
Response to Reviewer #1 
 
Major comment 
The one-sample Wilcoxon signed-rank test is used several times in the manuscript, 

e.g. in the analysis in section 3.2. We do not think this test is appropriate here. The null 

hypothesis for the Wilcoxon test is that the modularity score for a module is higher than 

the median for the randomly generated modules. This p-value can be very low even if 

the module’s modularity score is not very extreme in comparison to the modularity 

scores of the random modules. For example, consider a module with modularity score 

2000, and 1000 random modules with scores 1401, 1402, …, 2400. The p-value for 

Wilcoxon will be very small (<2e-16 according to our test in R), because we can 

confidently say that the modularity of the original module (2000) is higher than the 

median modularity of the random modules. However, 40% of the random modules 

have a higher score. A better way to calculate an empirical p-value is to count the 

number of randomly permuted modules with modularity score equal or greater than 

2000. In the same section (3.2), it is not clear how a single p-value is calculated. 

Section S8 in the appendix only describes how to calculate a p-value for a single 

module, and it is not clear how these p-values are integrated into a single one (which 

is stated in the paper as “P < 0.001”). This comment doesn’t apply only to section 3.2, 

but to other cases in which the one-sample Wilcoxon signed-rank test is used (e.g. the 

number of modules with at least 2 miRNAs from the same family). 

 

Response: Thanks for this kind suggestion. To this end, we have made the following 

changes:  

(1) We modified the calculation of p-value for permutation test in Section 3.2, as follows: 

 

“Step 3. Combine m0 and m1, …, m1000, and compute the p-value of the module 

using the following formula: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
∑ 1(𝑚𝑖 ≥ 𝑚0)+11000

𝑖=1

1000+1
. 

where adding 1 to both numerator and denominator to avoid p-value of zero.” 

 

(2) Regarding the question "Section S8 in the appendix only describes how to calculate 

a p-value for a single module, and it is not clear how these p-values are integrated into 

a single one", we are sorry for the unclear description. For multiple p-values, to avoid 

false positives caused by multiple tests, these identified modules with p-values smaller 

than 0.05/k were considered as significant ones, where k is the number of identified 

modules. We revised the sentence into the main text (lines 191-192):  

“The identified modules with p-values smaller than 0.05/k were considered as 

significant ones, where k is the number of the identified modules. We found that the 

modularity scores of these modules are significantly larger than those of the random 

ones (permutation test P < 0.05/50) (Fig 2C and S1 Appendix Section S8).”  

 

Additionally, we also revised the sentences in the legend of Figure 2 (C):  



“(C) Distribution of modularity scores. The modularity scores of identified modules 

are significantly greater than those of random ones (permutation test P < 0.05/50 for 

each identified module).” 

 

(3) We modified the method of calculating the p-value for permutation test in Appendix 

Section S17. In the revised manuscript, we rephrased the results with the following 

sentences:  

“We found that 92% (46 out of 50) modules have at least two miRNAs in the same 

family (Permutation test P < 0.01, S3 Appendix Table S15 and S1 Appendix Section 

S17).” and “We found that 70% modules have at least three miRNAs participating in a 

three-layer network (Permutation test P < 0.01, S3 Appendix Table S16 and S1 

Appendix Section S17).” 

 

(4) Lastly, we also made the similar changes regarding the p-value calculation for 

permutation test in Supplementary Sections 8, 9 and 17. 

 

Other important comments 

- To perform permutation testing while conditioning on the degrees in a network, the 

authors sample genes such that the sum of their degrees is close to the sum of degrees 

in the original gene set. This conditions on the sum of degrees, but not on the full 

degree distribution. The common way to perform permutations while conditioning on 

the degree is to permute gene names only between genes with the same degree. For 

example, a gene with degree 5 can only be replaced in the permutation with another 

gene of degree 5. (If sample is insufficient, this can be done by forming bins of genes 

by the degree, and permuting between genes from the same bin). 

 

Response: In light of your suggestion, we adopted this common way to perform 

permutations. We revised Sections S15 and S16 in the Supplementary Materials and 

added the results into Supplementary Section S23 “Results of gene-gene and miRNA-

gene interaction set enrichment”. Accordingly, we revised the discussion in main text 

(line 291-294 and 331-335): 

“In addition, to avoid the influence of degree in the gene interaction network, we 

developed a statistical permutation test method to perform the gene-gene interaction 

set enrichment, and found that 88% (44 out of 50) modules contain significantly more 

gene interactions than expected by chance (permutation test P < 0.05, S1 Appendix 

Section S23).” 

