𝑖
𝑇𝑟𝑢𝑒 , 𝑀𝑗

𝑃𝑟𝑒) =
|{𝐶𝑖𝑗𝑘  |  𝐶𝑖𝑗𝑘 ∈  𝑀𝑖

𝑇𝑟𝑢𝑒 𝑎𝑛𝑑 𝐶𝑖𝑗𝑘 ∈ 𝑀𝑗
𝑃𝑟𝑒}|

|{𝐶𝑖𝑗𝑘  |  𝐶𝑖𝑗𝑘 ∈  𝑀𝑖
𝑇𝑟𝑢𝑒 𝑜𝑟 𝐶𝑖𝑗𝑘 ∈ 𝑀𝑗

𝑃𝑟𝑒}|
 

 
(ii) 2D Recovery score for two bi-clusters 

2𝐷 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
1

𝑘
∙ ∑ 𝑚𝑎𝑥

1≤𝑗≤𝑙
𝐽𝑎𝑐𝑐𝑎𝑟𝑑( 𝑀𝑖

𝑇𝑟𝑢𝑒 , 𝑀𝑗
𝑃𝑟𝑒)

𝑘

𝑖=1

 

where  𝑀𝑖
𝑇𝑟𝑢𝑒 and 𝑀𝑗

𝑃𝑟𝑒 are two matrices/bi-clusters and Jaccard index is defined as 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑( 𝑀𝑖
𝑇𝑟𝑢𝑒 , 𝑀𝑗

𝑃𝑟𝑒) =
|{𝐶𝑖𝑗 |  𝐶𝑖𝑗 ∈  𝑀𝑖

𝑇𝑟𝑢𝑒 𝑎𝑛𝑑 𝐶𝑖𝑗 ∈ 𝑀𝑗
𝑃𝑟𝑒}|

|{𝐶𝑖𝑗 |  𝐶𝑖𝑗 ∈  𝑀𝑖
𝑇𝑟𝑢𝑒 𝑜𝑟 𝐶𝑖𝑗 ∈ 𝑀𝑗

𝑃𝑟𝑒}|
 

 
(iii) 1D Recovery score for two clusters 

1𝐷 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
1

𝑘
∙ ∑ 𝑚𝑎𝑥

1≤𝑗≤𝑙
𝐽𝑎𝑐𝑐𝑎𝑟𝑑( 𝑀𝑖

𝑇𝑟𝑢𝑒 , 𝑀𝑗
𝑃𝑟𝑒)

𝑘

𝑖=1

 

where  𝑀𝑖
𝑇𝑟𝑢𝑒 𝑎𝑛𝑑 𝑀𝑗

𝑃𝑟𝑒  are two clusters and Jaccard index is defined as 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑( 𝑀𝑖
𝑇𝑟𝑢𝑒 , 𝑀𝑗

𝑃𝑟𝑒) =
|{𝐶𝑖 |  𝐶𝑖 ∈  𝑀𝑖

𝑇𝑟𝑢𝑒 𝑎𝑛𝑑 𝐶𝑖 ∈ 𝑀𝑗
𝑃𝑟𝑒}|

|{𝐶𝑖 |  𝐶𝑖 ∈  𝑀𝑖
𝑇𝑟𝑢𝑒 𝑜𝑟 𝐶𝑖 ∈ 𝑀𝑗

𝑃𝑟𝑒}|
 

 
20.2 Clustering error (CE) score 
An intuitive way to compare the clustering results is to calculate the clustering error 

(CE). It is the proportion of points which are clustered differently in 𝑀𝑇𝑟𝑢𝑒 and 𝑀𝑃𝑟𝑒 

after an optimal matching of clusters [9]. Let {(𝑡𝑖, 𝑦𝑖)}
𝑖=1
𝑚𝑖𝑛 {𝑘,𝑙}

 be a unique relation that 

maximizes 𝑑𝑚𝑎𝑥 ≜ ∑ | 𝑀𝑡𝑖

𝑇𝑟𝑢𝑒 ∩ 𝑀𝑦𝑖
𝑃𝑟𝑒|

𝑚𝑖𝑛 {𝑘,𝑙}
𝑖=1 . Then, the CE score is given by  

𝐶𝐸 = 1 −
𝑑𝑚𝑎𝑥

|𝑈|
 

where |𝑈| = |{⋃  𝑀𝑖
𝑇𝑟𝑢𝑒𝑘

𝑖=1 } ∪ {⋃  𝑀𝑗
𝑝𝑟𝑒𝑙

𝑗=1 }|. Similarly, we also extend the “CE score” 

to evaluate the similarity of two tri-clusters, bi-clusters or clusters.  
 
