Methods S1. Workflows and detection rates. Related to STAR Methods and Figure 1.

Experimental workflow

(A) Schematic diagram illustrating cell isolation process for single cell RNA-sequencing. Brain
regions were dissected according to the Allen CCFv3. Each sample was digested and triturated to
obtain single cell suspensions. For SMART-Seq v4 (SSv4) processing, individual cells were
sorted into 8-well strip PCR tubes by FACS or by manual picking. Cells were lysed, and SSv4
was used to reverse-transcribe and amplify full-length cDNAs from each cell. cDNAs were then
tagmented by Nextera XT, PCR-amplified, and processed for Illumina sequencing. For 10x
processing, debris was removed from single cell suspension by FACS, suspensions were loaded
on the 10x Genomics Chromium™ Controller to create single-cell libraries, and libraries were
processed for Illumina sequencing.

(B) Ontology of dissected brain regions according to CCFv3. See Table S1 for each region’s full
name and sampling.

(C-D) The number of cells sampled from each dissection region for SSv4 (C) or 10xv2 (D). Bars
are colored by region.

(E-F) Sex sampling proportion per joint region for SSv4 (E) or 10xv2 (F).

(G-H) Genotype sampling proportion per joint region for SSv4 (G) or 10xv2 (H), colored by
region. Columns add up to 100%.
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Data workflow

(A-B) scRNA-seq pipeline and data preprocessing workflow outlining the path from individual
experimental animals to quality control (QC)-qualified scRNA-seq data for SSv4 (A) or 10xv2
(B). At multiple points throughout sample processing, cell and sample metadata are recorded in a
laboratory information management system (LIMS, labeled as L), which informs QC processes.
Samples must pass QC benchmarks to continue through sample processing.
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Analysis workflow

(A) The number of cells at each step in the sSCRNA-seq data analysis pipeline. The identification
of doublets and low-quality clusters is described in more detail in Methods. The 10xv2 and SSv4
data was first QC-ed and analyzed separately. After initial clustering the datasets were combined
and QC-ed again before and after joint clustering.

(B) Joint clustering procedure using the new i_harmonize function from the scrattch.hicat
package. For this study, as the 10xv2 dataset includes more cells while the SSv4 dataset provides
more sensitive gene detection, both datasets were used as reference datasets. For each reference
dataset anchor cells were selected to achieve uniform coverage of all cell types. Based on these
anchor cells high variance genes were selected (select high variance gene module, yellow box),
and high variance genes from each reference dataset were pooled. Next, a common adjacency
graph using all cells from all datasets was built (purple box) and the standard Jaccard-Louvain
clustering algorithm was applied (clustering module, blue box). Resulting clusters were merged
to ensure that all pairs of clusters, even at the finest level, were separable by conserved
differentially expressed genes across platforms. This 1_harmonize function applies the integrative
clustering across datasets iteratively, while ensuring that all clusters at each iteration are
separable by conserved differentially expressed genes.

(C) To assess correspondence of cell types identified in this study to previously published
datasets, cells from published datasets were mapped to our clusters using the nearest centroid
classifier based on a set of shared markers that were detected in both datasets (expression > 0).
To estimate the robustness of mapping, classification was repeated 100 times, each time using
80% of randomly sampled markers, and the probability for each cell to map to every reference
cluster was computed.
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Detection rates
(A-B) Number of genes detected per SSv4 (A) or 10xv2 (B) cell for each cluster.

(C) Number of UMI’s detected per 10xv2 cell for each cluster. The average number of UMIs
detected per cell in 10xv2 data was 10,576. The numbers of genes or UMIs detected were largely
consistent within each class and subclass of cells; non-neuronal cells and the CR and Meis2
neurons had substantially lower numbers of genes detected than other neurons.

(D) Comparison of the relative expression level of marker genes across all clusters between the
SSv4 and 10xv2 datasets. Since the two datasets differ in experimental platform, gene expression
quantification software and gene annotation reference, for each gene, we normalized the average
log2(CPM+1) values at the cluster level in the range [0,1] by subtracting the minimum value and
then dividing them by the maximum value for that gene. The smooth scatter plot represents
normalized gene expression for all marker genes across all clusters in the two datasets. The areas
with the highest density of data points are colored blue, and the lowest density white. Two
example genes are shown, each dot representing the average expression level for each gene in
each cluster.

(E) Distribution of gene expression conservation between the two platforms. For each of 5,981
marker genes, we computed the correlation of its average expression across all overlapping cell
types between 10xv2 and SSv4, and distribution of such correlation values (‘cor’) is shown in the
density plot. Two example genes shown in panel D are highlighted: Necab! represents a gene
with high correspondence between the two datasets, while Crispld?2 is detectable in SSv4 cells
but not in 10xv2 cells.
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