 

“In addition, to avoid the influence of degree for miRNAs in the miRNA-gene network, 

we developed a statistical permutation test method to perform the miRNA-gene 

interaction set enrichment (S1 Appendix Section S23). There are 28% (14 out of 50) 

modules, which contain significantly more miRNA-gene interactions than expected by 

chance (permutation test P < 0.05, S1 Appendix Section S23).” 

 

Finally, we have revised Sections S15 and S16 into the Supplementary Materials (see 



the underlined text here). 

 

“15.1 Permutation test for gene-gene interaction set enrichment analysis 

For a given module 𝑖 , suppose it contains 𝑛0  genes and 𝑚0  validated gene 

interactions/edges and the sum of degrees of genes within the module in the original 

gene-gene interaction network is 𝑑0. 

 

Step 1. We first randomly generate 1000 modules by permuting gene names only 

between genes with the same degree, so as to eliminate the influence of the vertex 

degree on the result. 

 

Step 2. We then compute the number of validated gene interactions of these random 

modules, denoted as 𝑚1, 𝑚2, … , 𝑚1000. 

 

Step 3. For the given module 𝑖 and its p-value was computed by using the formula: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
∑ 1(𝑚𝑖 ≥ 𝑚0)+11000

𝑖=1

1000+1
. 

where adding 1 to both numerator and denominator to avoid p-value of zero. 

 

16.1 Permutation test for miRNA-gene interaction set enrichment analysis 

For a given module 𝑖, suppose it contains 𝑛0 genes and 𝑚0 validated miRNA-gene 

interactions/edges and the sum of degrees of miRNAs within the module in the original 

miRNA-gene interaction network is 𝑑0. 

 

Step 1. We first randomly generate 1000 miRNA-gene modules by permuting 

gene/miRNA names only between genes/miRNAs with the same degree, so as to 

eliminate the influence of the degree on the result. 

 

Step 2. We then compute the number of validated miRNA-gene interactions of these 

random modules, denoted as 𝑚1, 𝑚2, … , 𝑚1000. 

 

Step 3. For the given module 𝑖 and its p-value is computed by using the formula: 

𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
∑ 1(𝑚𝑖 ≥ 𝑚0)+11000

𝑖=1

1000+1
. 

where adding 1 to both numerator and denominator to avoid p-value of zero.” 

 
- Two of our major comments were that further comparison to triclustering methods is 

required, and that the advantage of using multiple cancers is not sufficiently shown. 

The authors addressed these points, but some of the results from these new analyses 

are only mentioned briefly in the discussion, while they should be stated more clearly: 

 

o The W matrix visualization shows that a few cancers dominate all the created 

modules. In the discussion the authors mention this, and show another analysis in 

which these dominant cancers are removed (in appendix figure S16). This point, that 

a small number of cancers may dominate the results, is a major caveat of the analysis, 



and as such it should be mentioned when first presenting TSCCA’s results, and not 

briefly referred to in the discussion. 

 

Response: Thanks for your kind suggestion. We have added the following discussions 

in the main text (lines 255-264). 

 

“We note that TSCCA is an explorative tool, which identifies the “strongest” modular 

patterns in the current multiple cancer data. This means that in a subset of cancer data, 

it could identify other significant modules. For example, most of the 50 modules 

identified by TSCCA on the TCGA dataset are enriched in 60% of cancers, while other 

cancers are rare. To this end, we may extract a subset of cancers from the cluster 3 in 

Fig 4 and then re-use TSCCA to extract some modules on a subset of the previous 

data (across 18 cancers). We found some new modules with significant modularity 

scores, and more details were given in S2 Appendix Fig S16. This procedure will 

overcome the limit that a small number of cancers may dominate the results for 

TSCCA.” 

 

o Modularity_SA has very good results in terms of the number of cancer genes and 

miRs, while TSCCA is better in terms of the number of gene-gene and miR-gene edges. 

The good performance of Modularity_SA, and its advantages in comparison to TSCCA, 

should be mentioned in the main text. 

Response: In light of your suggestion, we added the following discussion in the main 

text (lines 493-500): 

“We found that Modularity_SA has good performance in terms of the number of 

cancer genes and miRNAs, while TSCCA is better in terms of the modularity score and 

the number of gene-gene and miRNA-gene edges (S3 Appendix Table S25). In 

addition, we also compared the performance of TSCCA and Modularity_SA under the 

same input data. Compared with Modularity_SA, TSCCA obtained higher modularity 

scores and consumed less time (S2 Appendix Fig S16). Therefore, from the 

perspective of maximizing the modularity score, TSCCA is still better than the 

Modularity_SA.” 