(i) 3D CE score for two tri-clusters 

3𝐷 𝐶𝐸 = 1 −
𝑑𝑚𝑎𝑥

|𝑈|
 

where |𝑈| = |{⋃  𝑀𝑖
𝑇𝑟𝑢𝑒𝑘

𝑖=1 } ∪ {⋃  𝑀𝑗
𝑝𝑟𝑒𝑙

𝑗=1 }|  and  𝑀𝑖
𝑇𝑟𝑢𝑒  and 𝑀𝑗

𝑃𝑟𝑒  are two 

subtensors/tri-clusters. 
 
(ii) 2D CE score for two bi-clusters 

2𝐷 𝐶𝐸 = 1 −
𝑑𝑚𝑎𝑥

|𝑈|
 

where |𝑈| = |{⋃  𝑀𝑖
𝑇𝑟𝑢𝑒𝑘

𝑖=1 } ∪ {⋃  𝑀𝑗
𝑝𝑟𝑒𝑙

𝑗=1 }|  and  𝑀𝑖
𝑇𝑟𝑢𝑒  and 𝑀𝑗

𝑃𝑟𝑒  are two 

matrices/bi-clusters. 
 
(iii) 1D CE score for two clusters 

1𝐷 𝐶𝐸 = 1 −
𝑑𝑚𝑎𝑥

|𝑈|
 

where |𝑈| = |{⋃  𝑀𝑖
𝑇𝑟𝑢𝑒𝑘

𝑖=1 } ∪ {⋃  𝑀𝑗
𝑝𝑟𝑒𝑙

𝑗=1 }| and  𝑀𝑖
𝑇𝑟𝑢𝑒 and 𝑀𝑗

𝑃𝑟𝑒 are two clusters.” 



 

9. The work will be much improved if the biology behind several selected 

modules is described. How do the discovered modules improve our 

understanding of pan-cancer gene and miRNA regulation? 

 

Response: This is a valuable suggestion. To this end, we first have shown the 

results of biological functional analysis for selected modules in Table S19. In 

short, we found that the modules present biological functions and meanings 

from different perspectives. For example, we found that the expression of 

miRNAs and genes within these modules are significantly correlated with 

patient survival in some cancer types (log-rank test BH adjusted P < 0.05). We 

took module 1, 4 and 11 as examples. We have added a section “3.8 Case 

studies” into the main text (lines 371-423). 

 

“3.8 Case studies 
Based on the above functional analysis, we found that some identified modules 
show diverse biological functions and relevance from different views (Table 
S19). We took module 1, 4 and 11 as examples. The module 1 consists of 100 
genes, 10 miRNAs and 20 cancers, of which 5 cancer miRNAs and 31 cancer 
genes (hypergeometric test, P = 2.59e-05). The correlations between miRNAs 
and genes across the selected cancer types are statistically significant 
compared to random ones (Permutation test, P < 0.001). For five cancer types 
(including STAD, BRCA, STES, KICH and SARC), the expression pattern of 
miRNAs and genes within the module is significantly related with their patient 
survival respectively (log-rank test BH adjusted P < 0.05, Supplementary 
section S18). Therefore, we may consider module 1 as a potential prognostic 
biomarker for these five cancer types. Moreover, the module genes are 
enriched with a large number of cancer-related functional terms including 
GOBP terms (cell cycle process, mitotic cell cycle, cell cycle, chromosome 
segregation and cell division) and KEGG pathways (cell cycle, oocyte meiosis, 
progesterone mediated oocyte maturation, homologous recombination and p53 
signaling pathway), suggesting its strong cancer relevance. Recent studies 
have shown that these cell cycle-related functions are related to multiple cancer 
processes [1,2]. On the other hand, five module miRNAs (hsa-miR-17-5p, hsa-
miR-18a-5p, hsa-miR-93-5p, hsa-miR-106b-5p and hsa-miR-106b-3p) belong 
to miR-17 family, which has been reported to be related to cancer [3,4]. Finally, 
we also found that 6 of 10 miRNAs is related with patient survival in at least one 
cancer type (log-rank test BH adjusted P < 0.05) (S3 Appendix Table S18). 
For example, the expression of hsa-miR-130b-5p and hsa-miR-130b-3p are 
significantly related with ACC patient survival. 

The module 4 contains 5 cancer miRNAs and 25 cancer genes 
(hypergeometric test, P = 4.66E-03). The correlations between miRNAs and 
genes across the selected cancer types within this module are statistically 
significant compared to random ones (Permutation test, P < 0.001). This 
module is significantly related to the survival time in five cancer types (ACC, 
LIHC, LUAD, PAAD, KICH). The genes within the module are enriched with 
some cancer-related functional terms including GOBP terms (cell cycle, cell 
cycle process, chromosome organization, mitotic cell cycle and DNA metabolic 



process) and KEGG pathways (DNA replication, base excision repair, 
nucleotide excision repair, cell cycle, pyrimidine metabolism). Boyer et al. have 
reported that DNA replication pathway plays an important role in cancer [5]. 
More importantly, we found that 57 miRNA-gene interactions between the 
miRNAs and genes within this module were verified reported before. Collecting 
the gene-gene network from PPI network, we construct a miRNA-gene-gene 
regulatory sub-network where there are 7 miRNAs, 75 genes and 309 edges 
(Fig 5H and S3 Appendix Table S16). 

The last example, module 11 exhibits distinct biological relevance with LGG 
(Brain Lower Grade Glioma) in terms of miRNAs and genes. Firstly, the miRNAs 
and genes across the selected cancer types within the module show strong 
correlations (Permutation test, P < 0.001). Secondly, the genes within this 
module are enriched with several cancer-related KEGG pathways including cell 
cycle, small cell lung cancer, DNA replication, mismatch repair. As mentioned 
earlier, cell cycle and DNA replication pathways have been reported to play an 
important role in cancer. Thirdly, 36 miRNA-gene interactions between the 
miRNAs and genes within this module were verified by miRTarBase database. 
We also construct a miRNA-gene-gene regulatory sub-network, which contains 
7 miRNAs, 68 genes and 208 miRNA-gene edges (S3 Appendix Table S16). 
Importantly, two miRNAs (hsa-miR-130b-5p and hsa-miR-130b-3p) within the 
module belong to mir-130 family, which have been reported as potential 
biomarkers for brain cancer [6,7,8]. Especially, the expression pattern of 
miRNAs and genes within this module is significantly related with LGG patient 
survival (log-rank test BH adjusted P < 3.18E-06).” 
 
Overall, these modules identified by TSCCA first show that the miRNA-gene 
co-expressed patterns of these modules have some different forms of 
expression. For example, the miRNAs and genes within the module 1, 4 and 
10 have strong positive correlations on all the selected cancer types (Figure 
S17A). While the miRNAs and genes in modules 5, 8 and 9 have strong 
negative correlations on all the selected cancer types (Figure S17B). By 
clustering the output matrix W, we can study the correlation of different cancer 
types. We found that there are four clusters of 33 cancer types. The first cluster 
(including STAD, STES, COAD, COADREAD, READ, BLCA and ESCA) has 
the strongest weight values in W. The second cluster contains TGCT, BRCA, 
LUSC, LUAD, HNSC, CHOL, UCEC, PAAD, PRAD and CESC, where the 
LUSC and LUAD show very similar patterns in different modules. The third 
cluster (including KIPAN, DLBC, UCS, KIRC, KIRP, THCA, OV, PCPG, MESO, 
LGG and UVM) has the lowest weight values. Several cancer types in the third 
cluster show module-specific characteristics. For example, we observed that 
the miRNAs and genes within module 31 are positively correlated in TGCT 
cancer type, but are negatively correlated in other cancer types, and module 49 
are positively correlated in TGCT and UCS cancer types, but are negatively 
correlated in other cancer types (Fig S12C). These results provide a new 
perspective to improve our understanding of pan-cancer gene and miRNA 
regulation. 
 

Table S19. Biological functional analysis of selected cancer-miRNA-gene 
modules. #CM/#CG/#GGE/#MGE, number of cancer miRNAs/cancer 
genes/gene-gene interaction edges/miRNA-gene interaction edges. Cancer 



type: For a given module, these cancer types are in the module and they are 
clinically related to the module with log-rank test BH adjusted P < 0.05 (see 
Supplementary Section S20).  
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1 5 31 505 33 
STAD, BRCA, 
STES, KICH, 
SARC 

cell cycle process, mitotic 
cell cycle, cell cycle, 
chromosome segregation, 
cell division 

3 4 19 57 12 BLCA 

muscle system process, 
muscle contraction, muscle 
structure development, 
extracellular structure 
organization, regulation of 
muscle contraction 