 

Minor comment 

In tables reporting the results of TSCCA, the font in the rows representing TSCCA’s 

results is bold. It is common practice to mark in bold the best result in each column, 

and we suggest the authors do the same here, or remove the bold font from TSCCA’s 

row. Otherwise, it looks as if TSCCA always has the best performance. 

 

Response: Thanks for the suggestion. We removed the bold font in the Table S25. 

 

Typos: 

- “within this module were verified reported before” (p. 12) – remove “verified” or 

“reported”. 

- “We assessed the similarity of between the true modules” (p. 13) – remove “of”. 



- “miRNA-gene correlation patterns are heterogeneity” (p. 15) – should be 

“heterogeneous”. 

- “explorative tool, which identity” (p. 15) – should be “identify”. 

 

Response: We corrected these typos and further polished the manuscript again. 

 
 
 
 

 

 

  



Response to Reviewer #2 

 

The authors conducted simulation and real data studies to address the questions. 

There is a question about Table S25. The authors compared TSCCA with other 

methods using multiple biological indicators and modularity score and concluded 

TSCCA is superior to the other tri-clustering methods. However, Modularity_SA 

identified more cancer_miR and cancer_gene than the TSCCA. The authors may want 

to discuss this before directly concluding that TSCCA is superior to the other tri-

clustering methods. 

 

Response: We appreciate very much for your suggestion. Modularity_SA has good 

performance in terms of the number of cancer genes and miRNAs, while TSCCA is 

better in terms of the number of gene-gene and miRNA-gene edges. In addition, we 

also compared the performance of TSCCA and Modularity_SA under the same input 

data to identify a module using different starting points. We found that the modularity 

scores of these identified modules by TSCCA are significantly greater than that of 

these identified modules by Modularity_SA (Fig S16). Therefore, from the perspective 

of maximizing the modularity score, TSCCA is still better than the Modularity_SA. We 

added the following discussion about their differences in detail (lines 493-500): 

“We found that Modularity_SA has good performance in terms of the number of 

cancer genes and miRNAs, while TSCCA is better in terms of the modularity score and 

the number of gene-gene and miRNA-gene edges (S3 Appendix Table S25). In 

addition, we also compared the performance of TSCCA and Modularity_SA under the 

same input data. Compared with Modularity_SA, TSCCA obtained higher modularity 

scores and consumed less time (S2 Appendix Fig S16). Therefore, from the 

perspective of maximizing the modularity score, TSCCA is still better than the 

Modularity_SA.” 

 

Additionally, we also revised the following section in the Supplementary Materials. 

 

“22.3 Comparison between TSCCA and Modularity_SA on the TCGA data in 

terms of modularity score 

Based on the TCGA data, we generated a joint gene expression and miRNA 

expression data: 𝑋 =  [𝑋1, 𝑋2, …，𝑋33] ∈ 𝑅𝑝×(𝑛1+⋯+𝑛33)  and 𝑌 =  [𝑌1, 𝑌2, …，𝑌33] ∈

𝑅𝑞×(𝑛1+⋯+𝑛33) (referred to as “JointData” data). Since we don't know the true modules 

on TCGA data, we cannot rely on the CE or Recovery scores to judge the superiority 

of different methods. We used the modularity score (Eq. 9) to judge the quality of the 

tested methods. We applied TSCCA and Modularity_SA to identify the first module on 

the TCGA data with 50 different initializations. To make a fair comparison of TSCCA 

and SCCA, we also applied SCCA to each single cancer data (𝑋𝑖 and 𝑌𝑖) and the 

“JointData” data ( 𝑋  and 𝑌 ). The parameters of SCCA and Modularity_SA are 

consistent with the parameters of TSCCA with  𝑘𝑢 = 200 , 𝑘𝑣 = 10  and 𝑘𝑤 = 20 . 

Compared with SCCA and Modularity_SA, TSCCA obtained higher modularity scores 



(Figure S16A). We also compared the running time of different methods on a personal 

laptop. TSCCA took about 12 seconds to identify a module on average, while SCCA 

took the least time (Figure S16B).”  

 

 

Figure S16. Comparison of different methods on the TCGA data in terms of Modularity 

score (A) and time (B). We also compared the running time of different methods on a 

personal laptop. Box-plots show results in terms of modularity scores and running time 

of algorithm based on 50 different initializations of each method. 

 

Lastly, we uploaded the R scripts and the corresponding data for the figures and 

results presented in our manuscript at the GitHub repository 

https://github.com/wenwenmin/TSCCA and provided the guide for potential 

users. 

 

 

https://github.com/wenwenmin/TSCCA