4 5 25 253 57 

ACC, LIHC, 

LUAD, PAAD, 

KICH  

cell cycle, cell cycle process, 
chromosome organization, 
mitotic cell cycle, DNA 
metabolic process 

10 6 28 536 44 
LUAD, PAAD, 
ACC, KICH 

cell cycle, cell cycle process, 
mitotic cell cycle, organelle 
fission, mitotic nuclear 
division 

11 5 19 172 36 
LGG, ACC, 
SKCM, KICH 

cell cycle, cell cycle process, 
DNA metabolic process, 
DNA replication, mitotic cell 
cycle 

19 6 18 263 38 SARC, LIHC  

RNA processing, RNA 
localization, RNA splicing, 
mRNA processing, cell-cell 
recognition 

30 5 22 207 56 

LUAD, PAAD, 

KICH, SKCM, 

READ 

cell cycle, cell cycle process, 
mitotic cell cycle, 
chromosome organization, 
DNA metabolic process 

36 7 19 38 12 
KIPAN, BLCA, 
KIRC 

regulation of sequestering of 
calcium ion, G-protein 
coupled receptor signaling 
pathway, regulation of ion 
homeostasis, cytosolic 
calcium ion transport 
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Minor comments 

10. Prior work by Tan et al. recently investigated miRNA-gene modules across 

cancers [2]. Their computational approach is quite naïve, but this work should 

be mentioned. 

 

Response: In light of your suggestion, we have added the citation and 

discussion of [2]. 

 

[2] Hua Tan, Shan Huang, Zhigang Zhang, Xiaohua Qian, Peiqing Sun, and 

Xiaobo Zhou. 2019. Pan-cancer analysis on microRNA-associated gene 

activation. EBioMedicine. 2019 May; 43: 82–97. 

 

11. Though the appendix states where corrections for multiple hypotheses were 

performed, we think that for clarity, these corrections should be also mentioned 

in the main text when they are used, and whether reported p-values are after 

correction. 

 

Response: In light of your suggestion, we have also included it properly. 

 

12. The external datasets used in this study are mentioned at the beginning, 

but it would be helpful if they are also mentioned when they are being used. For 

example, in section 3.3 it would be helpful if the databases for cancer genes 

and miRNA are mentioned. 

 

Response: In light of your suggestion, we have mentioned properly. 

 

13. The text describing Figure 3C is not clear. It resembles the text for 3B, even 

though these two examples demonstrate very different phenomena. 

 

Response: Thanks for your reminder. In the revised manuscript, we have 

rephrased it: “whereas those within module 5 show strong negative correlation 

on all selected cancers (Fig 3C).” 

 

14. The objective functions for TSCCA allows for negative W values. It is 

therefore interesting to visualize W, in addition to the current visualization in 

Figure 4 of |W|. Are there miRNA-gene modules that are correlated in one 

cancer type, but are anti-correlated in another? This is briefly discussed in the 



discussion, and is seen in the supplementary figures, but will be more easily  

 

Response: In light of your comment, we first show the heatmap of the original 

W in the Figure S12A. There are only three negative elements in W (Figure 

S12B), i.e., (Module 31, TGCT) is -0.145, (Module 49, TGCT) is -0.23 and 

(Module 49, UCS) is -0.138 and their heatmaps are shown in Figure S12C. We 

observed that the miRNAs and genes within module 31 are positively correlated 

in TGCT cancer type, but are negatively correlated in other cancer types, and 

module 49 are positively correlated in TGCT and UCS cancer types, but are 

negatively correlated in other cancer types (Figure S12C). 

 

Figure S12. (A) Heatmap showing the output matrix W of Algorithm 2, when it was 

applied to the TCGA data. Each column corresponds to a module and each row 

corresponds to a cancer type and 𝑊𝑖𝑗 reflects the co-expressed intensity between the 

genes and the miRNAs within the module 𝑗 on the cancer 𝑖. A hierarchical clustering 

method was used to cluster the rows (cancer types) into four clusters. (B) Scatter plot 

for elements of the W matrix. There are three negative elements/pairs in W, where 

(Module 31, TGCT) is -0.145, (Module 49, TGCT) is -0.23 and (Module 49, UCS) is -

0.138 and (C) Their heatmaps shown in the blue frame. 



 

To avoid ambiguity, we have updated Figure 4 which is the heatmap of the 

original W and added the discussions into main text (lines 235-241). 

 

“We first observed that there are only three negative elements in W (Figure 

S12B), i.e., (Module 31, TGCT) is -0.145, (Module 49, TGCT) is -0.23 and 

(Module 49, UCS) is -0.138. Interestingly, we also observed that the miRNAs 

and genes within module 31 are positively correlated in TGCT cancer type, but 

are negatively correlated in other cancer types, and module 49 are positively 

correlated in TGCT and UCS cancer types, but are negatively correlated in 

other cancer types (S2 Appendix Fig S12C).” 

 

15. "For each miRNA-gene module, … have not been verified" – this sentence 

is not clear. What verification was performed? 

 

Response: This means the miRNA-gene interaction is verified by the 

miRTarBase database. In light of your comment, we have revised the original 

sentence as follows: 

 

“For each identified miRNA-gene module, we have confirmed that some 

miRNA-gene interactions are verified by the miRTarBase database, while there 

are also many miRNA-gene pairs are not verified by the database.” 

 

16. Because each module has more genes than miRNAs, the 1st PC will likely 

mainly represent the variance in gene expression. It will be interesting to repeat 

this analysis by taking the 1ST PC using genes only, or the 1st PC using 

miRNAs only. 

 

Response: In light of your comment, we first obtained the joint gene expression 

and miRNA expression data: 𝑋 =  [𝑋1, 𝑋2, …，𝑋33] ∈ 𝑅𝑝×(𝑛1+⋯+𝑛33) and 𝑌 =

 [𝑌1, 𝑌2, …，𝑌33] ∈ 𝑅𝑞×(𝑛1+⋯+𝑛33). We then extracted the 1ST PC (denoted as u) 

using the gene expression 𝑋 and the 1ST PC (denoted as v) using the miRNA 

expression 𝑌. For comparison with TSCCA, the top 100 genes with the largest 

absolute values of u and the top 10 miRNAs with the largest absolute values of 

v are considered as a module, denoted as pcModule. 

 

We then analyzed the biological functionality for the pcModule from multiple 

biological perspectives (Table S26). We first found that the miRNAs and genes 

within the module are not strongly correlated on most cancers types (Figure 

S15A). In the pcModule, there are five cancer miRNAs including hsa-miR-324-

5p, hsa-miR-484, hsa-miR-186-5p, hsa-miR-590-5p, and hsa-miR-423-3p and 

the cancer miRNA set enrichment analysis shows the result is not significant. 



In addition, there are 15 cancer genes within the module, including IL6ST, 

GADD45GIP1, NAA10, AFF4, BRMS1, NDUFA13, CHD9, RUVBL2, LNPEP, 

STAG1, ETV3, ARHGEF12, ATRX, PPTC7, PPP1R14B. Cancer gene set 

enrichment analysis shows the result is also not significant. More results of 

pcModule are shown in Table S26. We also compared the difference of 

modularity scores between the pcModule and TSCCA modules, and we found 

that the modularity value of pcModule is significantly smaller than that of all 

TSCCA modules (Wilcoxon rank-sum test P < 0.05, Figure S15B).  

 
Finally, we have added the comparison results into Supplementary Section 
S22 “22.3 Comparison of TSCCA with PCA” and added the discussions into 
main text (lines 484-487). 
 
Table S26. Results of pcModule. “#cancer miR”, “#cancer gene”, “#gene edge” and 

“#miR-gene edge” denote the number of cancer miRNAs, cancer genes, gene edges 
and miRNA-gene edges. “*” stands for p-value < 0.05. 

 #cancer  
miR 

#cancer 
gene 

#gene  
edge 

#miR-gene  
edge 

modularity  

pcModule 5  15 63*  32  0.15  

 
Figure S15. (A) Heatmap of pcModule. The top half of heatmap corresponds to the 
module (row corresponds to gene, column corresponds to miRNA) and the lower part 
is a random module for comparison. (B) Comparison of modularity scores of pcModule 
and TSCCA modules. 

 

17. When describing the survival analysis, modules 11 and 36 are specifically 

mentioned. We understand that this is because these modules had non-zero 

entries in W in the cancer types for which they were linked to survival. This 

should be explicitly stated, as otherwise it is not clear why these modules are 

mentioned. 



 

Response: Modules 11 and 36 are specifically mentioned because M11-LGG 

and M36-KIPAN edges have the largest weight value (i.e., smallest p-value) in 

the bipartite graph between the identified modules and the different cancer 

types (Figure 7A). In light of your comment, before modules 11 and 36 are 

specifically mentioned, we added a sentence into main text (lines 355-356):  

 

“We found that M11-LGG and M36-KIPAN edges have the largest weight 

value (i.e., smallest p-value).” 

 

18. Typos: 

a. "For each cancer types, we downloaded..." – should be "type" (p. 3). 

b. "We found that 7889…" – "that" should be removed (p. 3). 

c. In equation (6), the l0 constraint should be on v, not on u. 

d. "While we also found that the modularity…" – remove "While" (p. 7). 

e. "negative correlation on all cancers on all cancers". (p. 9). 

f. "from a experimentally validated…" – replace "a" with "an" (p. 12). 

g. When describing the simulation, the distribution for A_3 is written twice. The 

second time should be A_4 (p. 15). 

h. "it miss some real members" – should be "misses" (p. 15). There are several 

times "miss" should be replaced with "misses" in this page. 

 

Response: We thank the reviewer for your detailed suggestions. We have 

carefully polished our manuscript again, and have addressed these typos. 
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Response to Reviewer: 2 

To identify cancer-specific and shared miRNA-gene co-expressed modules, the 

authors proposed a tensor sparse canonical correlation analysis (TSCCA) 

method to analysis of matched miRNA and gene expression data of multiple 

cancers. The authors first constructed a tensor of gene, miRNA and cancers. 

Then they decomposed the correlation tensor into a number of latent factors. 

Finally, based on the non-zero latent factors, they identified cancer-miRNA-

gene modules. Application to 33 TCGA cancer types identified novel cancer-

related miRNA-gene modules. Here are my comments: 

 

Response: We thank the reviewer for evaluating our work. 

 

1. In simulation, the data was generated from normal distributions with fixed 

variances. I wonder what would happen if the values were generated with larger 

variances, instead of 0.04? 

 

Response: In light of your comment, we have reapplied TSCCA to the 

simulated data with larger variances. We considered the variance (𝜎2 ) with 

different values including 0.1, 0.3, 0.5 and 1. We then applied TSCCA and 

SCCA to these generated simulated data with these different variances. 

Similarly, we found that TSCCA is superior to other methods in terms of CE and 

recovery scores (Tables S22 and S23). 

 

In addition, we have added this analysis and results into Supplementary 

Section S21 “More details about simulation study” and added the discussion 

of this into main text (Lines 445-446). 

Table S22. Comparison (in terms of CE ± std) on the simulated data with different 
variances. Since SCCA cannot select cancer types, we assumed each module 
identified by SCCA contained all cancer types for computing 3D-CE. 

variance = 0.1 1D-CE (gene) 1D-CE (miR) 2D-CE 3D-CE 

cancer1 0.769±0.013 0.779±0.041 0.567±0.014 0.323±0.005 

cancer2 0.768±0.011 0.778±0.052 0.565±0.015 0.322±0.006 

cancer3 0.770±0.014 0.786±0.044 0.569±0.015 0.324±0.006 

cancer4 0.363±0.015 0.421±0.039 0.090±0.009 0.058±0.006 

Sum 0.370±0.015 0.429±0.039 0.090±0.009 0.058±0.006 

Modularity_SA 0.582±0.142 0.667±0.202 0.468±0.137 0.468±0.137 

TSCCA 0.897±0.113 0.898±0.115 0.805±0.214 0.785±0.236 

variance = 0.3 1D-CE (gene) 1D-CE (miR) 2D-CE 3D-CE 

cancer1 0.682±0.018 0.777±0.041 0.466±0.014 0.273±0.007 

cancer2 0.676±0.041 0.768±0.062 0.458±0.042 0.269±0.023 

cancer3 0.680±0.017 0.784±0.045 0.465±0.018 0.272±0.009 

cancer4 0.363±0.015 0.421±0.039 0.090±0.009 0.058±0.006 

Sum 0.370±0.015 0.429±0.039 0.090±0.009 0.058±0.006 

Modularity_SA 0.482±0.085 0.625±0.184 0.307±0.085 0.306±0.086 

TSCCA 0.802±0.098 0.832±0.109 0.637±0.175 0.609±0.193 

variance = 0.5 1D-CE (gene) 1D-CE (miR) 2D-CE 3D-CE 



cancer1 0.595±0.050 0.753±0.083 0.372±0.061 0.222±0.035 

cancer2 0.597±0.039 0.761±0.074 0.374±0.046 0.224±0.025 

cancer3 0.603±0.040 0.765±0.071 0.380±0.045 0.227±0.025 

cancer4 0.363±0.015 0.421±0.039 0.090±0.009 0.058±0.006 

Sum 0.370±0.015 0.429±0.039 0.090±0.009 0.058±0.006 

Modularity_SA 0.434±0.053 0.575±0.122 0.207±0.051 0.197±0.053 

TSCCA 0.688±0.076 0.752±0.094 0.467±0.108 0.434±0.116 

 variance = 1.0 1D-CE (gene) 1D-CE (miR) 2D-CE 3D-CE 

cancer1 0.463±0.046 0.633±0.104 0.215±0.059 0.134±0.035 

cancer2 0.463±0.042 0.637±0.111 0.214±0.057 0.134±0.034 

cancer3 0.470±0.037 0.654±0.081 0.222±0.043 0.138±0.026 

cancer4 0.363±0.015 0.421±0.039 0.090±0.009 0.058±0.006 

Sum 0.370±0.015 0.429±0.039 0.090±0.009 0.058±0.006 

Modularity_SA 0.373±0.017 0.455±0.051 0.113±0.018 0.090±0.023 

TSCCA 0.424±0.078 0.507±0.114 0.155±0.089 0.106±0.095 

Table S23. Comparison of the (in terms of recovery ± std) on the simulated data with 
different variables. Since SCCA cannot select cancer types, we assumed each module 
identified by SCCA contained all cancer types for computing 3D-recovery score. 

variance = 0.1 1D-recovery (gene) 1D-recovery (miR) 2D-recovery 3D-recovery 

cancer1 0.728±0.009 0.768±0.022 0.680±0.009 0.346±0.005 

cancer2 0.726±0.010 0.773±0.026 0.679±0.009 0.346±0.005 

cancer3 0.728±0.009 0.770±0.026 0.681±0.011 0.347±0.005 

cancer4 0.229±0.010 0.300±0.038 0.086±0.010 0.055±0.006 

Sum 0.232±0.009 0.300±0.032 0.084±0.008 0.055±0.005 

Modularity_SA 0.694±0.021 1.000±0.000 0.694±0.021 0.694±0.021 

TSCCA 0.882±0.130 0.894±0.117 0.860±0.153 0.854±0.160 

variance = 0.3 1D-recovery (gene) 1D-recovery (miR) 2D-recovery 3D-recovery 

cancer1 0.578±0.019 0.766±0.021 0.530±0.018 0.285±0.008 

cancer2 0.572±0.033 0.766±0.047 0.522±0.047 0.282±0.023 

cancer3 0.572±0.019 0.770±0.026 0.525±0.021 0.284±0.010 

cancer4 0.229±0.010 0.300±0.038 0.086±0.010 0.055±0.006 

Sum 0.232±0.009 0.300±0.032 0.084±0.008 0.055±0.005 

Modularity_SA 0.481±0.022 0.948±0.062 0.463±0.037 0.463±0.037 

TSCCA 0.748±0.110 0.823±0.113 0.711±0.133 0.702±0.139 

variance = 0.5 1D-recovery (gene) 1D-recovery (miR) 2D-recovery 3D-recovery 

cancer1 0.467±0.033 0.739±0.078 0.408±0.059 0.230±0.030 

cancer2 0.468±0.025 0.752±0.063 0.412±0.046 0.233±0.022 

cancer3 0.471±0.032 0.751±0.051 0.416±0.044 0.235±0.022 

cancer4 0.229±0.010 0.300±0.038 0.086±0.010 0.055±0.006 

Sum 0.232±0.009 0.300±0.032 0.084±0.008 0.055±0.005 

Modularity_SA 0.358±0.030 0.680±0.111 0.274±0.051 0.274±0.051 

TSCCA 0.592±0.081 0.743±0.097 0.536±0.102 0.524±0.108 

 variance = 1.0 1D-recovery (gene) 1D-recovery (miR) 2D-recovery 3D-recovery 

cancer1 0.322±0.039 0.560±0.119 0.220±0.062 0.134±0.035 

cancer2 0.321±0.037 0.563±0.119 0.219±0.059 0.133±0.033 

cancer3 0.329±0.028 0.579±0.093 0.228±0.045 0.139±0.025 

cancer4 0.229±0.010 0.300±0.038 0.086±0.010 0.055±0.006 

Sum 0.232±0.009 0.300±0.032 0.084±0.008 0.055±0.005 



Modularity_SA 0.247±0.017 0.363±0.064 0.114±0.023 0.105±0.030 

TSCCA 0.292±0.076 0.407±0.144 0.163±0.104 0.124±0.114 

 

2. It is claimed that TSCCA method can identify both cancer-specific and shared 

miRNA-gene co-expressed modules. I wonder whether TSCCA identified any 

shared miRNA-gene co-expressed modules across 33 TCGA cancer types. If 

so, what properties do the shared modules have? 

 

Response: We first explain some properties cancer-specific and shared 
modules. The so-called miRNA-gene co-expressed shared module means that 
the genes and miRNAs in this module are strongly correlated in expression on 
most cancers, and it is a relative definition in our study. For example, the 
miRNAs and genes in modules 1, 4, and 10 have a strong positive correlation 
on all the cancer types (Figure S17A). The miRNAs and genes in modules 5, 
8, and 9 have a strong negative correlation on all the selected cancer types 
(Figure S17B). We call these modules shared modules. 
 
Cancer is a complex and heterogeneous disease. Each cancer type has 
specificity and commonality with other cancers. The purpose of the paper is to 
use the TSCCA model to discover these patterns. If there is a shared module 
in all 33 cancers, we believe our model is capable to detect this module. Finally, 
we have added a Supplementary Section S24 to introduce what is specific 
and shared modules. 

 
Figure S17. Heatmap of some modules identified by TSCCA in the TCGA dataset, 
where (A) corresponds to modules 1, 4 and 10 (B) corresponds to modules 5, 8 and 9. 
(C) Heatmap of cancer-miRNA-gene module 31 identified by TSCCA in the TCGA 
dataset. Module 31 is a TGCT-cancer-specific miRNA-gene co-expressed module. 

 



3. The authors evaluated the performance of TSCCA with other methods on the 
TCGA data mainly using the modularity score. They may want to evaluate the 
modules identified by the comparison methods using other measurements, for 
example, they may check the enrichment of cancer related genes/miRNAs 
among these modules. 
 
Response: In light of your suggestion, we have compared TSCCA with other 
methods in terms of multiple biological indicators (see Table S25). In short, we 
found that TSCCA has some advantages in multiple biological indicators, such 
as the average number of cancer miRNAs, cancer genes, gene edges and 
miRNA-gene edges.  
 
Table S25. Performance comparison of TSCCA and the triclustering methods. 
“#cancer miR”, “#cancer gene”, “#gene edge” and “#miR-gene edge” denote the 

average of the number of cancer miRNAs, cancer genes, gene interactions/edges and 
miRNA-gene interactions/edges on all the identified modules.  

Method #cancer_miR #cancer_gene #gene edge 
#miR-gene 

edge 
Modularity 

TSCCA 5.98  19.56  106.10  22.70  0.30  

SCP 5.80  12.54  67.98  14.92  0.29  

Modularity_SA 8.08  21.14  47.52  11.62  0.29  

Var_SA 3.40  13.58  32.04  4.94  0.04  

MSR_SA 3.48  12.30  32.22  7.14  0.06  

 

Finally, we have added these new results into Supplementary Section S22 
“More details about comparison of TSCCA with other methods”, and added 
discussion of this into the main text (lines 466-483). 

 
“Secondly, we also compared TSCCA with multiple tri-clustering methods 

including Modularity_SA and Sparse Canonical Polyadic decomposition (SCP) 
which uses ℓ1-regularization to force sparse [49], and two merit-function based 
methods including “Variance” (see Eq. 1 in [50]) and “Mean squared residue 
(MSR)” (see Eq. 3 in [50]). The two merit-functions are optimized by using 
annealing algorithm. Var_SA is a variance-based simulated annealing (Var_SA) 
method, which uses a simulated annealing algorithm to minimize the variance 
merit-function for extracting a cancer-miRNA-gene module. Similarly, MSR_SA 
is an MSR-based simulated annealing (MSR_SA) method, which uses a 
simulated annealing algorithm to minimize the MSR merit-function for extracting 
a cancer-miRNA-gene module. The comparison results are given in S3 
Appendix Table S25 and show that TSCCA is superior to the other tri-clustering 
methods in terms of multiple biological indicators and modularity score. Due to 
the definition of MSR, the MSR_SA method is very consuming time. We found 
that MSR_SA took an hour to identify a module, while Var_SA only takes 5 
seconds on a personal computer. Compared with the TSCCA and 
Modularity_SA, the sub-tensors/modules identified by Var_SA or MSR_SA tend 
to be zero patterns (S2 Appendix Fig S14). In short, the TSCCA method is 
superior to other tri-clustering methods in terms of multiple indicators (S3 
Appendix Table S25).” 


